Pharmacology of Cocaine

  • S. John Gatley
  • Andrew N. Gifford
  • Nora D. Volkow
  • Joanna S. Fowler


Cocaine is a naturally occurring alkaloid extracted from the leaves of the South American shrub Erythroxylon coca. Early European explorers reported the habit of chewing of coca leaves by native populations, and systematic investigations of the effects of cocaine were conducted in the late nineteenth century by Sigmund Freud and others. For a review of the older literature on cocaine, the reader is referred to VanDyke and Byck (1974). Cocaine possesses short-acting local anesthetic and vasoconstrictor properties, which make it clinically useful for topical application. Its actions as a local anesthetic are due to inhibition of neuronal sodium channels which results in blockage of the initiation and conduction of nerve impulses. This area is not discussed in detail in this chapter. Cocaine is a Schedule II drug in the United States. Its abuse is associated with enormous costs to both addicted individuals and to society as a whole. Valuable perspectives on the abuse of cocaine and other stimulants were provided by Gawin and Ellinwood (1988).


Positron Emission Tomography Study Dopamine Transporter Behavioral Sensitization Experimental Therapeutics Cocaine Abuser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, J. M., & White, F. J. (1990). A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neuroscience Letters, 117, 181–187.PubMedCrossRefGoogle Scholar
  2. Akimoto, K., Hamamura, T., & Otsuki, S. (1989). Sub-chronic cocaine treatment enhances cocaine induced dopamine efflux, studied by in vivo intracerebral dialysis. Brain Research, 490, 339–344.PubMedCrossRefGoogle Scholar
  3. Ambre, J. (1985). The urinary excretion of cocaine and metabolites in humans: A kinetic analysis of published data. Journal ofAnalytic Toxicology. 9, 241–245.Google Scholar
  4. Balster, R. L., & Schuster, C. R. (1973). Fixed-interval schedule of cocaine reinforcement: Effect of dose and infusion duration. Journal of Experimental and Analytic Behavior, 20, 119–129.CrossRefGoogle Scholar
  5. Barnet, G., Hawks, R., & Resnick, R. (1981). Cocaine pharmacokinetics in humans. Journal of Ethnopharmacology, 3, 353–366.CrossRefGoogle Scholar
  6. Berger, S. P., Hall, S., Mickalian, J. D., Reid, M. S., Crawford, C. A., Delucchi, K., Carr, K., & Hall, S. (1996). Haloperidol antagonism of cue-elicited cocaine craving. Lancet, 347, 504–508.PubMedCrossRefGoogle Scholar
  7. Biegon, A., Dillon, K., Volkow, N. D., Hitzemann, R. J., Fowler, J. S., Wolf, A. P. (1992). Quantitative autoradiography of cocaine binding sites in human brain postmortem. Synapse, 10, 126–130.PubMedCrossRefGoogle Scholar
  8. Boja, J. W, Carroll, F. I., Rahman, M. A., Philip, A., Lewin, A. H., & Kuhar, M. J. (1990). New, potent cocaine analogs: Ligand binding and transport studies in rat striatum. European Journal of Pharmacology, 184, 329–332.PubMedCrossRefGoogle Scholar
  9. Boja, J. W, Patel, A., Carroll, F. I., Rahman, M. A., Philip, A., Lewin, A., Kopajtic, T. A., & Kuhar, M. J. (1991). [’251]RTI-55: A potent ligand for dopamine transporters. European Journal of Pharmacology, 194, 133–134.Google Scholar
  10. Boja, J. W, Markham, L., Patel, A., Uhl, G., Kuhar, M. J. (1992). Expression of a single dopamine transporter cDNA can confer two cocaine binding sites. Neuroreport, 3, 247–248.PubMedCrossRefGoogle Scholar
  11. Braestrup, C. (1977). Biochemical differentiation of amphetamine vs methylphenidate and nomifensine in rats. Journal of Pharmacy and Pharmacology, 26, 463–470.CrossRefGoogle Scholar
  12. Brzezinski, M. R., Abraham, T. R., Stone, C. L., Dean, R. A., & Bosron, W F. (1994). Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochemical Pharmacology, 48, 1747–1755.PubMedCrossRefGoogle Scholar
  13. Butcher, S., Liptrot, J., & Aburthnot, G. (1991). Characterization of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neuroscience Letters, 122, 245–248.PubMedCrossRefGoogle Scholar
  14. Calligaro, D. O., & Eldefrawi, M. E. (1988). High affinity stereospecific binding of [3H]cocaine in striatum and its relationship to the dopamine transporter. Membrane Biochemistry, 7, 87–106.CrossRefGoogle Scholar
  15. Carelli, R. M., King, V C., Hampson, R. E., & Deadwyler, S. A. (1993). Firing patterns of nucleus accumbens neurons during cocaine self-administration in rats. Brain Research, 626, 14–22.PubMedCrossRefGoogle Scholar
  16. Carlezon, W. A., Devine, D. P., & Wise, R. A. (1995). Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacologv. 122, 194–197.CrossRefGoogle Scholar
  17. Carroll, F. 1., Lewin, A. H., Boja, J. W., & Kuhar, M. J. (1992). Cocaine receptor: Biochemical characterization and structure-activity relationships of cocaine analogues at the dopamine transporter. Journal of Medicinal Chemistry, 35, 969–981.PubMedCrossRefGoogle Scholar
  18. Carroll, E I., Kotian, P., Dehghani, A., Gray, J. L., Kuzemko, M. A., Parham, K. A., Abraham, P., Lewin, A. H., Boja, J. W., & Kuhar, M. J. (1995). Cocaine and 3b-(4’-substituted phenyl)tropane-2b-carboxylic acid ester and amide analogues: New high-affinity and selective compounds for the dopamine transporter. Journal of Medicinal Chemistry, 38, 379–388.PubMedCrossRefGoogle Scholar
  19. Cass, W. A., & Zahniser, N. R. (1993). Cocaine levels in striatum and nucleus accumbens: Augmentation following challenge injection in rats withdrawn from repeated cocaine administration. Neuroscience Letters, 152, 177–180.PubMedCrossRefGoogle Scholar
  20. Chait, L. D., Uhlenhuth, E. H., & Johanson, C. E. (1987). Reinforcing and subjective effects of several anorectics in normal human volunteers. Journal of Pharmacology and Experimental Therapeutics, 242, 777–783.PubMedGoogle Scholar
