Flavonoid Radicals

  • Wolf Bors
  • Christa Michel
  • Werner Heller
  • Heinrich SandermannJr.
Part of the NATO ASI Series book series (NSSA, volume 296)


Flavonoids belong to the recently popular phytochemicals (Huang, Osawa, Ho, and Rosen, 1994; Ho, Osawa, Huang, and Rosen, 1994; Manach, Régérat, Texier, Agullo, Demigné, and Rémésy, 1996), plant products with potential benefit for human health. Since the compounds exist as ubiquitous secondary plant metabolites, they are an important part of human diet (Das and Ramanathan, 1992; Hertog, Feskens, Hollman, and Katan, 1993; Ktihnau, 1976; Stavric and Matula, 1992). They are also considered as the active principles in many medicinal plants (Wollenweber, 1988; Xin, Zhao, Li, and Hou, 1990). Due to the pronounced antioxidative potential of flavonoids, there is considerable interest in the structure and reactions of the flavonoid aroxyl radicals as obligatory intermediates during radical-scavenging reactions. Indeed the preferred mechanistic interpretation of the antioxidative effect of flavonoids lies in the radical-scavenging properties of these compounds, both in model systems and under in vitro conditions (see Bors, Michel, and Saran, 1994; Bors, Heller, Michel, and Stettmaier, 1996; Rice-Evans, Miller, and Paganga, 1996).


Pulse Radiolysis Decay Rate Constant Flavonoid Aglycone Quinone Methides Absolute Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afanas’ev, LB., Dorozhko, A.I., Brodskii, A.V., Kostyuk, V.A., and Potapovitch, A.I., 1989, Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation, Biochem. Pharmacol. 38: 1763–1769CrossRefGoogle Scholar
  2. Baumann, J., Wurm, G., von Bruchhausen, F., 1980, Hemmung der Prostaglandin-Synthetase durch Flavonoide und Phenolderivate im Vergleich mit deren 02 Radikalfängereigenschaften. Arch. Pharmacol. 313: 330–337CrossRefGoogle Scholar
  3. Belyakov, V.A., Roginsky, V.A., and Bors, W., 1995, Rate constants for the reaction of peroxyl free radical with flavonoids and related compounds as determined by the kinetic chemiluminescence method, J. Chem. Soc., Perkin II, 1995: 2319–26CrossRefGoogle Scholar
  4. Bors, W., and Saran, M., 1987, Radical scavenging by flavonoid antioxidants, Free Radical Res. Comm. 2: 289–294CrossRefGoogle Scholar
  5. Bors, W., Saran, M., Michel, C., and Tait, D., 1984, Formation and reactivities of oxygen free radicals. in: Advances on Oxygen Radicals and Radioprotectors, ( A. Breccia, C.L. Greenstock, and M. Tamba, eds.), pp. 13–27, Ed. Scient. Lo Scarabeo, BolognaCrossRefGoogle Scholar
  6. Bors, W., Michel, C., and Saran, M., 1985, Determination of kinetic parameters of oxygen radicals by competition studies. In: CRC Handbook of Methods for Oxygen Radical Research. ( R.A. Greenwald, ed.), pp. 181–188, CRC Press, Boca Raton, FLGoogle Scholar
  7. Bors, W., Heller, W., Michel, C., and Saran, M., 1990, Flavonoids as antioxidants: determination of radical scavenging efficiencies, Meth. Enzymol. 186: 343–354CrossRefGoogle Scholar
  8. Bors, W., Heller, W., Michel, C., and Saran, M., I992a, Structural principles of flavonoid antioxidants. In: Free Radicals and the Liver,(G. Csomos and J. Feher, eds.), pp. 77–95, Springer, BerlinGoogle Scholar
  9. Bors, W., Michel, C., and Saran, M., 19926, Determination of rate constants for antioxidant activity and use of the crocin assay. In: Lipid-Soluble Antioxidants: Biochemistry and Clinical Applications. (A.S.H. Ong and L. Packer, eds.), pp. 52–64, Birkhäuser, BaselGoogle Scholar
  10. Bors, W., Michel, C., and Saran, M., 1994, Flavonoid antioxidants: rate constants for reactions with oxygen radicals. Meth Enzymol 234: 420–429CrossRefGoogle Scholar
  11. Bors, W., Michel, C., and Schikora, S., 1995, Interaction of flavonoids with ascorbate and determination of their univalent redox potentials: a pulse radiolysis study, Free Radical Biol. Med. 19: 45–52CrossRefGoogle Scholar
