Apolipoprotein E Oxidation Through Enzymes Localized into the Brain

  • B. Leininger-Muller
  • C. Jolivalt
  • R. Herber
  • P. Bertrand
  • G. Siest
Part of the NATO ASI Series book series (NSSA, volume 296)


The cerebral tissue is highly susceptible to oxidative damage as it essentially contains lipids and proteins, which are potential targets for free radicals. Oxidation of proteins results as an increase of carbonyl groups through the formation of aldehydes and ketones (Stadtman and Oliver, 1991) and accumulation of oxidized proteins has been observed in Alzheimer’s disease (AD) brains (Smith et al., 1991).


Methionine Residue Cerebral Microvessels HPLC Elution Profile Cyanogen Bromide Cleavage High Apparent Molecular Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anantharamaiah, G.M., Hughes, T.A., lqbal, M., Gawish, A., Neame, P.J., Medley, M.F. and Segrest, J.P., 1988, Effect of oxidation on the properties of apolipoproteins AI and AII, J. Lip. Res. 29: 309–318.Google Scholar
  2. Barbier, A., Visvikis, A., Mathieu, E, Diez, L., Havekes, L., Siest, G., in press, Characterization of three human apolipoprotein E isoforms (E2, E3 and E4) expressed in Escherichia coli,Eur. J. Clin. Chem. Clin. Biochem. Google Scholar
  3. Dong, L.M., Parkin, S., Trakhanov, S.D., Rupp, B., Simmons, T., Arnold, K.S., Newhouse, Y.M., Innerarity, T.L. and Weisgraber, K.H., 1996, Novel mechanism for defective receptor binding of apolipoprotein E2 in type III hyperlipoproteinemia, Nature Struct. Biol. 3: 718–722.CrossRefGoogle Scholar
  4. Drozdz, R. and Naskalski, J.W., 1988, Action of myeloperoxidase-hydrogen peroxide-chloride system on the egg white lysozyme, Acta Biochim. Pol. 35: 277–286.Google Scholar
  5. Ghersi-Egea, J.F., Leininger-Muller, B., Minn, A., and Siest, G., 1992, Drug metabolizing enzymes in the rat pituitary gland, Prog. Brain Res. 91: 373–378.CrossRefGoogle Scholar
  6. Ghersi-Egea, J. F., M. H. Livertoux., A. Minn, R. Perrin, and G. Siest. 1991. Enzyme-mediated superoxide radical formation initiated by exogenous molecules in rat brain preparations, Toxicol. Appl Pharmacol 110: 107–117.Google Scholar
  7. Ghersi-Egea, J.F., Perrin, R., Leininger-Muller, B., Grassiot, M.C., Jeandel, C., Floquet, J., Cuny, G., Siest, G. and Minn, A., 1993, Subcellular localizatin of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain, Biochem. Pharmacol. 45: 647–658.CrossRefGoogle Scholar
  8. Ghersi-Egea, J.F., Tayarani, Y., Lefauconnier, J.M. and Minn, A.,1988, Enzymatic protection of the brain: role of 1-naphthol-UDP-glucuronosyltransferase from cerebral tissue and cerebral microvessels, in Cellular and Molecular aspects of Glucuronidation,(G. Siest, J. Magdalou, and B. Burchell, eds), pp. 169–175, Colloque INSERM/John Libbey.Google Scholar
  9. Goldgaber, D., Schwarzman, A.I., Bhasin, R., Gregori, L., Schmechel, D., Saunders, A.M., Roses, A.D. and Strittmatter, W.J., 1993, Sequestration of amyloid 13-peptide, Ann. NYAcad. Sci. 695: 139–143.CrossRefGoogle Scholar
  10. Jolivalt, C., Leininger-Muller, B., Drozdz, R., Naskalski, J.W.and Siest, G., 1996, Apolipoprotein E is highly susceptible to oxidation by myeloperoxidase, an enzyme present in the brain, Neurosci. Lett. 210: 61–64Google Scholar
  11. Keller, R.J., Halmes, N.C., Hinson, J.A. and Pumford, N.R., 1993, Immunochemical detection of oxidized proteins, Chem Res Toxicol 6: 430–33CrossRefGoogle Scholar
  12. Kisilevsky, R., 1993, Inflammation-associated amyloidogenesis. Lessons for Alzheimer’s amyloidogenesis, Mol. Neurobiol. 8: 65–66.CrossRefGoogle Scholar
  13. Leininger-Muller, B., Jolivalt, C., Pillot, T., Lagrange, P., Livertoux, M.H., Grassiot, M.C., Minn, A. and Siest, G., 1995, Apolipoprotein E oxidation and functional consequences. in Apolipoprotein E and Alzheimer’s Disease, Research and perspectives in Alzheimer’s disease, (Roses et al. eds) Springer-Verlag.Google Scholar
  14. Leininger-Muller, B., Ghersi-Egea, J.F., Siest, G. and Minn, A., 1994, Induction and immunological characterization of the uridine diphosphate-glucuronosyltransferase conjugating 1-naphthol in the rat choroid plexus, Neurosci. Lett. 175: 37–40.CrossRefGoogle Scholar
  15. Levine, R.L., Mosoni, L., Berlett, B.S. and Stadtman, E.R., 1996, Methionine residues as endogenous antioxidants in proteins, Proc. Natl. Acad. Sci. (USA) 93: 15036–15040.CrossRefGoogle Scholar
  16. Mahley, R.W., 1988, Apolipoprotein E: cholesterol transport protein with expanding role in cell biology, Science 240: 622–630.CrossRefGoogle Scholar
  17. Minn, A., Ghersi-Egea, J.-F., Perrin, R., Leininger, B., Siest, G., 1991, Drug metabolizing enzymes in the brain and cerebral microvessels, Brain Res. Rev. 16: 65–82.CrossRefGoogle Scholar
  18. Miyata, M. and Smith, J.D., 1996, Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and (3-amyloid peptides, Nature Genet. 14: 55–61.CrossRefGoogle Scholar
  19. Montine, T.J., Huang, D.Y., Valentine, W.M., Amarnath, V., Saunders, A., Weisgraber, K.H., Graham, D.G.and Strittmatter, W.J., 1996, Crosslinking of apolipoprotein E by products of lipid peroxidation, J. Neuropathol. Expal. Neurol. 55: 202–210.CrossRefGoogle Scholar
  20. Naiki, H., Higuchi, K., Hosokawa, M. and Takeda, T., 1989, Fluorometric determination of amyloid fivrils in vitro using the fluorescent dye, thioflavine T, Anal. Biochem. 177: 244–249.CrossRefGoogle Scholar
  21. Poirier, J., 1994, Apolipoprotein E in animal models of brain injury and in Alzheimer’s disease, Trends Neurosci. 12: 525–530.CrossRefGoogle Scholar
  22. Siest, G., Pillot, T., Régis-Bailly, A., Leininger-Muller, B., Steinmetz, J., Galteau, M.M. and Visvikis, S., 1995, Apolipoprotein E: An important gene and protein to follow in laboratory medicine, Clin. Chem. 41: 1068–1086.Google Scholar
  23. Smith, C.D., Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Stadtman, E.R., Floyd, R.A. and Markesbery, W.R., 1991, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 88: 10540–10543.CrossRefGoogle Scholar
  24. Soto, C., Golabek, A., Wisniewski, T. and Castano, M., 1996, Alzheimer’s (3-amyloid peptide is conformationally modified by apolipoprotein E in vitro, Neuroreport 7: 721–725.CrossRefGoogle Scholar
  25. Stadtman, E.R. and Oliver, C.N., 1991, Metal-catalyzed oxidation of proteins. Physiological consequences, J. Biol. Chem. 266: 2005–2008.Google Scholar
  26. Webster, S. and Rogers, J., 1996, Relative efficacies of amyloid 13 (Aβ) binding proteins in Aβ aggregation, J. Neurosci. Res. 46: 58–66.CrossRefGoogle Scholar
  27. Weisgraber, K.H., 1994, Apolipoprotein E: structure-function relationships, Adv. Prot.Chem. 45: 249–302.CrossRefGoogle Scholar
  28. Wisniewski, T., Castano, E.M., Golabek, A., Vogel, T. and Frangione, B., 1994, Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro, Am. J. Pathol. 145: 1030–1036.Google Scholar
  29. Zcliczynski, J.M., Stelmaszynska, T., Domanski, J., Ostrowski, W., 1971, Chloramines as intermediates of oxidation reaction of amino acids by myeloperoxidase, Bioch. Biophys. Acta 235: 419–424.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • B. Leininger-Muller
    • 1
  • C. Jolivalt
    • 1
  • R. Herber
    • 1
  • P. Bertrand
    • 1
  • G. Siest
    • 1
  1. 1.Centre du MédicamentUniversité Henri Poincaré Nancy INancyFrance

Personalised recommendations