  21. Chiueh, C. C., & Kopin, I. J. (1978). Endogenous epinephrine and norepinephrine from the synpathoadrenal medullary system of unanesthetized rats. Journal of Pharmacology and Experimental Therapeutics, 205, 14–154.Google Scholar
  22. Chow, M. J., Ambre, J. J., Ruo, T. 1., Atkinson, A. J., Bowsher, D. J., & Fischman, M. W. (1985). Kinetics of cocaine distribution, elimination and chronotropic effects. Clinical Pharmacology Therapy, 38, 318–324.Google Scholar
  23. Clarke, R. L., Daum, S. J., Gambino, A. J., Aceto, M. D., Pearl, J., Levitt, M., Cumisky, W. R., & Bogado, E. E. (1973). Compounds affecting the central nervous system 4 3-b-phenyltropane-2-carboxylic esters and analogs. Journal of Medicinal Chemistry, 16, 1260–1267.PubMedCrossRefGoogle Scholar
  24. Cone, E. J. (1995). Pharmacokinetics and pharmacodynamics of cocaine. Journal of Analytic Toxicology, 19, 459–478.Google Scholar
  25. Cone, E. J., Kumor, K., Thompson, L. K., & Sherer, M. (1988). Correlation of saliva cocaine levels with plasma levels and with pharmacological effects after intravenous cocaine administration in human subjects. Journal of Analytic Toxicology, 12, 200–206.Google Scholar
  26. Connell, P. H. (1958) Amphetamine psychosis. London: Chapman and Hill.Google Scholar
  27. Cook, C. E., Jeffcoat, A. R., & Perez-Reyes, M. (1985) Pharmacokinetic studies of cocaine and phencyclidine in man. In G. Barnett & N. C. Chang (Eds.), Pharmacokinetics and pharmacodynamies of psychoactive drugs (pp. 48–74 ). Foster City, CA: Biomedical Publications.Google Scholar
  28. Dackis, C. A., & Gold, M. S. (1985). New concepts in cocaine addiction: The dopamine depletion hypothesis. Neuroscience and Behavior Review, 9, 469–477.CrossRefGoogle Scholar
  29. Davies, H. M. L., Saikali, E., Sexton, T., & Childers, S. R. (1993). Novel 2-substituted cocaine analogs-bindingproperties at dopamine transport sites in rat striatum. European Journal of Pharmacology, 244, 93–97.PubMedCrossRefGoogle Scholar
  30. Dean, R. A., Christian, C. D., Sample, R. H. B., & Bosron, W. F. (1991). Human liver cocaine esterases: Ethanol mediated formation of ethylcocaine. Federation of the American Societies for Experimental Biology Journal, 5, 2735–2739.Google Scholar
  31. Dean, R. A., Bosron, W. F., Zachman, F. M., Zhang, J., & Brzezinski, M. R. (1997). Effects of ethanol on cocaine metabolism and disposition in the rat. NIDA Research Monograph No. 173, pp. 35–47 ). Washington, DC: U.S. Government Printing Office.Google Scholar
  32. Deutsch, H. M., & Schweri, M. M. (1994). Can stimulant binding and dopamine transport be differentiated-studies with GBR-12783 derivatives. Life Science, 55, 1115–1120.CrossRefGoogle Scholar
  33. Deutsch, H. M., Shi, Q., Gruszecka-Kowalik, E., & Schweri, M. M. (1996). Synthesis and pharmacology of potential cocaine antagonists: 2. Structure-activity relationship studies of aromatic ring substituted methylphenidate analogs. Journal of Medicinal Chemistry, 39, 1201–1209.PubMedCrossRefGoogle Scholar
  34. deWit, H., Metz, J. T., Wagner, N., & Cooper, M. D. (1990). Behavioral and subjective effects of alcohol: Relationship to cerebral metabolism using PET. Alcoholism: Clinical and Experimental Research, 14, 482–489.CrossRefGoogle Scholar
  35. deWit, H., Metz, J. T., & Cooper, M. D. (1994) The effects of drugs of abuse on regional cerebral metabolism and mood. In B. N. Dhawan, R. C. Srimal, R. Raghubir, & R. S. Rapaka (Eds.), Recent advances in the study of neurotransmitter receptors (pp. 482–489 ). Lucknow, India: Central Drug Research Institute.Google Scholar
  36. Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Science, 85, 5274–5278.CrossRefGoogle Scholar
  37. Einhorn, L. C., Johansen, P. A., & White, F. J. (1988). Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Studies in the ventral tegmental area. Journal of Neuroscience, 8, 100–112.PubMedGoogle Scholar
  38. El-Fawal, H. A. N., & Wood, R. W. (1995). airway smooth muscle relaxant effects of the cocaine pyrolysis product, methylecgonidine. Journal of Pharmacology and Experimental Therapeutics, 272, 991–996.Google Scholar
  39. Erzouki, H. K., Allen, A. C., Newman, A. H., Goldberg, S. R., & Schindler, C. W. (1995). Effects of cocaine, cocaine metabolites and cocaine pyrolysis products on the hindbrain cardiorespiratory centers of the rabbit. Life Science, 57, 1861–1868.CrossRefGoogle Scholar
  40. Eshleman, E. J., Henningsen, R. A., Neve, K. A., & Janowsky, A. (1994). Release of dopamine via the human transporter. Molecular Pharmacology, 45, 312–316.PubMedGoogle Scholar
  41. Evans, S. M., Cone, E. J., Marco, A. P., & Henningfield, J. E. (1992) A comparison of the kinetics of smoked and intravenous cocaine. In L. Harris (Ed.), Problems of drug dependence (p. 343 ). Rockville, MD: U.S. Department of Health and Human Services.Google Scholar
  42. Farre, M., Torre, R. D. L., Llorente, M., Lamas, X., Ugena, B., Segura, J., & Cami, J. (1993). Alcohol and cocaine interactions in humans. Journal of Pharmacology and Experimental Therapeutics, 266, 1364–1373.PubMedGoogle Scholar
  43. Fitzgerald, J. L., & Reid, J. J. (1991). Chronic cocaine treatment does not alter rat striatal D2 autoreceptor sensitivity to pergolide. Brain Research, 541, 327–333.PubMedCrossRefGoogle Scholar
  44. Foltin, R. W, & Fischman, M. W. (1992). Self-administration of cocaine by humans: Choice between smoked and intravenous cocaine,. Journal of Pharmacology and Experimental Therapeutics. 261, 841–849.PubMedGoogle Scholar
  45. Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., & MacGregor, R. R. (1989). Mapping cocaine binding sites in human and baboon brain in vivo. Synapse, 4, 371–377.PubMedCrossRefGoogle Scholar
  46. Fowler, J. S., Volkow, N. D., Logan, J., MacGregor, R. R., Wang, G. J., & Wolf, A. P. (1992). Alcohol intoxication does not change [I IC] cocaine pharmacokinetics in human brain and heart. Synapse, 12, 228–135.PubMedCrossRefGoogle Scholar