  12. Bors, W., Heller, W., Michel, C., and Stettmaier, K., 1996, Flavonoids and Polyphenols: Chemistry and Biology, in: Handbook of Antioxidants, ( E. Cadenas and L. Packer, eds.), pp. 409–466, Marcel Dekker, New York, NYGoogle Scholar
  13. Brown, J.P., 1980, A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat. Res. 75: 243–277CrossRefGoogle Scholar
  14. Brown, S.B., Rajananda, V., Holroyd, J.A., and Evans, E.G.V., 1982, A study of the mechanism of quercetin oxygenation by 180 labelling. A comparison of the mechanism with that of haem degradation, Biochem. J. 205: 239–244Google Scholar
  15. Canada, A.T., Giannella, E., Nguyen, T.D., and Mason, R.P., 1990, The production of reactive oxygen species by dietary flavonols, Free Radical Biol. Med. 9: 441–449CrossRefGoogle Scholar
  16. Chen, Y., Zheng, R., Jia, Z., and Ju, Y., 1990, Flavonoids as superoxide scavengers and antioxidants, Free Radical Biol. Med. 9: 19–21CrossRefGoogle Scholar
  17. Cotelle, N., Bernier, J.L., Hénichart, J.P., Catteau, J.P., Gaydou, E., and Wallet, J.C., 1992, Scavenger and antioxidant properties of ten synthetic flavones, Free Radical Biol. Med. 13: 211–219CrossRefGoogle Scholar
  18. Cotelle, N., Bernier, J.L., Catteau, J.P., Pommery, J., Wallet, J.C., and Gaydou, E.M., 1996, Antioxidant properties of hydroxy-flavones, Free Radical Biol. Med. 20: 35–43CrossRefGoogle Scholar
  19. Das, N.P., and Ramanathan, L., 1992, Studies on flavonoids and related compounds as antioxidants in food. In: Lipid-Soluble Antioxidants: Biochemistry and Clinical Applications, ( A.S.H. Ong and L. Packer, eds.), pp. 295–306, Birkhäuser, BaselCrossRefGoogle Scholar
  20. Erben-Russ, M., Bors, W., and Saran, M., 1987, Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study. Int. J. Radiat. Biol. 52: 393–412CrossRefGoogle Scholar
  21. György, I., Blazovics, A., Feher, J., and Földiak, G., 1990, Reactions of inorganic free radicals with liver protecting drugs, Radiat. Phys. Chem. 36: 165–167Google Scholar
  22. György, I., Antus, S., and Földiak, G., 1992a, Pulse radiolysis of silybin: one-electron oxidation of the flavonoid at neutral pH, Radiat. Phys. Chem. 39: 81–84Google Scholar
  23. György, I., Antus, S., Blazovics, A., and Földiak, G., 1992b, Substituent effects in the free radical reactions of silybin: radiation-induced oxidation of the flavonoid at neutral pH, Int. J. Radiat. Biol. 61: 603–609CrossRefGoogle Scholar
  24. Hatcher, J.F., and Bryan, G.T., 1985, Factors affecting the mutagenic activity of quercetin for Salmonella typhimurium TA98: metal ions, antioxidants and pH, Mutat. Res. 148: 13–23CrossRefGoogle Scholar
  25. Hathway, D.E., and Seakins, J.W.T., 1957, Autoxidation of polyphenols. III. Autoxidation in neutral aqueous solution of flavans related to catechin, J. Chem. Soc., 1957: 1562–1566CrossRefGoogle Scholar
  26. Hertog, M.G.L., Feskens, E.J.M., Holtman, P.C.H., and Katan, M.B., 1993, Dietary antioxidant flavonoids and risk of coronary heart disease in the Zutphen Elderly Study, Lancet 342: 1007–11CrossRefGoogle Scholar
  27. Ho, C.T., Osawa, T., Huang, M.T., and Rosen, R.T. (eds.), 1994, Food Phytochemicals for Cancer Prevention. II. Teas, Spices, and Herbs. ACS Sympos. Ser. 547, ACS Press, Washington, DCGoogle Scholar
  28. Hodnick, W.F., Milosavljevic, E.B., Nelson, J.H., and Pardini, R.S., 1988, Electrochemistry of flavonoids. Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids, Biochem. Pharmacol. 37: 2607–11CrossRefGoogle Scholar
  29. Hu, J.P., Calomme, M., Lasure, A., de Bruyne, T., Pieters, L., Vlietinck, A., and vanden Berghe, D.A., 1995, Structure-activity relationship of flavonoids with superoxide scavenging activity, Biol. Trace Elem. Res. 47: 327–331CrossRefGoogle Scholar
