Skip to main content

Nitric Oxide Regulation of Membrane and Lipoprotein Oxidation in the Vasculature

A Radical Hypothesis

  • Chapter
  • 457 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 296))

Abstract

Nitric oxide (·NO, nitrogen monoxide) exerts potent actions in the regulation of cell function and tissue viability that extend far beyond the recognized ability of ·NO to mediate signal transduction via activation of guanylate cyclase. Chemical reactions, cell culture systems, animal models and clinical studies have all revealed an ability of ·NO to modulate oxygen radical reactions and pathologic processes associated with inflammation. The focus of this article is to reveal the reactions of ·NO with reactive oxygen species and lipid radicals (LO· and LOO·) formed during membrane and lipoprotein oxidation. The products of these reactions, LONO/LNO2 and LOONO/LONO2 adducts, are potentially reactive and can serve as mediators of inflammation and tissue injury. Because of the high reactivity of ·NO with lipophilic radicals and the interactions that ·NO can have with lipophilic antioxidants, the reactions of ·NO with membrane and lipoprotein oxidant defense mechanisms will be explored as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson, T., Brandt, U., Marklund, S. L., and Sjoqvist, P. O., 1992, Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ. Res. 70: 264–271.

    Article  CAS  Google Scholar 

  • Albina, J. E., and Reichner, J. S.,1995, Nitric oxide in inflammation and immunity. New Horizons 3: 46–64.

    Google Scholar 

  • Alvarez, B., Rubbo, H., Kirk, M., Barnes, S., Freeman, B. A., and Radi, R., 1996, Peroxynitrite-dependent tryptophan nitration. Chem. Res. Toxicol. 9: 390–396.

    Article  CAS  Google Scholar 

  • Amelle, D. R., and Stamler, J. S., 1995, NO’, NO. and NO- donation by S-Nitrosothiols: Implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch. Biochem. Biophys. 318: 279–285.

    Article  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. 87: 1620–1624.

    Article  CAS  Google Scholar 

  • Beckman, J. S., Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C. D., Chen, J D., Harrison, J., Martin, J. C., and Tsai, M., 1992, Kinetics of SOD and iron catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298: 438–445.

    Article  CAS  Google Scholar 

  • Beckman, J. S., Minor, R. L., White, C. W., Rosen, G. M., Repine, J. R., and Freeman, B. A., 1988, Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J. Biol. Chem. 263: 6884–6892.

    CAS  Google Scholar 

  • Beckman, J. S., Ye, Y., Anderson, P. G., Chen, J., Accavitti, M. A., Tarpey, M. M., and White, R., 1994, Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe-Seyler. 375: 81–88.

    Article  Google Scholar 

  • Bredt, D. S., Hwang, P. M., Glass, C. E., Lowenstein, C., Reed, R. R., and Snyder, S. H., 1991, Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714–718.

    Article  CAS  Google Scholar 

  • Brieland, J. K., Clarke, S. J., Karmil, S., Phan, S. H., and Fantone, J. C., 1992, Transferrin: A potential source of iron for oxygen free radical-mediated endothelial cell injury. Arch. Biochem. Biophys. 294: 265–270.

    Article  CAS  Google Scholar 

  • Buckley, B. J., Tanswell, A. K., and Freeman, B. A., 1987, Liposome mediated augmentation of catalase in type II alveolar epithelial cells protects against hydrogen peroxide injury. J. Appl. Physiol. 63: 359–367.

    CAS  Google Scholar 

  • Castro, L., Rodriguez, M., and Radi, R., 1994, Aconitase is readily inactivated by peroxynitrite, but not by its pre-

    Google Scholar 

  • cursor, nitric oxide. J. Biol. Chem. 269: 29409–29415.

    Google Scholar 

  • Christen, S., Woodall, A. A., Shigenaga, M. K., Southwell-Keely, P. T., Duncan, M. W., and Ames, B. N., g-Tocopherol traps mutagenic electrophiles such as NOx and complements a-tocopherol: physiological implications. Proc. Natl. Acad. Sci. USA (In Press).

    Google Scholar 

  • Clancy, R. M., Leszczynska-Piziak, J., and Abramson, S. B., 1992, Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J. Clin. Invest. 90: 1116–1121.