  47. Fowler, J. S., Volkow, N. D., MacGregor, R. R., Logan, J., Dewey, S. L., Gatley, S. J., & Wolf, A. P. (1992). Comparative PET studies of the kinetics and distribution of cocaine and cocaethylene baboon brain. Synapse, 12, 220–227.PubMedCrossRefGoogle Scholar
  48. Fowler, J. S., Ding, Y.-S., Volkow, N. D., Martin, T., MacGregor, R. R., Dewey, S., King, P., Pappas, N., Alexoff, D., Shea, C., Gatley, S. J., Schlyer, D. J., & Wolf, A. P. (1994). PET studies of cocaine inhibition of the my- ocardial norepinephrine uptake. Synapse, 16, 312–317.PubMedCrossRefGoogle Scholar
  49. Frost, J. J., Rosier, A. J., Reich, S. G., Smith, J. S., Ehlers, M. D., Snyder, S. H., Ravert, H. T., & Dannals, R. F. (1993). Positron emission tomographic imaging of the dopamine transporter with “C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Annals of Neurology, 34, 423–431.PubMedCrossRefGoogle Scholar
  50. Galloway, M. P. (1988). Neurochemical interactions of cocaine with the dopaminergic system. Trends in Pharmacological Science, 9, 451–454.CrossRefGoogle Scholar
  51. Gardner, E. L. (1992). Brain reward mechanisms. In J. H. Lowinson, P. Ruiz, J. G. Millman, & J. G. Langrod (Eds.), Substance abuse: A comprehensive textbook (pp. 70–99 ). Baltimore, MD: Williams and Wilkins.Google Scholar
  52. Garrett, E. R., & Seyda, K. (1983). Prediction of stability in pharmaceutical preparations XX: Stability, evaluation and bioanalysis of cocaine and benzoylecgonine by high performance liquid chromatography. Journal of Pharmacy and Science, 72, 258–271.CrossRefGoogle Scholar
  53. Gatley, S. J. (1991). The activities of the enantiomers of cocaine, and some related compounds as substrates and inhibitors of plasma butyrylcholinesterase. Biochemical Pharmacology, 41, 1249–1254.PubMedCrossRefGoogle Scholar
  54. Gatley, S. J., MacGregor, R. R., Fowler, J. S., Wolf, A. P., Dewey, S. L., & Schlyer, D. J. (1990). Rapid stereos-elective hydrolysis of (+) cocaine in baboon plasma prevents its uptake in the brain: Implications for behavioral studies. Journal of Neurochemistry, 54, 720–723.PubMedCrossRefGoogle Scholar
  55. Gatley, S. J., Yu, D.-W., Fowler, J. S., MacGregor, R. R., Schlyer, D. J., Dewey, S. L., Wolf, A. P., Shea, C. E., Martin, T. E, & Volkow, N. D. (1994). Studies with differentially labeled C-11 cocaine, C-1 I nor-cocaine, C-11 benzoylecgonine, and C-11 and F-18 4’-fluorococaine, to probe the extent to which C-Il cocaine metabolites contribute to PET images of the baboon brain. Journal of Neurochemistry, 62, 1154–1162.PubMedCrossRefGoogle Scholar
  56. Gatley, S. J., Pan, D., Chen, R., Chatrurvedi, G., & Ding, Y.-S. (1996). Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Science, 58, PL231–PL239.Google Scholar
  57. Gatley, S. J., Volkow, N. D., Chen, R., Fowler, J. S., Carroll, F. I., & Kuhar, M. J. (1996). Displacement of rti55 from the dopamine transporter by cocaine: implications for pharmacotherapy of stimulant abuse and in vivo imaging studies. European Journal of Pharmacology, 296, 145–151.PubMedCrossRefGoogle Scholar
  58. Gawin, F. H., & Ellinwood, E. H. (1988). Cocaine and other stimulants. New England Journal of Medicine, 318, 1173–1182.PubMedCrossRefGoogle Scholar
  59. Gawin, F. H., Riordan, C., & Kleber, H. D. (1985). Methylphenidate use in non-ADD cocaine abusers: A negative study. American Journal of Drug and Alcohol Abuse, 11, 193–197.PubMedCrossRefGoogle Scholar
  60. Gifford, A. N., & Johnson, K. M. (1992). Comparison of the role of local anaesthetic properties with dopamine uptake blockade in the inhibition of striatal and nucleus accumbens [3H]acetylcholine release by cocaine. Journal of Pharmacology and Experimental Therapeutics, 263, 757–761.PubMedGoogle Scholar
  61. Gifford, A. N., Bergmann, J. S., & Johnson, K. M. (1993). GBR 12909 fails to antagonize cocaine induced elevation of dopamine in striatal slices. Drug and Alcohol Dependence, 93, 65–71.CrossRefGoogle Scholar
  62. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379, 606–612.PubMedCrossRefGoogle Scholar
  63. Gradman, A. H. (1988). Cardiac effects of cocaine: A review. Yale Journal of Biological Medicine, 61, 137–141.Google Scholar
  64. Guerin, G. F., Goeders, N. E., Dworkin, S. I., & Smith, J. E. (1984). Intracranial self-administration of dopamine into the nucleus accumbens. Society of Neuroscience Abstracts, 10, 1072.Google Scholar
  65. Hawks, R. L., Kopin, I. J., Colburn, R. W., & Thoa, N. B. (1975). Norcocaine: A pharmacologically active metabolite of cocaine found in brain. Life Science, 15, 2189–2195.CrossRefGoogle Scholar
  66. He, X. S., Raymon, L. P., Mattson, M. V, Eldefrawi, M. E., & DeCosta, B. R. (1993). Further studies of the structure-activity relationships of I-[I-(2benzo[b]thienyl)cyclohexyl]piperidine. synthesis and evaluation of I-(2-benzo[b]thienyl)-N,N-dialkylcyclohexylamines at dopamine uptake and phencyclidine binding sites. Journal of Medicinal Chemistry, 36, 4075–4081.PubMedCrossRefGoogle Scholar
  67. Hearn, W. L., Flynn, D. D., Hime, G. W., Rose, S., Confino, J. C., ManteroAtienza, E., Wetli, C. W, & Mash, D. C. (1991). Cocaethylene: A unique cocaine metabolite displays high-affinity for the dopamine. transporter. Journal of Neurochemistry, 56, 698–701.PubMedCrossRefGoogle Scholar
  68. Henningfield, J. E., & Keenan, R. M. (1993). Nicotine delivery kinetics and abuse liability. Journal of Consulting and Clinical Psychiatry, 61, 743–750.CrossRefGoogle Scholar
  69. Henry, D. J., & White, F. J. (1991). Repeated cocaine administration caused persistent enhancement of DI dopamine receptor sensitivity within the rat nucleus accumbens. Journal of Pharmacology and Experimental Therapeutics, 258, 882–890.PubMedGoogle Scholar
  70. Henry, D. J., Greene, M. A., & White, E J. (1989). Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Repeated administration. Journal of Experimental Therapeutics, 251, 833–839.Google Scholar
  71. Hoffman, D. C., & Wise, R. A. (1993). Lack of cross-sensitization between the locomotor-activating effects of bromocriptine and those of cocaine or heroin. Psychopharmacology, 110, 402–408.PubMedCrossRefGoogle Scholar
  72. Huester, D. C. (1987). Cardiovascular effects of cocaine. Journal of the American Medical Association, 257, 979–980.CrossRefGoogle Scholar
  73. Hurd, Y. L., & Herkenham, M. (1993). Molecular alterations in the neostriatum of human cocaine addicts. Synapse, 13, 357–369.PubMedCrossRefGoogle Scholar
  74. Hurd, Y. L., & Ungerstedt, U. (1989). Cocaine: An in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse, 3, 48–54.PubMedCrossRefGoogle Scholar
  75. Inaba, T. (1989). Cocaine: Pharmacokinetics and biotransformation in man. Canadian Journal of Physiology and Pharmacology, 67, 1154–1157.PubMedCrossRefGoogle Scholar
  76. Isner, J., Estes, M., & Thompson, P. D. (1986). Acute cardiac events temporally related to cocaine abuse. New England Journal of Medicine, 15, 1438–1443.CrossRefGoogle Scholar
  77. lyer, R. N., Nobiletti, J. B., Jatlow, P. I., & Bradberry, C. W. (1995). cocaine and cocaethylene: Effects on extracellular dopamine in the primate. Psychopharmacology, 120, 150–155.Google Scholar
  78. Izenwasser, S., & Cox, B. M. (1990). Daily cocaine treatment produces a persistent reduction in [3H]dopamine uptake in vitro in rat nucleus accumbens but not in striatum. Brain Research, 531, 338–341.PubMedCrossRefGoogle Scholar
  79. Jaffe, J. H. (1990). Trivializing dependence. British Journal of Addiction, 85, 1425–1427.PubMedCrossRefGoogle Scholar
  80. Javaid, J. I., Musa, M. N., Fischman, M., Schuster, C. R., & Davis, J. M. (1983). Kinetics of cocaine in humans after intravenous and intranasal administration. Biopharmacology of Drug Disposition, 4, 9–18.CrossRefGoogle Scholar
  81. Jeffcoat, A. R., Perez-Reyes, M., Hill, J. M., Sadler, B. M., & Cook, C. E. (1989). Cocaine disposition in humans after intravenous injection, nasal insufflation (snorting), or smoking. Drug Metabolism and Disposition, 17, 153–159.PubMedGoogle Scholar
  82. Johanson, C.-E., & Fischman, M. W. (1989). The pharmacology of cocaine related to its abuse. Pharmacological Review 41, 3–52.Google Scholar
  83. Johanson, C.-E., & Schuster, C. R. (1995) Cocaine. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 1685–1697 ). New York: Raven.Google Scholar
  84. Johnson, K. M., Bergmann, J. S., & Kozikowski, A. P. (1992). Cocaine and dopamine differentially protect [3H]mazindol binding sites from alkylation by N-ethylmaleimide. European Journal of Pharmacology, 227, 411–427.PubMedCrossRefGoogle Scholar
  85. Kalivas, P. W., & Alesdatter, J. E. (1993). Involvement of NMDA receptor stimulation in the VTA and amygdala in behavioral sensitization to cocaine. Journal of Pharmacology and Experimental Therapeutics, 267, 486–495.PubMedGoogle Scholar
  86. Kalivas, P. W., & Weber, B. (1988). Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. Journal of Pharmacology and Experimental Therapeutics, 245, 1095–1101.PubMedGoogle Scholar
  87. Karler, R., Calder, L. D., Chaudhry, I. A., & Turkanis, S. A. (1989). Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Science, 45, 599–606.CrossRefGoogle Scholar
  88. Karler, R., Calder, L. D., & Bedingfield, J. B. (1994). Cocaine behavioral sensitization and the excitatory amino acids. Psychopharmacology, 115, 305–310.PubMedCrossRefGoogle Scholar
  89. Kaufman, M. J., Spealman, R. D., & Madras, B. K. (1991). Distribution of cocaine recognition sites in monkey brain. In vitro autoradiography with [3H]CFT. Synapse, 9, 177–187.Google Scholar
  90. Kennedy, L. T., & Hanbauer, I. (1983). Sodium sensitive cocaine binding to rat striatal membrane: Possible relationship to dopamine uptake. Journal of Neurochemistry, 41, 172–178.PubMedCrossRefGoogle Scholar
  91. Kitayama, S., Shimada, S., Xu, H., Markham, L., Donovan, D. M., & Uhl, G. R. (1992). Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proceedings of the National Academy of Science, 89, 7782–7785.CrossRefGoogle Scholar
  92. Kleber, H. D. (1995). Pharmacotherapy, current and potential, for the treatment of cocaine dependence. Clinical Neuropharmacology, 18 (Suppl. 1), S96-S 109.Google Scholar
  93. Kloner, R. A., Hale, S., Alker, K., & Rezkalla, S. (1992). The effects of acute and chronic cocaine use on the heart. Circulation, 85, 407–419.PubMedCrossRefGoogle Scholar
  94. Kosikowski, A. P., Salah, M. K. E., Johnson, K. M., & Bergmann, J. M. (1995). Chemistry and biology of the 23-alkyl-33-phenyl analogues of cocaine: Subnanomolar affinity ligands that suggest a new pharmacophore at the C-2 position. Journal of Medicinal Chemistry, 38, 3086–3093.CrossRefGoogle Scholar
  95. Lakoski, J. M., & Cunningham, K. A. (1988). Cocaine interaction with central monoaminergic systems: Electrophysiological approaches. Trends in Pharmacological Science, 9, 177–180.CrossRefGoogle Scholar
  96. Laruelle, M., Baldwin, R. M., Malison, R. T., Zea-Ponce, Y., Zoghbi, S. S., Al-Tikriti, M., Sybirska, E. H., Zimmermann, R. C., Wisniewski, G., Neumeyer, J. L., Milius, R. A., Wang, R. A., Smith, E. O., Roth, R. H., Charney, D., Hoffer, P. B., & Innis, R. B. (1993). SPECT imaging of dopamine and serotonin transporters with [I-123] beta-CIT: Pharmacological characterization of brain uptake in non-human primates. Synapse, 13, 295–309.PubMedCrossRefGoogle Scholar
  97. Levin, S. R., & Welch, K. M. A. (1988). Cocaine and stroke: Current concepts of cerebrovascular disease. Stroke, 19, 779–7883.CrossRefGoogle Scholar