  30. Huang, M.T., Osawa, T., Ho, C.T., and Rosen, R.T. (eds.), 1994, Food Phytochemicals for Cancer Prevention. I. Fruits and Vegetables. ACS Sympos. Ser. 546, ACS Press, Washington, DCGoogle Scholar
  31. Huguet, A.I., Manez, S., and Alcaraz, M.J., 1990, Superoxide scavenging properties of flavonoids in a non-enzymic system, Z. Naturforsch. 45c: 19–24Google Scholar
  32. Husain, S.R., Cillard, J., and Cillard, P., 1987, Hydroxyl radical scavenging activity of flavonoids, Phytochemistry 26: 2489–91CrossRefGoogle Scholar
  33. Jensen, O.N., and Pedersen, J.A., 1983, The oxidative transformations of (+)-catechin and (-)- epicatechin as studied by ESR, Tetrahedron 39: 1609–15CrossRefGoogle Scholar
  34. Jovanovic, S.V., Steenken, S., Tosic, M., Marjanovic, B., and Simic, M.G., 1994, Flavonoids as antioxidants, J. Am. Chem. Soc. 116: 4846–51CrossRefGoogle Scholar
  35. Jovanovic, S.V., Hara, Y., Steenken, S., and Simic, M.G., 1995, Antioxidant potential of gallocatechins. A pulse radiolysis and laser photolysis study. J. Am. Chem. Soc. 117: 9881–9888CrossRefGoogle Scholar
  36. Jovanovic, S.V., Steenken, S., Hara, Y., and Simic, M.G., 1996, Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? J. Chem. Soc., Perkin Trans. II, 1996: 2497–2504CrossRefGoogle Scholar
  37. Krol, W., Czuba, Z.P., Threadgill, M.D., Cunningham, B.D.M., and Pietsz, G., 1995, Inhibition of nitric oxide (NO) production in murine macrophages by flavones, Biochem. Pharmacol. 50: 1031–1035CrossRefGoogle Scholar
  38. Kühnau, J., 1976, The flavonoids. A class of semi-essential food components: their role in human nutrition, World Rev. Nutr. Diet. 24: 117–191Google Scholar
  39. Kuhnle, J.A., Windle, J.J., and Waiss, A.C., 1969, EPR spectra of flavonoid anion-radicals, J. Chem. Soc. B, 1969: 613–616CrossRefGoogle Scholar
  40. MacGregor, J.T., 1986, Mutagenic and carcinogenic effects of flavonoids, in: Plant Flavonoids in Biology and Medicine, ( V. Cody, E. Middleton, and J.B. Harborne, eds.), pp. 411–424, A.R. Liss, New York, NGoogle Scholar
  41. Manach, C., Régérat, F., Texier, O., Agullo, G., Demigné, C., and Rémésy, C., 1996, Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids, Nutrit. Res. 16: 517–544CrossRefGoogle Scholar
  42. Minnunni, M., Wolleb, U., Müller, O., Pfeifer, A., and Äschbacher, H.U., 1992, Natural antioxidants as inhibitors of oxygen species induced mutagenicity, Mutat. Res. 269: 193–200CrossRefGoogle Scholar
  43. Nagao, M., Morita, N., Yahagi, T., Shimizu, M., Kuroyanagi, M., Fukuoka, M., Yoshihira, K., Natori, S., Fujino, T., and Sugimura, T., 1981, Mutagenicities of 61 flavonoids and 11 related compounds, Environ. Mutagen. 3: 401–419CrossRefGoogle Scholar
  44. Pardini, R.S., 1995, Toxicity of oxygen from naturally occurring redox-active pro-oxidants, Arch. Insect Biochem. Physiol. 29: 101–118CrossRefGoogle Scholar
  45. Pelter, A., Bradshaw, J., and Warren, R.F., 1971, Oxidation experiments with flavonoids, Phytochemistry 10: 835–850CrossRefGoogle Scholar
  46. Puppo, A., 1992, Effect of flavonoids on OH radical formation by Fenton-type reactions: influence of the iron chelator, Phytochemistry 31: 85–88CrossRefGoogle Scholar
  47. Rashid, K.A., Mullin, C.A., and Mumma, R.O., 1986, Structure-mutagenicity relationships of chalcones and their oxides in the Salmonella assay, Mutat. Res. 169: 71–79CrossRefGoogle Scholar
  48. Rice-Evans, C.A., Miller, N.J., and Paganga, G., 1996, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radical Biol. Med. 20: 933–956CrossRefGoogle Scholar
  49. Robak, J., and Gryglewski, R.J., 1988, Flavonoids are scavengers of superoxide anions, Biochem. Pharmacol. 37: 837–841CrossRefGoogle Scholar
  50. Roginsky, V.A., Barsukova, T.K., Remorova, A.A., and Bors, W., 1996, Moderate antioxidative efficiencies of flavonoids during peroxidation of methyl linoleate in homogeneous and micellar solutions, J. Am. Oil Chem. Soc., 73: 777–786CrossRefGoogle Scholar
  51. Rueff, J., Laires, A., Gaspar, J., Borba, H., and Rodrigues, A., 1992, Oxygen species and the genotoxicity of quercetin, Mutat. Res. 265: 75–81CrossRefGoogle Scholar
  52. Salah, N., Miller, N.J., Paganga, G., Tijburg, L., Bolwell, G.E, and Rice-Evans, C., 1995, Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants, Arch. Biochem. Biophys. 322: 339–346CrossRefGoogle Scholar
  53. Saran, M., Vetter, G., Erben-Russ, M., Winter, R., Kruse, A., Michel, C., and Bors, W., 1987, Pulse radiolysis equipment: a setup for simultaneous multiwavelength kinetic spectroscopy, Rev. Sci. Instrum. 58: 363–368CrossRefGoogle Scholar
  54. Sichel, G., Corsaro, C., Scalia, M., di Bilio, A.J., and Bonomo, R.P., 1991, In vitro scavenger activity of some flavonoids and melanins against 0 2 - Free Radical Biol. Med. 11: 1–8CrossRefGoogle Scholar
  55. Stavric, B., and Matula, T.I., 1992, Flavonoids in foods: their significance for nutrition and health, in: Lipid-Soluble Antioxidants: Biochemistry and Clinical Applications, ( A.S.H. Ong and L. Packer, eds.), pp. 274–294, Birkhäuser, BaselCrossRefGoogle Scholar
  56. Steenken, S., and Neta, P., 1982, One-electron redox potentials of phenols. Hydroxy-and aminophenols and related compounds of biological interest, J. Phys. Chem. 86: 3661–67CrossRefGoogle Scholar
  57. Suzuki, N., Goto, A., Oguni, I., Mashiko, S., and Nomoto, T., 1991, Reaction rate constants of tea leaf catechins with superoxide: superoxide-dismutase (SOD)-like activity measured by Cypridina luciferin analogue chemiluminescence, Chem. Express 6: 655–658Google Scholar
  58. Sweeny, J.G., Iacobucci, G.A., Brusick, D., and Jagannath, D.R., 1981, Structure-activity relationships in the mutagenicity of quinone methides of 7-hydroxy-flavylium salts for Salmonella typhimurium, Mutat. Res. 82: 275–283CrossRefGoogle Scholar
  59. Teel, R.W., and Castonguay, A., 1992, Antimutagenic effects of polyphenolic compounds, Cancer Lett. 66: 107–113CrossRefGoogle Scholar
  60. Torel, J., Cillard, J., and Cillard, P., 1986, Antioxidant activity of flavonoids and reactivity with peroxy radicals, Phytochemistry 25: 383–385CrossRefGoogle Scholar
  61. Ueno, I., Kohno, M., Haraikawa, K., and Hirono, I., 1984, Interaction between quercetin and Of radical. Reduction of the quercetin mutagenicity, J. Pharm. Dyn. 7: 798–803CrossRefGoogle Scholar
  62. van Acker, S.A.B.E., Tromp, M.N.J.L., Haenen, G.R.M.M., van der Vijgh, W.J.F., and Bast, A., 1995, Flavonoids as scavengers of nitric oxide radical, Biochem. Biophys. Res. Comm. 214: 755–759CrossRefGoogle Scholar
  63. Wollenweber, E., 1988, Occurrence of flavonoid aglycones in medicinal plants. in: Plant Flavonoids in Biology and Medicine II: Biochemical, Cellular, and Medicinal Properties, ( V. Cody, E. Middleton, J.B. Harborne, and Beretz, A., eds.), pp. 45–55, A.R. Liss, New York, NYGoogle Scholar
  64. Xin, W.J., Zhao, B.L., Li, X.J., and Hou, J.W., 1990, Scavenging effects of chinese herbs and natural health products on active oxygen radicals, Res. Chem. Intermed. 14: 171–183CrossRefGoogle Scholar
  65. Yoshioka, H., Sugiura, K., Kawahara, R., Fujita, T., Makino, M., Kamiya, M., and Tsuyumu, S., 1991, Formation of radicals and chemiluminescence during the autoxidation of tea catechins, Agric. Biol. Chem. 55: 2717–23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Wolf Bors
    • 1
  • Christa Michel
    • 1
  • Werner Heller
    • 2
  • Heinrich SandermannJr.
    • 2
  1. 1.Institut für StrahlenbiologieGSF Forschungszentrum für Umwelt und GesundheitNeuherbergGermany
  2. 2.Institut für Biochemische PflanzenpathologieGSF Forschungszentrum für Umwelt und GesundheitNeuherbergGermany

Personalised recommendations