Free Radicals as Reagents for Electron Transfer Processes in Proteins

  • I. Pecht
  • O. Farver
Part of the NATO ASI Series book series (NSSA, volume 296)


Free radicals produced from amino acids and polypeptide side chains were originally investigated in order to resolve the molecular basis of light or radiation induced damage. However, as discussed below they have also turned out to be effective tools for studying electron transfer processes within polypeptide matrices and yielded important insights into the mechanism of these reactions. Production and study of free radicals in proteins by pulse radiolysis was first introduced in the sixties. A major method developed for the purpose of investigating radiation chemistry, found a broad range of important applications in different fields of chemistry and biochemistry reaching far beyond the subject to which it was first applied (Adams, Fielden and Michael, 1975). The method is based on the excitation and ionization of solvent molecules by short pulses of high energy electrons. Introducing radiation (e.g. 5–10 MeV) into dilute aqueous solutions of a given solute causes primary changes in the solvent. Thus, water molecules undergo conversion into OH radicals, hydrated electrons and to a lesser extent H atoms, H2 and H2O2 are also produced (the yields are usually presented as G values, i.e. number of chemical species produced per 100 eV of absorbed energy: e aq = 2.9; OH = 2.8; H = 0.55; H2O2 = 0.75 H2 = 0.45). The hydrated electrons and OH radicals present thermodynamic extremes of reducing and oxidizing potentials, respectively. Hence, they provide the possibility to initiate a wide range of electron transfer processes. However, their extreme reactivity is leading to non selective reactions. Hence, they are usually converted to less reactive ones, by protocols devised by radiation chemists.


Electron Transfer Process Pulse Radiolysis Ascorbate Oxidase Hydrated Electron Intramolecular Electron Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G.E., Fielden, E.M., and Michael, B.D., eds. 1975, Fast proceses in Radiation Chemistry and Biology; J., Wiley, N.Y.Google Scholar
  2. Adman, E.T.,1991, Adv. Protein Chem., 42: 195–197.Google Scholar
  3. Anderson, R.F., Hille, R., and Massey, V.,1986, J. Biol. Chem. 261: 15870–15876.Google Scholar
  4. Baker, E.N., 1988, J. Mol. Biol. 203: 1071–1095.CrossRefGoogle Scholar
  5. Beratan, D.N., Betts, J.N., and Onuchic, J.N., 1991, Science, 252: 1285–1288.CrossRefGoogle Scholar
  6. Buxton, G.V., and Sellers, R.M., 1973, J. Chem. Soc. Farraday Trans. 69: 555–559.CrossRefGoogle Scholar
  7. Christensen, H.E.M., Conrad, L.S., Mikkelsen, K.V., Nielsen, M.K., and Ulstrup, J. 1990, Inorg. Chem. 29: 2808–2816CrossRefGoogle Scholar
  8. Clarke, M.J. et al.1991, Eds. Struct. Bonding 75: 1.Google Scholar
  9. Dodd, F.R., Hasnain, S.S., Abraham, Z.H.L., Eady, R.E., and Smith, B.E.,1997, Acta Cryst. (in press).Google Scholar
  10. Faraggi, M., and Klapper, M.H., 1990, in: Excess Electrons in Dielectric Media; (Ferradini, C., and Jay-Gerin, LP., eds.), pp. 397–423, CRC Press.Google Scholar
  11. Faraggi, M., and Pecht, I., 1971b, Biochem. Biophys. Res. Comm., 45: 842–848.CrossRefGoogle Scholar
  12. Faraggi, M., and Pecht, I., 1973, J, Biol. Chem. 248: 3146–3149.Google Scholar
  13. Farid, R.S., Moser, C.C., and Dutton, P.L., Curr. Opinion Struc. Biol., 1993, 3: 225.CrossRefGoogle Scholar
  14. Farver, O. and Pecht, I., Biophys. Chem., 1994, 50: 203–216.CrossRefGoogle Scholar
  15. Farver, O., and Pecht, I., J. Am. Chem. Soc. 1992, 114: 5764–5767.CrossRefGoogle Scholar
  16. Farver, O., and Pecht, L, Proc. Natl. Acad. Sci. U.S.A., 1992, 89: 8283–8287.CrossRefGoogle Scholar
  17. Farver, O., and Pecht, I., Proc. Natl. Acad. Sci. USA, 1989, 86: 6968–6972.CrossRefGoogle Scholar
  18. Farver, O., Skov, L.K., Young, S., Bonander, N., Karlsson, B.G., Vänngärd, T., and Pecht, I., 1997, J. Am. Chem. Soc. (in press).Google Scholar
  19. Farver, O., Eady, R.R., Abraham, Z.L.H. and Pecht, I., 1997, Submitted.Google Scholar
  20. Farver, O., Skov, L.K., Pascher, T., Karlsson, B.G., Nordling, M., Lundberg, L.G., Vaangard, T., and Pecht, I., Biochemistry 1993, 32: 7317–7322.CrossRefGoogle Scholar
  21. Farver, O., Skov, L.K., Van de Kamp, M., Canters, G.W., and Pecht, I., 1992, Eur. J. Biochem., 210: 399–403.CrossRefGoogle Scholar
  22. Gilardi, G., Mei, G., Rosato, N., Canters, G.W., and Finazzi-Agro, A., 1994, Biochemistry 33: 1425–1431.CrossRefGoogle Scholar
  23. Godden, J.W., Turley, S., Teller, D.C., Adman, E.T., Liu, M.Y., Payne, W.J., and LeGall, J., 1991, Science 253: 438–442.CrossRefGoogle Scholar
  24. Hille, R., and Anderson, R.F., 1991, J. Biol. Chem., 266: 5608–5615.Google Scholar
  25. Jortner, J., and Bixon, M., 1993, Mol. Cryst. Liquid. Cryst. 234: 29–41.CrossRefGoogle Scholar
  26. Klapper, M.H., and Faraggi, M., 1979, Quart. Rev. Biophys. 12: 465–519.CrossRefGoogle Scholar
  27. Kroneck, P.M.H., Arnstrong, F.A., Merkle, H., and Marchesini, A.,1982, Adv. Chem. Ser. 220: 223–48.Google Scholar
  28. Kukimoto, M., Nishiyama, M., Murphy, M.E.P., Turley, S., Adman, E.T., Horinouchi, S., and Beppu, T., 1994, Biochemistry 33: 5246–5252.CrossRefGoogle Scholar
  29. Kyritsis, P., Messerschmidt, A., Huber, R., Salmon, G.A., and Sykes, A.G., 1993, J. Chem. Soc. Dalton Trans. 51: 731–735.CrossRefGoogle Scholar
  30. Land, E.J., and Swallow, A.J., 1971, Arch. Biochem. Biophys., 145: 365–372.CrossRefGoogle Scholar
  31. Larsson, S., Broo, A., and Sjölin, L., 1995, J. Phys. Chem. 99: 4860–4865CrossRefGoogle Scholar
  32. Lichtin, N.N., Shafferman, A., and Stein, G., 1973, Science 179: 680–683.CrossRefGoogle Scholar
  33. Lowery, M.D., Guckert, J.A., Gebhard, M.S., and Solomon, E.I., 1993, J. Am. Chem. Soc. 115:3012–3013 Marcus, R.A., and Sutin, N., 1985, Biochim. Biophys. Acta 811: 265–322.Google Scholar
  34. Messerschmidt, A., Ladenstein, R., Huber, R., Bolognesi, M., Avigliano, L., Petruzelli, R., Rossi, A., and FinazziAgro, A., 1992, J. Mol. Biol. 224: 179–205.CrossRefGoogle Scholar
  35. Messerschmidt, A., Luecke, H., and Huber, R., 1993, J. Mol. Biol. 230: 997–1014.CrossRefGoogle Scholar
  36. Messerschmidt, A., Rossi, A., Ladenstein, R., Huber, R., Bolognesi, M., Gatti, G., Marchesini, A., Petruzelli, R., and Finazzi-Agro, A., 1989, J. Mol. Biol. 206: 513–29.CrossRefGoogle Scholar
  37. Meyer, T.E., Marchesini, A., Cusanovich, M.A., and Tollin, G., 1991, Biochemistry 30: 4619–23.CrossRefGoogle Scholar
  38. Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S., and Dutton, P.L., 1992, Nature 355: 796–802.CrossRefGoogle Scholar
  39. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G.W., 1991b, J. Mol. Biol. 221: 765–772.CrossRefGoogle Scholar
  40. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G.W., 1991a, J. Mol. Biol. 218: 427–447.CrossRefGoogle Scholar
  41. Onuchic, J.N., Beratan, D.N., Winkler, J.R., and Gray, H.B., 1992, Annu. Rev. Biophys. Biomol. Struct. 21: 349–377.CrossRefGoogle Scholar
  42. Pecht, I., and Faraggi, M., 1971, Nature 233: 116–118.Google Scholar
  43. Pecht, I., and Faraggi, M., 1971a, FEBS Lett. 13, 221.CrossRefGoogle Scholar
  44. Pecht, I., and Faraggi, M., 1972, Proc. Natl. Acad. Sci. USA 69: 902–906.CrossRefGoogle Scholar
  45. Pecht, I., and Goldberg, M., 1975, in: Fast Processes in Radiation Chemistry and Biology (Michael, B.D., ed.), pp. 274–284, J. Wiley, N.Y.Google Scholar
  46. Suzuki, S., Deligeer, Yamaguchi, K., Kataoka, K., Kobayashi, K., Tagawa, S., Kohzuma, T., Shidara, S., and Iwasaki, H., 1997, J. Biol. Inorg. Chem. 2: 265–274.CrossRefGoogle Scholar
  47. Van Pouderoyen, G., Mazumdar, D.M., Hunt, N.I., Hill, H.A.O., and Canters, G.W., 1994, Eur. J. Biochem. 222: 583–588.CrossRefGoogle Scholar
  48. Wilting, J., Braams, R., Nauta, H., and van Buuren, K.J.H., 1972, Biochim. Biophys. Acta 283: 543–547.CrossRefGoogle Scholar
  49. Zaitzeva, I., Zaitzev, V., Card, C., Moshkov, K., Bax, B., Ralph, A., and Lindley, P., 1996, J. Biol. Inorg. Chem. 1: 15–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • I. Pecht
    • 1
  • O. Farver
    • 2
  1. 1.Department of ImmunologyThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Department of ChemistryRoyal Danish School of PharmacyCopenhagenDenmark

Personalised recommendations