    Article  CAS  Google Scholar 

  • Cooke, J. P., Singer, A. H., Tsao, P., Zera, P., Rowan, R., and Billingham, M. E., 1992, Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J. Clin. Invest. 90: 1168–1172.

    Article  CAS  Google Scholar 

  • Curran, R. D., Ferrari, F. K., Kispert, P. H., Stadler, J., Stuehr, D. H., Simmons, R. L., and Billiar, T. R., 1991, Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB J. 5: 2085–2092.

    CAS  Google Scholar 

  • Daugherty, A., Dunn, J. L., Rateri, D. L., and Heinecke, J., 1994, Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94: 437–444.

    Article  CAS  Google Scholar 

  • Day, B. J., and Crapo, J. D., 1996, A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced lung injury in vivo. Toxicol. Appl. Pharmacol. 140: 94–100.

    Article  CAS  Google Scholar 

  • De Caterina, R., Libby, P., Peng, H., Thannickal, V., Rajavashisth, T., Gimbrone, M. A., Shin, W., and Liao, J. K., 1995, Nitric oxide decreases cytokine-induced endothelial activation: Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96: 60–68.

    Article  Google Scholar 

  • Denicola, A., Freeman, B. A., Trujillo, M., and Radi, R., 1996, Peroxynitrite reaction with carbon dixide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch. Biochem. Biophys. 333: 49–58. Appendix J

    Google Scholar 

  • Eiserich, J. P., Cross, C. E., Jones, A. D., Halliwell, B., and Van der Vliet, A., 1996, Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid: a novel mechanism for nitric oxide-mediated protein modification. J. Biol. Chem. 271: 19199–19208. Appendix G

    Google Scholar 

  • Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Halliwell, B., and van der Vliet, A., Neutrophil-mediated conversion of nitrite into the nitrating and chlorinating inflammatory oxidant NO2CI. Nature (Submitted, 1997 ).

    Google Scholar 

  • Faulkner, K. M., Liochev, S.I., and Fridovich, I., 1994, Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269: 23471–23476.

    CAS  Google Scholar 

  • Flavahan, N. A., 1992, Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation 85: 1927–1938.

    Article  CAS  Google Scholar 

  • Forstermann, U., Pollock, J. S., Schmidt, H. H. H. W., Heller, M., and Murad, F., 1991, Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA 88: 1788–1792.

    Article  CAS  Google Scholar 

  • Freeman, B. A., and Crapo, J. D., 1981, Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256: 10986–10992.

    CAS  Google Scholar 

  • Freeman, B. A., and Crapo, J. D., 1982, Biology of disease: Free radicals and tissue injury. Lab. Invest. 47: 412–426.

    CAS  Google Scholar 

  • Freeman, B. A., Young, S. L., and Crapo, J. D., 1983, Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury. J. Biol. Chem. 258: 12534–12542.

    CAS  Google Scholar 

  • Fujita, H., Morita, I., and Murota, S., 1994, A possible mechanism for vascular endothelial cell injury elicited by activated leukocytes: A significant involvement of adhesion molecules, CD11/CDI8 and ICAM-1. Arch. Biochem. Biophys. 309: 62–69.

    Article  CAS  Google Scholar 

  • Fukuto, J. M., Chiang, K., Hszieh, R., Wong, P., and Chaudhur, G., 1992, The pharmacological activity of nitroxyl: A potent vasodilator with activity similar to nitric oxide and/or endothelium-derived relaxing factor. J. Pharmacol. Exp. Ther. 263: 546–551.

    CAS  Google Scholar 

  • Furchgott, R. F. and Zawadski, J.B., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376.

    Article  CAS  Google Scholar 

  • Gergel, D., Misik, V., Ondrias, K., and Cederbaum, A., 1995, Increased cytotoxicity of 3-morpholinosydnonimine to HepG2 cells in the presence of superoxide dismutase. J. Biol. Chem. 270: 20922–20929.

    Article  CAS  Google Scholar 

  • Gow, A. J., Duran, D., Malcolm, S., and Ischiropoulos, H., 1996, Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation.-FEBS Lett. 385: 63–66.

    Article  CAS  Google Scholar 

  • Green, S. J., Mellouk, S., Hoffman, S. L., Meltzer, M. S., and Nacy, C. A., 1990, Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol. Lett. 25: 15–20.

    Article  CAS  Google Scholar 

  • Groves, J. T., and Marla, S. S., 1995, Peroxynitrite-induced DNA strand scission mediated by a manganese porphyrin. J. Am. Chem. Soc. 117: 9578–9579.

    Article  CAS  Google Scholar 

  • Gutierrez, H. H., Chumley, P., Rivera, A.,and Freeman, B. A., 1996, Nitric oxide regulation of superoxide-dependent lung cell injury: oxidant-protective actions of endogenously produced and exogenously administered nitric oxide. Free. Rad. Biol. Med. 21: 43–52.

    CAS  Google Scholar 

  • Hausladen, A. and Fridovich, I., 1994, Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 269: 29405–29408.

    CAS  Google Scholar 

  • Hazell, L. J., Arnold, L., Flowers, D., Waeg, G., Malle, E., and Stocker, R., 1996, Presence of hypochlorite-modifled proteins in human atherosclerotic lesions. J. Clin. Invest. 97: 1535–1544.

    Article  CAS  Google Scholar 

  • Hibbs, Jr. J. B.,Taintor, R. R., Vavrin, Z., and Rachlin, E. M., 1988, Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157: 87–94.

    Article  CAS  Google Scholar 

  • Hori, H., Masuya, F., Tsubaki, M., Yoshikawa, S., and Ichikawa, Y., 1992, Electronic and stereochemical characterizations of intermediates in the photolysis of ferric cytochrome P450 nitrosyl complexes. J. Biol. Chem. 267: 18377–18381.

    CAS  Google Scholar 

  • Huie, R. E., and Padmaja, S., 1993, Reaction of NO with OZ-. Free Rad. Res. Comm. 18: 195–199.

    Article  CAS  Google Scholar 

  • Ignarro, L.J., 1992, Haem-dependent activation of cytosolic guanylate cyclase by nitric oxide: a widespread signal transduction mechanism. Biochem. Soc. Transactions. 20: 465–469.

    CAS  Google Scholar 

  • Inoue, M., Watanabe, N., Morino, Y, Tanaka, Y., Amachi, T., and Sasaki, J., 1990, Inhibition of oxygen toxicity by targeting superoxide dismutase to endothelial cell surface. FEBS Lett. 269: 89–92.

    Article  CAS  Google Scholar 

  • Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J., Smith, C., and Beckman, J. S., 1992, Peroxynitrite-mediated nitration of tyrosine catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298: 431–437.

    Article  CAS  Google Scholar 

  • Kanner, J., Harel, S., and Granit, R., 1991, Nitric oxide as an antioxidant. Arch. Biochem. Biophys. 289: 130–136.

    Article  CAS  Google Scholar 

  • Karoui, H., Hogg, N., Frejaville, C., Tordo, P., and Kalyanaraman, B., 1996, Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite. J. Biol. Chem. 271: 6000–6009.

    Article  CAS  Google Scholar 

  • Khan, B. V., Harrison, D. G., Olbrych, M. T., Alexander, R. W., and Medford, R. M., 1996, Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc. Natl. Acad. Sci. USA 93: 9114–9119.

    Article  CAS  Google Scholar 

  • Knudsen, M. A., Svane, D., and Tottrup, A., 1992, Action profiles of nitric oxide, S-nitroso-L-cysteine, SNP, and NANC responses in opossum lower esophageal sphincter. Am. J. Physiol. 262: G840–846.

    CAS  Google Scholar 

  • Kubes, P., Suzuki, M.,and Granger, D. N., 1991, Nitric oxide: An endogenous modulator of leukocyte adhesion.

    Google Scholar 

  • Proc. Natl. Acad. Sci. USA 88: 4651–4655.

    Google Scholar 

  • Kurose, I., Wolf, R., Grisham, M. B., and Granger, D. N., 1994, Modulation of ischemialreperfusion-induced microvascular dysfunction by nitric oxide. Circ. Res. 74: 376–382.

    Article  CAS  Google Scholar 

  • Kwon, N. S., Stuehr, D. H., and Nathan, C. F., 1991, Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J. Exp. Med. 174: 761–767.

    Article  CAS  Google Scholar 

  • Lampert, M. B., and Weiss. S. J., 1983, The chlorinating potential of the human monocyte. Blood 62: 645–651.