  98. Lichtenfeld, P. J., Rubin, D. B., & Feldman, R. S. (1984). Subarachnoid hemorrhage precipitated by cocaine snorting. Archives of Neurology, 41, 223–224.PubMedCrossRefGoogle Scholar
  99. Lienau, A. K., & Kuschinsky, K. (1997). Sensitization phenomena after repeated administration of cocaine or D-amphetamine in rats: Associative and non-associative mechanisms and the role of dopamine in the striatum. Naunyn Schmiedehergs Archives of Pharmacology, 355, 531–537.CrossRefGoogle Scholar
  100. Logan, J., Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., MacGregor, R. R., Hitzemann, R., Bendirem, B., Gatley, S. J., & Christman, D. R. (1990). Graphical analysis of reversible radiolig and binding from time activity measurements applied to [N-“ C-methyl]-(-)cocaine PET studies in human subjects. Journal of Cerebral Blood Flow and Metabolism, 10, 740–747.PubMedCrossRefGoogle Scholar
  101. London, E. D., Cascella, N. G., Wong, D. F., Phillips, R. L., Dannals, R. F., Links, J. M., Herning, R., Grayson, R., Jaffe, J. H., & Wagner, H. N. J. (1990). Cocaine-induced reduction of glucose utilization in human brain: A study using positron emission tomography and [Fluorine 18]-Fluorodeoxyglucose. Archives of General Psychiatry, 47, 567–574.PubMedCrossRefGoogle Scholar
  102. Madden, J. A., & Powers, R. H. (1990). Effect of cocaine and cocaine metabolites on cerebral arteries in vitro. Life Sciences, 47, 1109–1114.PubMedCrossRefGoogle Scholar
  103. Madras, B. K. (1994). “C-WIN 35,428 for detecting dopamine depletion in mild Parkinson’s disease. Annals of Neurology, 35, 376–377.Google Scholar
  104. Madras, B. K., & Kaufman, M. J. (1994). Cocaine accumulates in dopamine rich regions of primate brain after I.V. administration: Comparison with mazindol distribution. Synapse, 18, 261–275.PubMedCrossRefGoogle Scholar
  105. Madras, B. K., Fahey, M. A., Bergman, J., Canfield, D. R., & Spealman, R. D. (1989). Effects of cocaine and related drugs in non-human primates. I [3H]Cocaine binding sites in caudate-putamen. Journal of Pharmacology and Experimental Therapeutics, 251, 131–141.PubMedGoogle Scholar
  106. Madras, B. K., Spealman, R. D., Fahey, M. A., Neumeyer, J. L., Saha, J. K., & Milius, R. A. (1989). Cocaine receptors labeled by [3H]2b-carbomethoxy-3b-(4fluorophenyl)tropane. Molecular Pharmacology, 36, 518–524.PubMedGoogle Scholar
  107. Masserano, J. M., Venable, D., & Wyatt, R. J. (1994). Effect of chronic cocaine administration on [3H]dopamine uptake in the nucleus accumbens, striatum and frontal cortex of rats. Journal of Pharmacology and Experimental Therapeutics, 270, 133–141.PubMedGoogle Scholar
  108. Mattingly, B. A., Hart, T. C., Lim, K., & Perkins, C. (1994). Selective antagonism of dopamine D1 and D2 receptors does not block the development of behavioral sensitization to cocaine. Psychopharmacolog. 114, 239–242.CrossRefGoogle Scholar
  109. McElvain, J. S., & Schenk, J. O. (1992). A multisubstrate mechanism of striatal dopamine uptake and its inhibition by cocaine. Biochemical Pharmacology, 43, 2189–2199.PubMedCrossRefGoogle Scholar
  110. Meehan, S. M., & Schechter, M. D. (1995). Cocaethyleneinduced lethality in mice is potentiated by alcohol. Alcohol, 12, 383–385.PubMedCrossRefGoogle Scholar
  111. Meltzer, P. C., Liang, A. Y., Brownell, A. L., Elmaleh, D. R., & Madras, B. K. (1993). Substituted 3-phenyltropane analogs of cocaine: Synthesis and inhibition of binding at cocaine recognition sites, and positron emission tomography imaging. Journal of Medicinal Chemistry, 36, 855–862.PubMedCrossRefGoogle Scholar
  112. Meltzer, P. C., Liang, A. Y., & Madras, B. K. (1994). The discovery of an unusually selective and novel cocaine analog: Difluoropine (0–620). synthesis and inhibition of binding at cocaine recognition sites. Journal of Medicinal Chemistry, 37, 2001–2010.PubMedCrossRefGoogle Scholar
  113. Mule, S. J., Casella, G. A., & Misra, A. L. (1976). Intracellular disposition of [3H]cocaine, [3H]norcocaine, [3H]benzoylecgonine and [3H]benzoylnorecgonine in the brain of rats. Life Sciences, 19, 1585–1596.PubMedCrossRefGoogle Scholar
  114. Nayak, P. K., Misra, A. L., & Mulé, S. J. (1976). Physiological disposition and biotransformation of [3H]cocaine in acutely and chronically treated rats. Journal of Pharmacology and Experimental Therapeutics, 196, 556–569.PubMedGoogle Scholar
  115. Nicolaysen, L. C., Pan, H. T., & Justice, J. B., Jr. (1988). Extracellular cocaine and dopamine concentrations are linearly related in rat striatum. Brain Research, 456, 317–323.PubMedCrossRefGoogle Scholar
  116. Parran, T. V, & Jasinski, D. R. (1991). Intravenous methylphenidate abuse: Prototype for prescription drug abuse. Archives of Internal Medicine, 151, 781–783.PubMedCrossRefGoogle Scholar
  117. Parsons, L. H., & Justice, J. B. (1994). Quantitative approaches to in vivo brain microdialysis. Critical Review of Neurobiology 8, 189–220.Google Scholar
  118. Perez-Reyes, M., & Jeffcoat, A. R. (1992). Ethanol/cocaine interaction: Cocaine and cocaethylene plasma concentrations and their relationship to subjective and cardiovascular effects. Life Sciences, 51, 553–563.PubMedCrossRefGoogle Scholar
  119. Peterson, K. I., Logan, B. K., & Christian, G. D. (1995). Detection of cocaine and its polar transformation products and metabolites in human urine. Forensic Science International, 73, 183–196.PubMedCrossRefGoogle Scholar
  120. Pettit, H. O., & Justice, J. B., Jr. (1989). Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacology, Biochemistry and Behavior, 34, 899–904.CrossRefGoogle Scholar
  121. Pettit, H. O., Pan, H.-T., Parsons, L. H., & Justice, J. B. (1990). Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration. Journal of Neurochemistry, 55, 798–804.PubMedCrossRefGoogle Scholar
  122. Pitts, D. K., & Marwah, J. (1987). Electrophysiological actions of cocaine on noradrenergic neurons in rat locus ceruleus. Journal of Pharmacology and Experimental Therapeutics, 240, 345–351.PubMedGoogle Scholar
  123. Porrino, L. J. (1993). Functional consequences of acute cocaine treatment depend on route of administration. Psychopharmacology, 112, 343–351.PubMedCrossRefGoogle Scholar
  124. Post, R. M. (1975). Cocaine psychoses: A continuum model. American Journal of Psychiatry, 132, 225–231.PubMedGoogle Scholar
  125. Post, R. M., & Rose, H. (1976). Increasing effects of repetitive cocaine administration in the rat. Nature, 260, 731–732.PubMedCrossRefGoogle Scholar
  126. Preston, K. L., Sullivan, J. T., Berger, P., & Bigelow, G. E. (1993). Effects of cocaine alone and in combination with mazindol in human cocaine abusers. Journal of Pharmacology and Experimental Therapeutics, 258, 296–307.Google Scholar
  127. Pristupa, Z. B., Wilson, J. M., Hoffman, B. J., Kish, S. J., & Niznik, H. B. (1994). Pharmacological heterogeneity of the cloned and native human dopamine transporter: Disassociation of the [3H]WIN 35,428 and [3H]GBR 12,935 binding. Molecular Pharmacology 45, 125–135.PubMedGoogle Scholar
  128. Przywara, D. A., & Dambach, G. E. (1989). Direct actions of cocaine on cardiac cellular activity. Circulation Research, 65, 185–192.PubMedCrossRefGoogle Scholar
  129. Qiao, J.-T, Dougherty, P. M., Wiggins, R. C., & Dafny, N. (1990). Effects of microiontophoretic application of cocaine, alone and with receptor antagonists, upon the neurons of the medial prefrontal cortex, nucleus accumbens and caudate nucleus of rats. Neuropharmacology, 29, 379–385.PubMedCrossRefGoogle Scholar
  130. Rall, T. W. (1993) Hypnotics and sedatives: Ethanol. In A. Goodman-Gilman, L. S. Goodman, T. W Rall, & F. Murad (Eds.), Goodman and Gilman’s the pharmacological basis of therapeutics (pp. 345–382 ). New York: Macmillan.Google Scholar
  131. Rao, A. N., Polos, P. G., & Walther, F. A. (1990). Crack abuse and asthma: A fatal combination. New York State Journal of Medicine, 90, 511–512.PubMedGoogle Scholar
  132. Rech, R. H., Vomachka, M. K., Rickert, D., & Braude, M. C. (1976). Interactions between amphetamine and alcohol, and their effects on rodent behavior. Annals of the New York Academy of Science, 281, 426–440.CrossRefGoogle Scholar
  133. Reith, M. E. A., Benuck, M., & Lajtha, A. (1987). Cocaine disposition in the brain after continuous or intermittent treatment and locomotor stimulation in mice. Journal of Pharmacology and Experimental Therapeutics, 243, 281–287.Google Scholar
  134. Reith, M. E. A., DeCosta, B., Rice, K. C., & Jacobson, A. E. (1992). Evidence for mutually exclusive binding of cocaine, BTCP, GBR 12935 and dopamine to the dopamine transporter. European Journal of Pharmacology, 227, 417–425.PubMedCrossRefGoogle Scholar
  135. Reith, M. E. A., Coffey, L. L., Xu, C., & Chen, N. H. (1994). GBR 12909 and GBR 12935 block dopamine uptake into brain synaptic vesicles as well as nerve endings. European Journal of Pharmacology, 253, 175–178.PubMedCrossRefGoogle Scholar
  136. Ritchie, J. M., & Greene, N. M. (1993). Local anesthetics. In A. Goodman-Gilman, T. N. Rall, A. S. Nies, & P. Taylor (Eds.), Goodman and Gilman’s the pharmacological basis of therapeutics ( 8th ed., pp. 311–331 ). New York: Macmillan.Google Scholar
  137. Ritz, M. C., Lamb, R. J., Goldberg, S. R., & Kuhar, M. J. (1987). Cocaine receptors on dopamine transporters are related to self administration of cocaine. Science, 237, 1219–1223.PubMedCrossRefGoogle Scholar
  138. Ritz, M. C., Cone, E. J., & Kuhar, M. J. (1990). Cocaine inhibition of ligand binding at dopamine norepinephrine and serotonin transporters: A structure-activity study. Life Sciences, 46, 635–645.PubMedCrossRefGoogle Scholar
  139. Roth, L., Harbison, R. B., James, R. C., Tobin, T., & Roberts, S. M. (1992). Cocaine hepatotoxicity: Influence of hepatic enzyme inducing and inhibiting agents on the site of necrosis. Hepatology, 15, 934–940.PubMedCrossRefGoogle Scholar
  140. Rothman, R. B. (1990). High affinity dopamine reuptake inhibitors as potential cocaine antagonists: A strategy for drug development. Life Sciences, 46, PLI7–PL21.CrossRefGoogle Scholar
  141. Rothman, R. B., Mele, A., Reid, A. A., Hyacinth, C. A., Greg, N., Thurkauf, A., DeCosta, B. R., Rice, K. C., & Pert, A. (1991). GBR 12909 antagonizes the ability of cocaine to elevate extracellular levels of dopamine. Pharmacology, Biochemistry and Behavior, 40, 387–397.CrossRefGoogle Scholar
  142. Rothman, R. B., Grieg, N., Kim, A., De Costa, B. R., Rice, K. C., Carroll, E, & Pert, A. (1992). Cocaine and GBR 12909 produce equivalent motoric responses at different occupancy of the dopamine transporter. Pharmacology, Biochemistry and Behavior, 43, 1135–42.CrossRefGoogle Scholar
  143. Rothman, R. B., Becketts, K. M., Radesca, L. R., DeCosta, B. R., Rice, K. C., Carroll, F. I., & Dersch, C. M. (1993). Studies of the biogenic amine transporters: II. A brief study on the use of [3H]DAuptake-inhibition to transporter-binding-inhibition ratios for the in vitro evaluation of putative cocaine antagonists. Life Sciences, 53, PL267–PL272.PubMedCrossRefGoogle Scholar
  144. Seeman, P. (1993). Receptor tables. Volume 2: Drug dissociation constants for neuroreceptors and transporters. Toronto, Ontario, Canada: SZ Resarch.Google Scholar
  145. Seidman, M. H., Lau, C. E., Chen, R., & Falk, J. L. (1992). Orally self-administered cocaine: Reinforcing efficacy by the place preference method. Pharmacology, Biochemistry and Behavior, 43, 235–241.CrossRefGoogle Scholar
  146. Self, D. W, & Nestler, E. J. (1995). Molecular mechanisms of drug reinforcement and addiction. Annual Review of Neuroscience, 43, 463–495.CrossRefGoogle Scholar
  147. Sharkey, J., Glen, K. A., Wolfe, S., & Kuhar, M. J. (1988). Cocaine binding at sigma receptors. European Journal of Pharmacology, 149, 171–174.PubMedCrossRefGoogle Scholar
  148. Sharkey, J., Ritz, M. C., Schenden, J. A., Hanson, R. C., & Kuhar, M. J. (1988). Cocaine inhibits muscarinic cholinergic receptors in heart and brain. Journal of Pharmacology and Experimental Therapeutics, 246, 1048–1052.PubMedGoogle Scholar
  149. Sharpe, L. G., Pilotte, N. S., Mitchell, W. M., & DeSouza, E. B. (1991). Withdrawal of repeated cocaine decreases autoradiographic [3H]mazindol labelling of dopamine transporter in rat nucleus accumbens. European Journal of Pharmacology, 203, 141–144.PubMedCrossRefGoogle Scholar
  150. Shuster, L., Yu, G., & Bates, A. (1977). Sensitization to cocaine stimulation in mice. Psychopharmacologv, 52, 185–190.CrossRefGoogle Scholar
  151. Simoni, D., Stoelwinder, J., Kozikowski, A. P., Johnson, K. M., Bergmann, J. S., & Ball, R. G. (1993). Methoxylation of cocaine reduces binding affinity and produces compounds of differential binding and dopamine uptake inhibitory activity: Discovery of a weak cocaine “antagonist.” Journal of Medicinal Chemistry, 36, 3975–3977.PubMedCrossRefGoogle Scholar
  152. Sisti, N. J., Fowler, F. W, & Fowler, J. S. (1989). The flash vacuum thermolysis of (-)-cocaine. Tetrahedron Letters, 30, 5977–5980.CrossRefGoogle Scholar
  153. Snyder, W. S., Cook, M. J., Nasset, E. S., Karhausen, L. R., Parry-Howells, G., & Tipton, I. H. (1975). Report on the task group on Reference Man (ICRP Publication 23 ). Oxford, England: Pergamon.Google Scholar
  154. Sorg, B. A., & Ulibarri, C. (1995). Application of a protein synthesis inhibitor into the ventral tegmental area, but not the nucleus accumbens, prevents behavioral sensitization to cocaine. Synapse, 20, 217–224.PubMedCrossRefGoogle Scholar
  155. Spealman, R. D., Goldberg, S. R., Kelleher, R. T., Morse, W. H., Goldberg, D. M., Hakansson, C. G., Nieforth, K. A., & Lazer, E. S. (1979). Effects of norcocaine and some norcocaine derivatives on schedule-controlled behavior of pigeons and squirrel monkeys. Journal of Pharmacology and Experimental Therapeutics, 210, 196–205.PubMedGoogle Scholar
  156. Spealman, R. D., Kelleher, R. T., & Goldberg, S. R. (1983). Stereoselective effects of cocaine and a phenyltropane analog. Journal of Pharmacology and Experimental Therapeutics, 225, 509–514.PubMedGoogle Scholar
  157. Staley, J. K., Hearn, W. L., Ruttenber, A. J., Wetli, C. V, & Mash, D. C. (1994). High affinity cocaine recognition sites on the dopamine transporter are elevated in fatal cocaine overdose victims. Journal of Pharmacology and Experimental Therapeutics, 271, 1678–1685.PubMedGoogle Scholar
  158. Stein, E. A., & Fuller, S. A. (1993). Cocaine time action profile on regional cerebral blood flow in the rat. Brain Research, 626, 117–126.PubMedCrossRefGoogle Scholar
  159. Stewart, D. J., Inaba, T., Tang, B. K., & Kalow, W. (1977). Hydrolysis of cocaine in human plasma by cholinesterase. Life Sciences, 20, 1557–1564.PubMedCrossRefGoogle Scholar
  160. Stewart, D. J., Inaba, T., Lucassen, M., & Kalow, W. (1979). Cocaine metabolism: Cocaine and norcocaine hydrolysis by liver and serum esterases. Clinical Pharmacology and Therapeutics, 25, 464–468.PubMedGoogle Scholar
  161. Stine, S. M., Krystal, J. H., Kosten, T. R., & Charney, D. S. (1995). Mazindol treatment for cocaine dependence. Drug and Alcohol Dependence, 39, 245–253.PubMedCrossRefGoogle Scholar
  162. Strickland, T. L., Mena, I., Villanueva-Meyer, J., Miller, B. L., Cummings, J., Mehringer, C. M., Satz, P., Myers, H. (1993). Cerebral perfusion and neuropsychological consequences of chronic cocaine use. Journal of Neuropsvchiatry, 5, 1–9.Google Scholar
  163. Tella, S. R., & Goldberg, S. R. (1993). Monoamine uptake inhibitors alter cocaine pharmacokinetics. Psychopharmacology, 112, 497–502.PubMedCrossRefGoogle Scholar
  164. Tumeh, S., Nagel, J. S., & English, R. J. (1990). Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Radiology, 176, 821–24.PubMedGoogle Scholar
  165. Turkanis, S. A., Partlow, L. M., & Karler, R. (1989). Effects of cocaine on neuromuscular transmission in the lobster. Neuropharmacology, 18, 971–975.CrossRefGoogle Scholar
  166. Uchimura, N., & North, R. A. (1990). Actions of cocaine on rat nucleus accumbens neurones in vitro. British Journal of Pharmacology, 99, 736–740.CrossRefGoogle Scholar
  167. Ujike, H., Akiyama, K., & Otsuki, S. (1990). D-2 but not D-1 dopamine agonists produce augmented behavioral response in rats after subchronic treatment with methamphetamine or cocaine. Psychopharmacology, 102, 459–464.PubMedCrossRefGoogle Scholar
  168. Van Dyke, C., & Byck, R. (1974) Cocaine: 1884–1974. In E. H. Elinwood (Ed.), Advances in behavioral biology (pp. 1–30 ). New York: Plenum.Google Scholar
  169. Van Dyke, C., Jatlow, P., lingerer, J., Barash, P. G., & Byck, R. (1978). Oral cocaine: Plasma concentrations and central effects. Science, 200, 211–213.PubMedCrossRefGoogle Scholar
  170. Vezina, E, & Stewart, J. (1989). The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and morphine. Brain Research, 499, 108–120.PubMedCrossRefGoogle Scholar
  171. Volkow, N. D., Mullani, N., Gould, K. L., Adler, S., & Krajewski, K. (1988). Cerebral blood flow in chronic cocaine users: A study with positron emission tomography. British Journal of Psychiatry, 152, 641–648.CrossRefGoogle Scholar
  172. Volkow, N. D., Hitzemann, R., Wolf, A. P., Logan, J., Fowler, J., Christman, D., Dewey, S., Schlyer, D., Burr, G., Vitkun, S., & Hirschowitz, J. (1990). Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Research, 35, 39–48.CrossRefGoogle Scholar
  173. Volkow, N. D., Fowler, J. S., Wolf, A. P., Hitzemann, R., Dewey, S. L., Bendriem, B., Alpert, R., & Hoff, A. (1991). Changes in brain glucose metabolism in cocaine dependence and withdrawal. American Journal of Psychiatry, 148, 621–626.PubMedGoogle Scholar
  174. Volkow, N. D., Gillespie, H., Mullani, N., Tancredi, L., Grant, C., lvanovic, M., & Hollister, L. (1991). Cerebellar metabolic activation by delta-9-tetrahydrocannabinol in human brains: A study with positron emission tomography and 1“F-2-deoxy-2-fluoro-Dglucose. Psychiatric Research, 40, 69–80.Google Scholar
  175. Volkow, N. D., Fowler, J. S., Wolf, A. P., Wang, G.-J., Logan, J., MacGregor, R. R., Dewey, S. L., Schlyer, D. J., & Hitzemann, R. (1992). Distribution and kinetics of carbon-I I-cocaine in the human body measured with PET. Journal of Nuclear Medicine, 33, 521–525.PubMedGoogle Scholar
  176. Volkow, N. D., Hitzemann, R., Wang, G.-J., Fowler, J. S., Wolf, A. P., Dewey, S. L., Burr, G., Piscani, K., Handlesman, L., & Hoff, A. (1992). Long term frontal brain metabolic changes in cocaine abusers. Synapse, 11, 184–190.PubMedCrossRefGoogle Scholar
  177. Volkow, N. D., Fowler, J. S., Wang, G.-J., Hitzemann, R., Wolf, A. P., Logan, J., Schlyer, D., MacGregor, R. R., Angrist, B., Liebermann, J., Burr, G., & Pappas, N. (1993). PET studies of the function of the dopamine transporter in cocaine abusers. Journal of Nuclear Medicine, 34, 67.Google Scholar
  178. Volkow, N. D., Ding, Y.-S., Fowler, J. S., Wang, G.-J., Logan, J., Gatley, S. J., Dewey, S., Ashby, C., Lieber-mann, J., Hitzemann, R., & Wolf, A. P. (1995). Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in human brain. Archives of General Psychiatry, 52, 456–463.PubMedCrossRefGoogle Scholar
  179. Volkow, N. D., Fowler, J. S., Logan, J., Gatley, S. J., Dewey, S. L., MacGregor, R. R., Schlyer, D. J., Pappas, N., King, P., & Wolf, A. P. (1995). Comparison of [1 lC]cocaine binding at sub-pharmacological and pharmacological doses in baboon brain. Journal of Nuclear Medicine, 36, 1289–1297.PubMedGoogle Scholar
  180. Volkow, N. D., Wang, G.-J., Hitzemann, R., Fowler, J. S., Burr, G., & Wolf, A. P. (1995). Recovery of brain glucose metabolism in detoxified alcoholics. American Journal of Psychiatry, 151, 178–183.Google Scholar
  181. Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Hitzemann, R., Gatley, S. J., Macgregor, R. R., & Wolf, A. P. (1996). Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology, 14, 159–168.PubMedCrossRefGoogle Scholar
  182. Wakasa, Y., Takada, K., & Yanagita, T. (1995). Reinforcing effect as a function of infusion speed in intravenous self-administration of nicotine in rhesus monkeys. Japanese Journal of Psychopharmacology, 15, 53–59.PubMedGoogle Scholar
  183. Wall, S. C., Innis, R. B., & Rudnick, G. (1993). Binding of the cocaine analog 2b-carbomethoxy-3b-(4[’’-51]iodophenyl)tropane to serotonin and dopamine transporters: Different ionic requirements for substrate and 2(3-carbomethoxy-313-(4-r1]iodophenyl)tropane binding. Molecular Pharmacology, 43, 264–270.PubMedGoogle Scholar
  184. Wang, G. J., Volkow, N. D., Logan, J., Fowler, J. S., Schlyer, D. J., MacGregor, R. R., Hitzemann, R. J., Gjedde, A., & Wolf, A. P. (1995). Serotonin 5-I1T2 receptor availability in chronic cocaine abusers. Life Sciences, 56, 299–303.Google Scholar
  185. Wang, G. J., Volkow, N. D., Hitzemann, R. J., Wong, C., Angrist, B., Burr, G., Pascani, K., Pappas, N., Lu, A., Cooper, T., & Lieberman, J. A. (1997). Behavioral and cardiovascular effects of intravenous methylphenidate in normal subjects and cocaine abusers. European Addiction Research, 3, 49–54.CrossRefGoogle Scholar
  186. White, E J., Hu, X.-T., & Henry, D. J. (1993). Electrophysiological effects of cocaine in the rat nucleus accumbens: Microiontophoretic studies. Journal of Pharmacology and Experimental Therapeutics. 166, 1075–1084.Google Scholar
  187. White, S. R., Harris, G. C., Imel, K. M., & Wheaton, M. J. (1995). Inhibitory effects of dopamine and methylenedioxymethamphetamine (MDMA) on glutamate-evoked firing of nucleus accumbens and caudate/putamen cells are enhanced following cocaine self-administration. Brain Research, 681, 167–176.PubMedCrossRefGoogle Scholar
  188. Wilkinson, P, VanDyke, C., Jatlow, P., Barash, P., & Byck, R. (1980). Intranasal and oral cocaine kinetics. Clinical Pharmacologic Therapeutics, 27, 386–394.CrossRefGoogle Scholar
  189. Wolf, M. E., & Jeziorski, M. (1993). Coadministration of MK-801 with amphetamine, cocaine or morphine prevents rather than transiently masks the development of behavioral sensitization. Brain Research, 613, 291–294.PubMedCrossRefGoogle Scholar
  190. Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., & Khansa, M. R. (1993). Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. Journal of Pharmacology and Experimental Therapeutics, 264, 249–255.PubMedGoogle Scholar
  191. Wolkin, A., Angrist, B., Wolf, A., Brodie, J., Wolkin, B., Jaeger, J., Cancro, R., & Rotrosen, J. (1987). Effects of amphetamine on local cerebral metabolism in normal and schizophrenic subjects as determined by positron emission tomography. Psychopharmacology, 92, 241–252.PubMedCrossRefGoogle Scholar
  192. Wong, D. T., & Bymaster, F. P. (1978). An inhibitor of dopamine reuptake, LR5182, cis-3-(3,4-dichlorophenyl)-2-N,N-dimethy laminomethyl-bicyclo [2,2,2]octane, hydrochloride. Life Sciences, 23, 1041–1047.PubMedCrossRefGoogle Scholar
  193. Yu, D. W., Gatley, S. J., Wolf, A. P., MacGregor, R. R., Dewey, S. L., Fowler, J. S., & Schlyer, D. (1992). Synthesis of carbon-11 labeled iodinated cocaine derivatives and their distribution in baboon brain measured using positron emission tomography. Journal of Medicinal Chemistry, 35, 2178–2183.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • S. John Gatley
    • 1
  • Andrew N. Gifford
    • 1
  • Nora D. Volkow
    • 1
  • Joanna S. Fowler
    • 2
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Chemistry DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations