EPR Spectroscopy of Phenolic Plant Antioxidants

  • Wolf Bors
  • Christa Michel
  • Kurt Stettmaier
Chapter
Part of the NATO ASI Series book series (NSSA, volume 296)

Abstract

Plant phenols are mostly secondary metabolites comprising such diverse structures as phenolic acids, e.g., of hydroxycinnamic acid (Pratt, 1993; Foti, Piattelli, Barratta, and Ruberto, 1996) or carnosic acid and its derivates in Rosmarinus officinalis (Ho, Ferraro, Chen, Rosen, and Huang, 1994), aromatic lactones such as hydroxycoumarins (Dixon, Moghimi, and Murphy, 1975; Foti et al., 1996; Hoult, Moroney, and Paya, 1994) or isoquinolines (Hewgill and Pass, 1985a), hydroxy-anthraquinones (Malterud, Farbrot, Huse, and Sund, 1993; Mian, Fratta, Rainaldi, Simi, Mariani, Benetti, and Gervasi, 1991), xanthones (Ashida, Noguchi, and Suzuki, 1994; Minami, Kinoshita, Fukuyama, Kodama, Yoshizawa, Sugiura, Nakagawa, and Tago, 1994), the large group of flavonoids (Bors, Heller, Michel, and Stettmaier, 1995), and the rather unusual macrocyclic bis-biphenyls (e.g. marchantins) from liverwort (Asakawa, 1990). Substances belonging to each of these structural groups have been shown to act as antioxidants or vice versa as cytotoxic agents.

Keywords

Sinapic Acid Carnosic Acid Semiquinone Radical Catechol Group Hyperfine Splitting Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asakawa, Y., 1990, Terpenoids and aromatic compounds with pharmacological activity from bryophytes, Proc. Phytochem. Soc. Europe 29: 369–410Google Scholar
  2. Ashida, S., Noguchi, S.F., and Suzuki, T., 1994, Antioxidative components, xanthone derivatives, in Swertia japonica Makino, J. Am. Oil Chem. Soc. 71: 109–599Google Scholar
  3. Aver’yanov, A.A., 1981, Generation of superoxide anion radicals and hydrogen peroxide in autoxidation of caffeic acid, Biochemistry USSR 46: 210–215Google Scholar
  4. Barclay, L.R.C., 1993, Model biomembranes: quantitative studies of peroxidation, antioxidant action, partitioning, and oxidative stress, Can. J. Chem. 71: 1–16CrossRefGoogle Scholar
  5. Bors, W., Erben-Russ, M., Michel, C., and Saran, M., 1990a, Radical mechanisms in fatty acid and lipid peroxidation, NATO ASI Ser. A189: 1–16Google Scholar
  6. Bors, W., Heller, W., Michel, C., and Saran, M., 1990b, Flavonoids as antioxidants: determination of radical scavenging efficiencies, Meth. Enzymol. 186: 343–354CrossRefGoogle Scholar
  7. Bors, W., Heller, W., Michel, C., and Stettmaier, K., 1993, Electron paramagnetic resonance studies of flavonoid compounds. in: Free Radicals: From Basic Science to Medicine ( G. Poli, M. Albano, and M.U. Dianzani, eds.), pp. 374–387, Birkhäuser, BaselCrossRefGoogle Scholar
  8. Bors, W., Heller, W., Michel, C., and Stettmaier, K., 1995, Flavonoids and polyphenols: Chemistry and biology. in: Handbook on Antioxidants ( E. Cadenas, and L. Packer, eds.), pp. 409–466, Marcel Dekker, New York, NYGoogle Scholar
  9. Bors, W., Michel, C., Stettmaier, K., and Heller, W., 1997, EPR studies of plant polyphenols. in: Natural Antioxidants. Chemistry, Health Effects, and Applications ( F. Shahidi, ed.), pp. 346–357, AOCS Press, Champaign, ILGoogle Scholar
  10. Canada, A.T., Giannella, E., Nguyen, T.D., and Mason, R.P., 1990, The production of reactive oxygen species by dietary flavonols, Free Radical Biol. Med. 9: 441–449CrossRefGoogle Scholar
  11. Cohen, G., Heikkila, R.E., and MacNamee, D., 1974, The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid and related cytotoxic agents, J. Biol. Chem. 249: 2447–2452Google Scholar
  12. Cotelle, N., Bernier, J.L., Hénichart, J.P., Catteau, J.P., Gaydou, E., and Wallet, J.C., 1992, Scavenger and antioxidant properties of ten synthetic flavones, Free Radical Biol. Med. 13: 211–219CrossRefGoogle Scholar
  13. Cotelle, N., Bernier, J.L., Catteau, J.P., Pommery, J., Wallet, J.C., and Gaydou, E.M., 1996, Antioxidant properties of hydroxy-flavones, Free Radical Biol. Med. 20: 35–43CrossRefGoogle Scholar
  14. Crawford, R.M.M., Lindsay, D.A., Walton, J.C., and Wollenweber-Ratzer, B., 1994, Towards the characterization of radicals formed in rhizomes of Iris germanica, Phytochemistry 37: 979–985CrossRefGoogle Scholar
  15. Dixon, W.T., Moghimi, M., and Murphy, D., 1975, ESR study of radicals obtained from the oxidation of naturally occurring hydroxypyrones, J. Chem. Soc., Perkin II, 1975: 101–103CrossRefGoogle Scholar
  16. Felix, C.C., and Sealy, R., 1981, Photolysis of melanin precursors: Formation of semiquinone radicals and their complexation with diamagnetic metal ions, Photochem. Photobiol. 34: 423–425Google Scholar
  17. Ferrari, R.P., and Laurenti, E., 1995, ESR spin-stabilization evidence for alpha-methyldopa and dopamethylester o-semiquinones obtained by peroxidasic oxidation: Structural characterization and mechanistic studies, J. Inorg. Biochem. 59: 811–825CrossRefGoogle Scholar
  18. Ferreira, D., and Bekker, R., 1996, Oligomeric proanthocyanidins: Naturally occurring 0-heterocycles, Nat. Prod. Rep. 13: 411–433CrossRefGoogle Scholar
  19. Foti, M., Piattelli, M., Baratta, M.T., and Ruberto, G., 1996, Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship, J. Agric. Food Chem. 44: 497–501CrossRefGoogle Scholar
  20. Geoffroy, M., Lambelet, P., and Richert, P., 1994, Radical intermediates and antioxidants: An ESR study of radicals formed on carnosic acid in the presence of oxidized lipids, Free Radical Res. 21: 247–258CrossRefGoogle Scholar
  21. Guo, Q.N., Zhao, B.L., Li, M.F., Shen, S.R., and Xin, W.J., 1996, Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes, Biochim. Biophys. Acta 1304: 210–222CrossRefGoogle Scholar
  22. Heller, W., Rosemann, D., and Sandermann, H., 1991, Untersuchungen sekundärer Stoffwechselleistungen von Fichte und Kiefer als möglicher Indikator für Schadeffekte im Höhenprofil des Wank. in: Proc. 2. Statusseminar der PBWU zum Forschungsschwerpunkt ‘Waldschäden’. GSF-Bericht 26 ( M. Reuther, M. Kirchner, and K. Rösel, eds. ), pp. 173–181Google Scholar
  23. Heller, W., Ernst, D., Langebartels, C., and Sandermann, H., 1995, Induction of polyphenol biosynthesis in plants during development and environmental stress. in: Polyphenols ‘84 ( R. Brouillard, M. Jay, A. Scalbert, eds.), pp. 67–78, Ed. INRA, ParisGoogle Scholar
  24. Hendry, G.A.F., Atherton, N.M., Seel, W., and Leprince, O., 1994, The occurrence of a stable quinone radical accumulating in vivo during natural and induced senescence in a range of plants. Proc. Roy. Soc. Edinburgh Sect. B 102: 501–503Google Scholar
  25. Hewgill, F.R., and Pass, M.C., 1985a, The oxidation of (±)-reticuline as studied by ESR spectroscopy. Aust. J. Chem. 38: 497–506CrossRefGoogle Scholar
  26. Hewgill, F.R., and Pass, M.C., 1985b, The oxidation of some bisphenolic 1-phenethyltetrahydro-isoquinolines studied by ESR spectroscopy, Aust. J. Chem. 38: 615–620CrossRefGoogle Scholar
  27. Ho, C.T., Ferraro, T., Chen, Q., Rosen, R.T., and Huang, M.T., 1994, Phytochemicals in teas and rosemary and their cancer-preventive properties, ACS Sympos. Ser. 547: 2–19Google Scholar
  28. Hodnick, W.F., Kalyanaraman, B., Pritsos, C.A., and Pardini, R.S., 1988a, The production of hydroxyl and semiquinone free radicals during the autoxidation of redox active flavonoids, Basic Life Sci. 49: 149–152Google Scholar
  29. Hodnick, W.F., Milosavljevic, E.B., Nelson, J.H., and Pardini, R.S., 1988b, Electrochemistry of flavonoids. Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids, Biochem. Pharmacol. 37: 2607–2611CrossRefGoogle Scholar
  30. Holton, D.M., and Murphy, D., 1980, The electron spin resonance spectra of semiquinones obtained from some naturally occurring methoxybenzoquinones. J. Chem. Soc., Perkin II, 1980: 1757–59CrossRefGoogle Scholar
  31. Hoult, J.R.S., Moroney, M.A., and Paya, M., 1994, Actions of flavonoids and coumarins on lipoxygenase and cyclooxygenase, Meth. Enzymol. 234: 443–454CrossRefGoogle Scholar
  32. Hsieh, R.J., and Kinsella, J.E., 1989, Oxidation of PUFAs: mechanisms, products and inhibition with emphasis on fish, Adv. Food Nutr. Res. 33: 233–341CrossRefGoogle Scholar
  33. Jensen, O.N., and Pedersen, J.A., 1983, The oxidative transformations of (+)catechin and (-)epicatechin as studied by ESR, Tetrahedron 39: 1609–1615CrossRefGoogle Scholar
  34. Kalyanaraman, B., 1990, Characterization of o-semiquinone radicals in biological systems, Meth. Enzymol. 186: 333–342CrossRefGoogle Scholar
  35. Kalyanaraman, B., Premovic, P.I., and Sealy, R.C., 1987, Semiquinone anion radicals from addition to amino acids, peptides and proteins to quinones derived from oxidation of catechols and catecholamines. An ESR spin stabilization study, J. Biol. Chem. 262: 11080–11087Google Scholar
  36. Klotz, D., Jülich, T., Wax, G., and Stegmann, H.B., 1989, Magnetic Properties of Free Radicals. 17. Semiquinones and Related Species. in: Landolt-Börnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie, Vol. 17g ( O. Madelung, ed.), Springer, Berlin ), pp. 69–394Google Scholar
  37. Kuhnle, J.A., Windle, J.J., and Waiss, A.C., 1969, EPR spectra of flavonoid anion-radicals. J. Chem. Soc. B, 1969: 613–616CrossRefGoogle Scholar
  38. Malterud, K.E., Farbrot, T.L., Huse, A.E., and Sund, R.B., 1993, Antioxidant and Radical Scavenging Effects of Anthraquinones and Anthrones, Pharmacology 47: 77–85CrossRefGoogle Scholar
  39. Mamero, B., 1997, Curcumin als Antioxidans: Schwermetallionenvermittelte radikalische Oxidation von Curcuminoiden, Dissertation, Universität Kiel Google Scholar
  40. Mason, R.P., and Chignell, C.F., 1982, Free radicals in pharmacology and toxicology. Selected topics, Pharmacol. Rev. 33: 189–211Google Scholar
  41. Masson, E., Pizzi, A., and Merlin, A., 1996, Comparative kinetics of the induced radical autocondensation of polyflavonoid tannins. 3. Micellar reactions vs cellulose surface catalysis, J. Appl. Polymer Sci. 60: 1655–1664CrossRefGoogle Scholar
  42. Mian, M., Fratta, D., Rainaldi, G., Simi, S., Mariani, T., Benetti, D., and Gervasi, P.G., 1991, Superoxide anion production and toxicity in V79 cells of six hydroxy-anthraquinones, Anticancer Res. 11: 1071–76Google Scholar
  43. Minami, H., Kinoshita, M., Fukuyama, Y., Kodama, M., Yoshizawa, T., Sugiura, M., Nakagawa, K., and Tago, H., 1994, Antioxidant xanthones from Garcinia subelliptica. Phytochemistry 36: 501–506CrossRefGoogle Scholar
  44. Noferi, M., Masson, E., Merlin, A., Pizzi, A., and Deglise, X., 1997, Antioxidant characteristics of hydrolysable and polyflavonoid tannins: An ESR kinetics study, J. Appl. Polymer Sci. 63: 475–482CrossRefGoogle Scholar
  45. Patterson, L.K., 1987, Instrumentation for measurement of transient behavior in radiation chemistry. in: Radiation Chemistry. Principles Applications. (Farhataziz, and M.A.J. Rodgers, eds.), pp. 65–96, VCH Verlag, WeinheimGoogle Scholar
  46. Pedersen, J.A., 1978, Naturally occurring quinols and quinones studied as semiquinones by ESR, Phytochemistry 17: 775–778CrossRefGoogle Scholar
  47. Pedersen, J.A., 1984, EPR study of hydroxyanthrasemiquinones. (3-Hydroxyl proton constants, J. Magn. Reson. 60: 136–137Google Scholar
  48. Pedersen, J.A., 1985, CRC Handbook of EPR spectra from quinones and quinols, CRC Press, Boca Raton, FL Pedersen, J.A., and Thomson, R.H., 1981, EPR study of hydroxyanthrasemiquinones. Assignment of hyperfine structure by additivity, J. Magn. Reson. 43: 373–386Google Scholar
  49. Pedersen, J.A., and Ollgaard, B., 1982, Phenolic acids in the genus Lycopodium. Biochem. System. Ecol. 10: 3–9CrossRefGoogle Scholar
  50. Pratt, D.E., 1993, Antioxidants indigenous to foods, Toxicol. Industr. Health 9: 63–75Google Scholar
  51. Rapta, P., Misik, V., Stasko, A., and Vrabel, I., 1995 Redox intermediates of flavonoids and caffeic acid esters from propolis: An EPR spectroscopy and cyclic voltammetry study, Free Radical Biol. Med. 18: 901–908CrossRefGoogle Scholar
  52. Richard, J.M., Cantin-Esnault, D., and Jeunet, A., 1995, First electron spin resonance evidence for the production of semiquinone and oxygen free radicals from orellanine, a mushroom nephrotoxin, Free Radical Biol. Med. 19: 417–429CrossRefGoogle Scholar
  53. Russell, W.R., Forrester, A.R., Chesson, A., and Burkitt, M.J., 1996, Oxidative coupling during lignin polymerization is determined by unpaired electron delocalization within parent phenylpropanoid radicals, Arch. Biochem. Biophys. 332: 357–366CrossRefGoogle Scholar
  54. Schaich, K.M., and Borg, D.C., 1980, EPR studies in autoxidation. in: Autoxidation in Food and Biological Systems. ( M.G. Simic, M. Karel, eds.), pp. 45–70, Plenum Press, New York, NYGoogle Scholar
  55. Schaich, K.M., Fisher, C., and King, R., 1994, Formation and reactivity of free radicals in curcuminoids: an electron paramagnetic resonance study. ACS Sympos. Ser. 547: 204–221Google Scholar
  56. Schwartner, C., Bors, W., Michel, C., Franck, U., Müller-Jakic, B., Nenninger, A., Asakawa, Y., and Wagner, H., 1995, Effect of marchantins and related compounds on 5-lipoxygenase and cyclooxygenase and their antioxidant properties: a structure activity relationship study, Phytomedicine 2: 113–117CrossRefGoogle Scholar
  57. Schwartner, C., Michel, C., Stettmaier, K., Wagner, H., and Bors, W. (1996) Marchantins and related polyphenols from liverwort: physico-chemical studies of their radical-scavenging properties, Free Radical Biol. Med. 20: 237–244CrossRefGoogle Scholar
  58. Singleton, V.L., 1988, Wine phenols. Modern Methods of Plant Analysis 6: 173–218CrossRefGoogle Scholar
  59. Snijder, A.J., Wastie, R.L., Glidewell, S.M., and Goodman, B.A., 1996, Free radicals and other paramagnetic ions in interactions between fungal pathogens and potato tubers. Biochem. Soc. Trans. 24: 442–446Google Scholar
  60. Stegmann, H.B., Bergler, H.U., and Scheffler, K., 1981, “Spinstabilisierung” durch Komplexierung: ESR-Untersuchung einiger Catecholamin-Semichinone. Angew. Chem. 93:398–399Google Scholar
  61. Stegmann, H.B., Dao-Ba, H., Stolze, K., and Scheffler, K., 1985, ESR- und ENDOR-Untersuchungen an Catecholaminen und deren Metaboliten als paramagnetische Thallium-Komplexe. Z. Anal. Chem. 322: 430–436CrossRefGoogle Scholar
  62. Taira, Z., Takei, M., Endo, K., Hashimoto, T., Sakiya, Y., and Asakawa, Y., 1994, Marchantin A trimethyl ether: its molecular structure and tubocurarine-like skeletal muscle relaxation activity, Chem. Pharm. Bull. 42: 52–56CrossRefGoogle Scholar
  63. Thompson, D., Norbeck, K., Olsson, L.I., Constantin-Teodosiu, D., van der Zee, J., and Moldeus, P., 1989, Peroxidase-catalysed oxidation of eugenol: formation of a cytotoxic metaolite, J. Biol. Chem. 264: 1016–1021Google Scholar
  64. Thomson, R.H., 1971, Naturally Occurring Quinones. Academic Press, LondonGoogle Scholar
  65. Valoti, M., Sipe, H.J., Sgaragli, G., and Mason, R.P., 1989, Free radical intermediates during peroxidase oxidation of 2-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, and related phenol compounds, Arch. Biochem. Biophys. 269: 423–432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Wolf Bors
    • 1
  • Christa Michel
    • 1
  • Kurt Stettmaier
    • 1
  1. 1.Institut für StrahlenbiologieGSF Forschungszentrum für Umwelt und GesundheitNeuherbergGermany

Personalised recommendations