    CAS  Google Scholar 

  • Lancaster, J. R., 1992, Nitric oxide in cells: This simple molecule plays Janus-faced roles in the body, acting as both messenger and destroyer. Am. Sci. 80: 248–259.

    Google Scholar 

  • Lancaster, J. R., and Hibbs, J. B. Jr., 1990, EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA 87: 1223–1227.

    Article  CAS  Google Scholar 

  • Laskey, R. E., and Mathews, W. R., 1996, Nitric oxide inhibits peroxynitrite-induced production of hydroxyeicosatetraenoic acids and F2-isoprostanes in phosphatidylcholine liposomes. Arch. Biochem. Biophys. 330: 193–198.

    Article  CAS  Google Scholar 

  • Laursen, J. B., Rajagopalan, S.,Tarpey, M., Freeman, B. A., and Harrison, D. G., 1997, A role of superoxide in angiotension II-but not catecholamine-induced hypertension. Circulation 95: 588–593.

    CAS  Google Scholar 

  • Leeuwenburgh, C., Hardy, M. M., Hazen, S. L., Wagner, P., Oh-ishi, S., Steinbrecher, U. P., and Heinecke, J. W., 1997, Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J. Biol. Chem. 272: 1433–1436.

    Article  CAS  Google Scholar 

  • Lefer, D. J., Nakanishi, K., and Vinten-Johansen, J., 1993, Endothelial and myocardial cell protection by a cysteine-containing nitric oxide donor after myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol. 22 (Suppl. 7): S34 S43.

    Google Scholar 

  • Lefer, D. J., Scalia, R., Campbell, B., Nossuli, T., Hayward, R., Salamon, M., Grayson, J., and Lefer, A. M., 1997, Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J. Clin. Invest. 99: 684–691.

    Article  CAS  Google Scholar 

  • Lepoivre, M., Flaman, J. M., and Henry, Y., 1992, Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J. Biol. Chem. 267: 22994–23000.

    CAS  Google Scholar 

  • Liu, T. H., Beckman, J. S., Freeman, B. A., Hogan, E. L., and Hsu, C. Y., 1989, Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am. J. Physiol. 260: H589–593.

    Google Scholar 

  • Lowenstein, C. J., Glass, C. S., Bredt, D. S., and Snyder, S H., 1992, Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc. Natl. Acad. Sci. USA 89: 6711–6715.

    Article  CAS  Google Scholar 

  • Maragos, C. M., 1991, Complexes of nitric oxide with nucleophiles as agents for the controlled biological release of nitric oxide. J. Med. Chem. 34: 3242–3247.

    Article  CAS  Google Scholar 

  • Marklund, S., 1992, Regulation of cytokines of extracellular superoxide dismutase and other superoxide dismutase isoenzymes in fibroblasts. J. Biol. Chem. 267: 6696–6701.

    CAS  Google Scholar 

  • Marsden, P. A., Schappert, K. T., Chen, H. S., Flowers, M., Sundell, C. L., Wilcox, J. N., Lamas, S.,and Michel, T., 1992, Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett. 307: 287–293.

    CAS  Google Scholar 

  • Mami, N., Offermann, M., Swerlick, R., Kunsch, C., Ahmad, M., Alexander, R., and Medford, R. M., 1993, VCAM-1 gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest. 92: 1866–1874.

    Article  Google Scholar 

  • Matthews, J. R., Botting, C. H., Panico, M., Morris, H. R., and Hay, R. T., 1996, Inhibition of NF-kB DNA binding by nitric oxide. Nucleic Acids Research 24: 2236–2242.

    Article  CAS  Google Scholar 

  • McAdams, M., Vickers, S., and Freeman, B. A., A specific receptor for xanthine oxidase on vascular endothelium. FEBS Lett. (submitted).

    Google Scholar 

  • Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B., 1996, Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J. Biol. Chem. 271: 40–47.

    Article  CAS  Google Scholar 

  • Miller, R. A., and Britigan,.B. E., 1995. The formation and biologic significance of phagocyte-derived oxidants. J. Invest. Med. 43: 39–49.

    CAS  Google Scholar 

  • Mittal, C. K., and Murad, F., 1977, Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: A physiological regulator of guanosine 3’,5’-monophosphate formation. Proc. Natl. Acad. Sci. USA 74: 4360–4364.

    Article  CAS  Google Scholar 

  • Moncada, S., and Higgs, E. A., 1991, Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur. J. Clin. Inv. 21: 361–374.

    Article  CAS  Google Scholar 

  • Mohazzab, K. M., Kaminski, P. M., and Wolin,.M. S., 1995, NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am. J. Physiol. 266, H2568 - H2572.

    Google Scholar 

  • Munoz-Fernandez, M. A., Fernandez, M A.,and Fresno,.M, 1992, Synergism between tumor necrosis factor-a and interferon-g on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Eur. J. Immunol. 22: 301–307.

    CAS  Google Scholar 

  • Munzel, T., Sayegh, H., Freeman, B. A., Tarpey, M. M., and Harrison, D. G., 1995, Evidence for enhanced vascular superoxide anion production in nitrate tolerance: a novel mechanism underlying tolerance and cross tolerance. J. Clin. Invest. 95: 187–194.

    Article  CAS  Google Scholar 

  • Murphy, M. E., and Sies, H., 1991, Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc. Natl. Acad. Sci. USA 88: 10860–10864.

    Article  CAS  Google Scholar 

  • Myers, R. R., Minor, R. L., Guerra, R., Bates, J. N., and Harrison, D. G., 1990, Vasorelaxant properties of the endothelial-derived relaxant factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 365: 161–163.

    Article  Google Scholar 

  • Nakazono, K., Watanabe, N., Matsuno, K., Sasaki, J., Sato, T., and Inoue, M., 1991, Does superoxide underlie the pathogenesis of hypertension? Proc. Natl. Acad. Sci. USA 88: 10045–10048.

    Article  CAS  Google Scholar 

  • Nathan, C., 1992, Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051–3064.

    Google Scholar 

  • Niu, X. F., Ibbotson, G., and Kubes, P., 1996, A balance between nitric oxide and oxidants regulates mast cell-dependent neutrophil-endothelial cell interactions. Circ. Res. 79: 992–999.

    Article  CAS  Google Scholar 

  • Nussler, A., Drapier, J. C., Renia, L., Pied, S., Miltgen, F., Gentilini, M., and Mazier, D., 1991, L-arginine-dependent destruction of intrahepatic malaria parasites in response to tumor necrosis factor and/or interleukin-6 stimulation. Eur. J. Immunol. 21: 227–230.

    Article  CAS  Google Scholar 

  • Padgett, E. L., and Pruett, S. B., 1992, Evaluation of nitrite production by human monocyte-derived macrophages. Biochem. Biophys. Res. Commun. 186: 775–781.

    Article  CAS  Google Scholar 

  • Padmaja, S., and Huie, R. E., 1993, The reaction of nitric oxide with organic peroxyl radicals. Biochem. Biophys. Res.Comm. 195, 539–544.

    Article  CAS  Google Scholar 

  • Pagano, P., Ito, Y., Tornheim, K., Gallop, P., Tauber, A., and Cohen, R., 1995, An NADPH oxidase superoxide-generating system in the rabbit aorta. Am. J. Physiol. 268, H2274–2280.

    CAS  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526.

    Article  CAS  Google Scholar 

  • Peng, H., Libby, P., and Liao, J. K., 1995, Induction and stabilization of IkB by nitric oxide mediates inhibition of NFkB. J. Biol. Chem. 270: 14214–14219.

    Article  CAS  Google Scholar 

  • Pfeiffer, S., Gorren, A. C. F., Schmidt, K., Werner, E. R., Hansert, B., Bohle, D. S., and Mayer, B., 1997, Metabolic fate of peroxynitrite in aqueous solution: reaction with nitric oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry. J. Biol. Chem. 272: 3465–3470.

    Article  CAS  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A., 1991a, Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of endothelial-derived superoxide and nitric oxide. J. Biol. Chem. 266: 4244–4250.

    CAS  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A., 1991b, Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288: 481–487.

    Article  CAS  Google Scholar 

  • Radi, R., Cosgrove, T. P., Beckman, J. S., and Freeman, B. A., 1993, Peroxynitrite-induced luminol chemilumines-

    Google Scholar 

  • cence. Biochem. J. 290: 51–57.

