The Effects of Oxidative Stress on the Redox System of the Human Erythrocyte

  • İ. Hamdi Öğüş
  • Mevhibe Balk
  • Yasemin Aksoy
  • Meltem Müftüoğlu
  • Nazmi Özer
Part of the NATO ASI Series book series (NSSA, volume 296)


Erythrocytes are a group of cells which do not contain a nucleus, mitochondria and other cytoplasmic organelles. Due to the lack of a nucleus and other organelles they can not synthesize proteins and their energy metabolism depends solely on anaerobic glycolysis. The function of these highly differentiated cells is to exchange respiratory gasses between the lung and the tissues. The gas transporting protein, hemoglobin, constitutes 95% of the erythrocyte proteins. Hemoglobin consists of a nonprotein heme group and the protein, globulin. Heme contains iron. For a functional protein this iron must be in the ferrous (Fe2+) state (Mathews and van Holde, 1996; Stryer, 1988).


Glutathione Reductase Pentose Phosphate Pathway Human Erythrocyte Redox System Anaerobic Glycolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, H., Suter, H. 1969, Catalase, in: Biochemical Methods in Red Blood Cells (Yunis, J.J., ed.), p.258., Academic Press, New York.Google Scholar
  2. Aebi, H. 1984, Catalase in vitro, in: Meth. in Enzymol. (Colowick, S. and Kaplan, C., eds), Volume 105, pp. 121–126, Academic Press Inc.Google Scholar
  3. Ames, B.N. 1966, Assay of inorganic total phosphate and phosphatases, in: Methods in Enzymol. (Colowick, S., Kaplan, N., eds.), Volume: VIII, p. 115, Academic Press, New York.Google Scholar
  4. Atkinson, D.E. 1949, The energy charge of adenylate pool as a regulatory parameter: Interactions with feedback modifiers., Biochemistry, 7: 4030–4034.CrossRefGoogle Scholar
  5. Baggot, J. 1992, Gas transport and pH regulation, in: Textbook of Biochemistry with Clinical Correlations. ( Devlin, T.M., ed.), 3rd Edition, p. 1031, Wiley-Liss, New York.Google Scholar
  6. Beutler, E. 1971, Red Cell Metabolism, a Manual of Biochemical Methods, pp. 42–68, Grune and Stratton, New York.Google Scholar
  7. Campbell, D.M. 1962, Determination of 5’-nucleotidase in blood serum, Biochem. J., 84: 34 P.Google Scholar
  8. Ellman, G.L. 1959, Tissue Sulfhydryl Groups, Arch. Biochem. Biophys., 82: 70–77.CrossRefGoogle Scholar
  9. Gaetani, G.F., Kirkman, H.N., Mangerini, R., Ferraris, A.M. 1994, Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes, Blood, 84 (1): 325–330.Google Scholar
  10. Haase, G., Dunkley, W.L. 1969, Ascorbic acid and copper in linoleate oxidation. II. Ascorbic acid and copper as oxidation catalysts, J. Lipid Res., 10: 561–567.Google Scholar
  11. Hunt, N.H., Stocker, R. 1990, Oxidative stress and the redox status of malaria-infected erythrocytes, Blood Cells, 16: 499–526.Google Scholar
  12. Jacobson, M.D 1996, Reactive oxygen species and programmed cell death, TIBS, 21: 83–86.Google Scholar
  13. Kosower, N.S., Zipser, Y., Fatlin, Z. 1982, Membrane thiol-disulfide status in glucose-6-phosphate dehydrogenase deficient red cells. Relationship to cellular glutathione, Biochim. Biophys. Acta, 691: 345–352.CrossRefGoogle Scholar
  14. Liebler, D.C., Kling, D.S., Reed, D.J. 1986, Antioxidant protection of phospholipid bilayers by alpha-tocoperol control of alpha-tocopherol status and lipid peroxidation by ascorbic acid and glutathione, J. Biol. Chem., 261: 12114–12119.Google Scholar
  15. Mahler, H.R., Cordes, E.H. 1966, Biological Chemistry, 2nd Ed., pp. 665–666, Harper and Row, Publishers, Inc., New York.Google Scholar
  16. Mannervik, B., Guthenberg, C. 1981, Glutathione transferase: Human Placenta, in: Meth. Enzymol. (Colowick, S. and Kaplan, C., Eds),Volume 77, pp. 231–233.Google Scholar
  17. Mannervik, B. 1985, The isoenzymes of glutathione transferase, in: Advances in Enzymology and Related Areas of Molecular Biology (Meister, A., Ed.), Volume 57, pp. 357–417.Google Scholar
  18. Mathews, C.K., van Holde, K.E. 1996, Biochemistry, 2nd ed., p. 216, The Benjamin/Cummings Publish. Co., Inc., New York.Google Scholar
  19. Meister, A. 1991, Glutathione deficiency produced by inhibition of its synthesis, and its reversal; Applications in research and therapy., Pharm. Ther, 51: 155–194.CrossRefGoogle Scholar
  20. Morell, S.A., Ayers, V.E., Greenwalt, T.J., Hoffman, P. 1964, Thiols of the erythrocyte:1. Reaction of N-ethylmaleinide with intact erythrocytes, J. Biol. Chem., 239 (8): 2696–2705.Google Scholar
  21. Orten, J.M., Neuhaus, O.W. 1982, Human Biochemistry, 10th ed., p. 457, The C. V. Mosby Co., St. Louis.Google Scholar
  22. Pryor, W.A. 1986, Oxy-radicals and related species: Their formation, life-times, and reactions, Ann. Rev. Physiol., 48: 657–667.CrossRefGoogle Scholar
  23. Reglinski, J., Hoey, S., Smith, W.E., Sturrock, R.D. 1988, Cellular response to oxidative stress at sulthydryl group receptor sites on the erythrocyte membrane, J. Biol. Chem., 263: 12360–12366.Google Scholar
  24. Samuni, A., Aronovitch, J., Godinger, D., Chevion, M., Czapski, G. 1983, On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism, Eur. J. Biochem., 137: 119–124.CrossRefGoogle Scholar
  25. Sies, H. 1991, Oxidative stress: Introduction, in: Oxidative Stress: Oxidants and Antioxidants. (Sies, H., ed.), p. xvii, Academic Press Ltd., London.Google Scholar
  26. Sies, H., Akerboom, T.P.M. 1984, Glutathione disulfide (GSSG) efflux from cells and tissues, in: Methods Enzymol. (Colowick, S., Kaplan, N., eds.),Volume 105, pp. 445–451, Academic Press, New York.Google Scholar
  27. Srivastava, S.K., Beutler, E. 1968, Accurate measurement of oxidized glutathione content of human, rabbit, and rat red blood cells and tissues, Anal.Biochem., 25: 70–76.CrossRefGoogle Scholar
  28. Stocker, R., Frei, B. 1991, Endogenous antioxidant defences in human blood plasma, in: Oxidative Stress: Oxidants and Antioxidants ( Sies, H., Ed.), p. 235, Academic Press Ltd., London.Google Scholar
  29. Stryer, L. 1988, Biochemistry, 3rd ed., p. 170, W.H.Freeman andCo., New York.Google Scholar
  30. Sun, Y., Larry, W., Oberley, L., Li, Y. 1988, A simple method for clinical assay of superoxide dismutase, Clin. Chem., 34(3):497–500..Google Scholar
  31. Tietze, F. 1969, Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues., Anal. Biochem., 27: 502–522.CrossRefGoogle Scholar
  32. Vives, C.J.L., Miguel, G.A., Pujades, M.A., Miguel, S.A., Cambiasso, S., Linares, M., Dibarrart, M.T., Calvo, M.A. 1995, Increased susceptibility of microcytic red blood cells to in vitro oxidative stress., Eur. J. Haematol., 55 (5): 327–331.Google Scholar
  33. Wefers, H., Sies, H. 1988, The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E, Eur. J. Biochem., 174 (2): 353–357.CrossRefGoogle Scholar
  34. Yunis, J.J., Yasmineh, W. 1969, Glucose metabolism in human erythrocytes, in: Biochemical Methods in Red Cell Genetics (Yunis, J.J., ed.), p. 8., Academic Press, New York, New York 10003.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • İ. Hamdi Öğüş
    • 1
  • Mevhibe Balk
    • 1
  • Yasemin Aksoy
    • 1
  • Meltem Müftüoğlu
    • 1
  • Nazmi Özer
    • 1
  1. 1.Department of Biochemistry Faculty of MedicineHacettepe UniversitySihhiye, AnkaraTurkey

Personalised recommendations