    Google Scholar 

  • Reif, D. W., and Simmons,.R. D, 1990, Nitric oxide mediates iron release from ferritin. Arch. Biochem. Biophys. 283: 537–541.

    Article  CAS  Google Scholar 

  • Rubbo, H., Parthasarathy, S., Kalyanaraman, B., Barnes, S., Kirk, M., and Freeman, B. A., 1995, Nitric oxide inhibition of lipoxygenase-dependent liposome and low density lipoprotein oxidation: Termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Arch. Biochem. Biophys. 324: 15–25.

    Article  CAS  Google Scholar 

  • Rubbo, H.; Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk M.,and Freeman, B. A., 1994, Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation: Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 269: 26066–26075.

    CAS  Google Scholar 

  • Schmidt, H., 1992, NO’, CO and ‘OH, endogenous guanylyl cyclase-activating factors. FEBS Lett 397: 102–107.

    Article  Google Scholar 

  • Schmidt, H. H. H. W., Hofmann, H., Schindler, U., Shutenko, Z. S., Cunningham, D. D., and Feelisch, M., 1996, No NO from NO synthase. Proc. Natl. Acad. Sci. USA 93: 14492–14497.

    Article  CAS  Google Scholar 

  • Sherman, M. P., Loro, M. L., Wong, V. Z., and Tashkin, D. P., 1991, Cytokine-and Pneumocystis carinii-induced L-arginine oxidation by murine and human pulmonary alveolar macrophages. J. Protozool. 38: 234S - 236S.

    CAS  Google Scholar 

  • Shigenaga, M. K., Lee, H., Blount, B., Christen, S., Shigeno, E. T., Yip, H., and Ames, B. N., Inflammation and NOR-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical detection. Proc. Natl. Acad. Sci. USA (In Press).

    Google Scholar 

  • Siegfried, M. R., Carey, C., Ma, X.,and Lefer, A. M., 1992, Beneficial effects of SPM-5185, a cysteine-containing nitric oxide donor in myocardial ischemia-reperfusion. Am. J. Physiol. 263: H771–777.

    CAS  Google Scholar 

  • Stadler, J., Billiar, T. R., Curran, R. D., Stuehr, D. J., Ochoa, J. B., and Simmons, R. L., 1991, Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am. J. Physiol. 260: C910–916.

    CAS  Google Scholar 

  • Stamler, J. S., 1995, S-nitrosothiols and bioregulatory actions of nitrogen oxides through reactions with thiol groups. Cur. Top. Mic. Immunol. 196: 19–36.

    Article  CAS  Google Scholar 

  • Stamler, J. S., Jaraki, O., Osborne, J., Simon, D. I., Keaney, J., Vita, J., Single, D., Valeri, C. R., and Loscalzo, J., 1992a, Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc. Natl. Acad. Sci. USA 89: 7674–7677.

    Article  CAS  Google Scholar 

  • Stamler, J. S., Simon, D. I., Osborne, J. A., Mullins, M. E., Jaraki, O., Michel, T., Singel, D. J., and Loscalzo, J., 1992b, S-nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA 89: 444–448.

    Article  CAS  Google Scholar 

  • Stamler, J. S., Singel, D. J., Loscalzo, J., 1992c, Biochemistry of nitric oxide and its redox-activated forms. Science 258: 1898–1902.

    Article  CAS  Google Scholar 

  • Stuehr, D. J., and Marietta, M. A., 1985, Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. USA 82: 7738–7742.

    Article  CAS  Google Scholar 

  • Stuehr, D. J., and Nathan, C. F., 1989, Nitric oxide–a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169: 1543–1555.

    Article  CAS  Google Scholar 

  • Tamir, S., Lewis, R. S., de Rojas, W. T., Dean, W. M., Wishnok, J. S., and Tannenbaum, S. R., 1993, The influence of delivery rate on the chemistry and biological effects of nitric oxide. Chem. Res. Toxicol. 6: 895–899.

    Article  CAS  Google Scholar 

  • Tamura, Y., Chi, L., Driscoll, E. M. Jr., Hoff, P. T., Freeman, B. A., Gallagher, K. P., and Lucchesi, B. R., 1988, Superoxide dismutase conjugated to polyethylene glycol provides sustained protection against myocardial ischemia/reperfusion injury in the canine heart. Circ. Res. 63: 944–959.

    Article  CAS  Google Scholar 

  • Turrens, J. F., Crapo, J. D., and Freeman, B. A., 1984, Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J. Clin. Invest. 73: 87–95.

    Article  CAS  Google Scholar 

  • Van der Vliet, A., Eiserich, J. P., O’Neill, C. A., Halliwell, B., and Cross, C. E., 1995, Tyrosine modification by reactive nitrogen species: a closer look. Arch. Biochem. Biophys. 319: 341–349.

    Article  Google Scholar 

  • Van der Vliet, A., JP Eiserich, J. P., B Halliwell, B., and CE Cross, C. E., 1997, Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite: a potential additional mechanism of nitric oxide-dependent toxicity. J. Biol. Chem. 272: 7617–7625.

    Article  Google Scholar 

  • Vanin, A. F., 1991, Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands. FEBS Lett. 289: 1–3.

    Article  CAS  Google Scholar 

  • White, R., Darley-Usmar, V., McAdams, M., Berrington, W. R., Gore, J., Thomson, J. A., Parks, D. A., Tarpey, M. M., and Freeman, B. A., 1996, Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc. Natl. Acad. Sci. USA 93: 8745–8749.

    Article  CAS  Google Scholar 

  • White, K. A., and Marietta, M. A., 1992, Nitric oxide synthase is a P-450 type hemoprotein. Biochemistry 31: 6627–6631.

    Article  CAS  Google Scholar 

  • Wink, D. A., Cook, J., Krishna, M. C., Hanbauer, I., DeGraff, W., Gamson, J., and Mitchell, J. B., 1995, Nitric oxide protects against alkyl peroxide-mediated cytotoxicity: Further insight into the role nitric oxide plays in oxidative stress. Arch. Biochem. Biophys. 319: 402–407.

    Article  CAS  Google Scholar 

  • Wink, D. A, Cook, J. A., Pacelli, R., DeGraff, W., Gamson, J., Liebmann, J., Krishna, M. C., and Mitchell, J. B., 1996, The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: a direct correlation between nitric oxide formation and protection. Arch. Biochem. Biophys. 331: 241–248.

    Article  CAS  Google Scholar 

  • Wink, D. A., Hanbauer, I., Krishna, M. C., DeGraff, W., Gamson, J., and Mitchell, J. B., 1993, Nitric oxide protects against cellular damage and cytotoxicity from reactive species. Proc. Natl. Acad. Sci. USA 90: 9813–9817.

    Article  CAS  Google Scholar 

  • Witztum, J. L., and Steinberg, D., 1991, Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 84: 1086–1095.

    Google Scholar 

  • Wu, X. B., Brune, B., von Appen, F., and Ullrich, V., 1992, Reversible activation of soluble guanylate cyclase by oxidizing agents. Arch. Biochem. Biophys. 294: 75–82.

    Article  CAS  Google Scholar 

  • Wu, M., Pritchard, Jr. K. A.,, Kaminski, P. M., Fayngersh, R. P., Hintze, T. H., and Wolin, M. S., 1995, Involvement of nitric oxide and nitrosothiols in relaxation of pulmonary arteries to peroxynitrite. Am. J. Physiol. 266: H2108 - H2113.

    Google Scholar 

  • Xia, Y., Dawson, V. L., Dawson, T. M., Snyder, S. H., and Zweier, J. L., 1996, Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc. Natl. Acad. Sci. USA 93: 6770–6774.

    Article  CAS  Google Scholar 

  • Yagoob, M., Edelstein, C. L., and Schrier, R. W., 1996, Role of nitric oxide and superoxide balance in hypoxia-reoxygenation proximal tubular injury. Nephrol. Dial. Transplant. 11: 1743–1746.

    Article  Google Scholar 

  • Yermilov, V., Yoshie, Y., Rubio, J., and Ohshima, H., 1996, Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett. 399: 67–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freeman, B.A., Eiserich, J., O’Donnell, V. (1998). Nitric Oxide Regulation of Membrane and Lipoprotein Oxidation in the Vasculature. In: Özben, T. (eds) Free Radicals, Oxidative Stress, and Antioxidants. NATO ASI Series, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2907-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2907-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3292-1

  • Online ISBN: 978-1-4757-2907-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics