Carotenoid Properties Define Primary Biological Actions and Metabolism Defines Secondary Biological Actions

  • Norman I. Krinsky
Part of the NATO ASI Series book series (NSSA, volume 296)


The biological properties of carotenoids that can be observed and measured in animals, including humans, in plants, in cells grown in culture, in the microbial worlds, or in the classical “test tube” experiments should all be related to their chemical and physical properties (Britton, 1995; Krinsky, 1993). For example, beta-carotene and lycopene, shown in Figure 1, are both C40H56 hydrocarbons which share many similar properties. They are very hydrophobic, each have 11 conjugated double bonds, although in the case of lycopene, they are all in a linear polyene chain, whereas with β-carotene, only 9 double bonds are in the linear chain, and 2 additional conjugated double bonds are in the rings. As determined by x-ray crystal analysis of beta-carotene, the ring double bonds are slightly out of plane because of the steric hindrance of the methyl group substituents on and near the ring. In addition, because lycopene is an acyclic compound, it has 2 more non-conjugated double bonds at the termini of the molecule. As will be discussed in section 3, these two carotenoids have different biological actions.


Retinoic Acid Macular Pigment Laser Flash Photolysis Macular Pigment Optical Density Macular Pigment Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appling, D. R., and Chytil, F., 1981, Evidence for a role of retinoic acid (vitamin A acid) in the maintenance of testosterone production in male rats, Endocrinol. 108: 2120–2122.CrossRefGoogle Scholar
  2. Britton, G., 1995, Structure and properties of carotenoids in relation to function, FASEB J. 9: 1551–1558.Google Scholar
  3. Buck, J., Ritter, G., Dannecker, L., Katta, V., Cohen, S. L., Chait, B. T., and Hämmerling, U., 1990, Retinol is essential for growth of activated human B cells, J. Exp. Med. 171: 1613–1624.CrossRefGoogle Scholar
  4. Burton, G. W., and Ingold, K. U., 1984, fl-Carotene: An Unusual Type of Lipid Antioxidant, Science 224: 569–573.Google Scholar
  5. Chambon, P., 1996, A decade of molecular biology of retinoic acid receptors, FASEB J. 10: 940–953.Google Scholar
  6. Crain, F. D., Lotspeich, F. J., and Krause, R. F., 1967, Biosynthesis of Retinoic Acid by Intestinal Enzymes of the Rat, J. Lipid Res. 8: 249–254.Google Scholar
  7. Giguere, V., Ong, E. S., Segui, P., and Evans, R. M., 1987, Identification of a Receptor for the Morphogen Retinoic Acid, Nature (London) 330: 624–629.CrossRefGoogle Scholar
  8. Goodman, D. S., and Huang, H. S., 1965, Biosynthesis of Vitamin A with Rat Intestinal Enzymes, Science 149: 879–880.CrossRefGoogle Scholar
  9. Grosch, W., Laskawy, G., and Weber, F., 1976, Formation of Volatile Carbonyl Compounds and Cooxidation of ß-Carotene by Lipoxygenase from Wheat, Potato, Flax, and Beans, J. Agric. Food Chem. 24: 456–459.CrossRefGoogle Scholar
  10. Group, E. D. C.-C. S., 1993, Antioxidant Status and Neovascular Age-Related Macular Degeneration, Arch. Ophthalmol. 111: 104–109.CrossRefGoogle Scholar
  11. Group, T. A.-T. B. C. C. P. S., 1994, The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers, New Engl. J. Med. 330: 1029–1035.CrossRefGoogle Scholar
  12. Hammond, B. R., Jr., Curran-Celentano, J., Judd, S., Fuld, K., Krinsky, N. I., Wooten, B. R., and Snodderly, D. M., 1996, Sex Differences in Macular Pigment Optical Density: Relation to Plasma Carotenoid Concentrations and Dietary Patterns, Vision Res. in press.Google Scholar
  13. Hammond, B. R., Jr., Johnson, E. J., Russell, R. M., Krinsky, N. I., Yeum, K.-J., Edwards, R. B., and Snodderly, D. M., 1997, Dietary modification of human macular pigment density, Invest. Ophthalmol. Vis. Sci. 38: 1795–1801.Google Scholar
  14. Handelman, G. J., van Kuijk, F. J. G. M., Chatterjee, A., and Krinsky, N. I., 1991, Characterization of products formed during the autoxidation of I3-carotene, Free Radic. Biol. Med. 10: 427–437.Google Scholar
  15. Hebuterne, X., Wang, X.-D., Johnson, E. J., Krinsky, N. I., and Russell, R. M., 1995, Intestinal absorption and metabolism of 9-cis-(3-carotene in vivo: biosynthesis of 9-cis-retinoic acid, J. Lipid Res. 36: 1264–1273.Google Scholar
  16. Hennekens, C. H., Buring, J. E., Manson, J. E., Stampfer, M., Rosner, B., Cook, N. R., Belanger, C., LaMotte, F., Gaziano, J. M., Ridker, P. M., Willett, W., and Peto, R., 1996, Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease, New Engl. J. Med. 334: 1145–1149.CrossRefGoogle Scholar
  17. Jorgensen, K., and Skibsted, L. H., 1993, Carotenoid scavenging of radicals. Effect of carotenoid structure and oxygen partial pressure on antioxidative activity, Z. Lebensm. Unters. Forsch. 196: 423–429.CrossRefGoogle Scholar
  18. Krinsky, N. I., 1993, Actions of carotenoids in biological systems, Annu. Rev. Nutr. 13: 561–587.Google Scholar
  19. Krinsky, N. I., and Deneke, S. M., 1982, The Interaction of Oxygen and Oxy-Radicals with Carotenoids, JNCI 69: 205–210.Google Scholar
  20. Landrum, J. T., Bone, R. A., and Kilbum, M. D., 1996, The macular pigment: A possible role in protection from age-related macular degeneration, Adv. Pharmacol. 38: 537–556.CrossRefGoogle Scholar
  21. Mangelsdorf, D. J., Ong, E. S., Dyck, J. A., and Evans, R. M., 1990, Nuclear Receptor that Identifies a Novel Retinoic Acid Response Pathway, Nature (London) 345: 224–229.CrossRefGoogle Scholar
  22. Nagao, A., and Olson, J. A., 1994, Enzymatic formation of 9-cis, 13-cis and all-trans retinals from isomers of I3-carotene, FASEB J. 8: 968–973.Google Scholar
  23. Olson, J. A., and Hayaishi, 0., 1965, The Enzymatic Cleavage of 13-Carotene Into Vitamin A by Soluble Enzymes of Rat Liver and Intestine., Proc. Natl. Acad. Sci. USA 54: 1364–1370.Google Scholar
  24. Olson, J. A., and Krinsky, N. I., 1995, The colorful fascinating world of the carotenoids, FASEB J. 9: 1547–1550.Google Scholar
  25. Omenn, G. S., Goodman, G. E., Thornquist, M. D., Balmes, J., Cullen, M. R., Glass, A., Keogh, J. P., Meyskens, F. L., Jr., Valanis, B., Williams, J. H., Jr., Barnhart, S., and Hammar, S., 1996, Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease, New Engl. J. Med. 334: 1150–1155.CrossRefGoogle Scholar
  26. Packer, J. E., Mahood, J. S., Mora-Arellano, V. O., Slater, T. F., Willson, R. L., and Wolfenden, B. S., 1981, Free Radicals and Singlet Oxygen Scavengers: Reaction of a Peroxy-radical with 13-Carotene Diphenyl Furan and 1,4-Diazobicyclo(2,2,2)-octane, Biochem. Biophys. Res. Commun. 98: 901–906.CrossRefGoogle Scholar
  27. Palozza, P., Calviello, G., and Bartoli, G. M., 1995, Prooxidant activity of (3-carotene under 100% oxygen pressure in rat liver microsomes, Free Radic. Biol. Med. 19: 887–892.CrossRefGoogle Scholar
  28. Palozza, P., and Krinsky, N. I., 1992, Antioxidant effects of carotenoids in vitro and in vivo: an overview, Meth. Enzymol. 213: 403–420.CrossRefGoogle Scholar
  29. Petkovich, M., Brand, N. J., Krust, A., and Chambon, P., 1987, A Human Retinoic Acid Receptor Which Belongs to the Family of Nuclear Receptors, Nature (London) 330: 444–450.CrossRefGoogle Scholar
  30. Peto, R., Doll, R. J., Buckley, J. D., and Sporn, M. B., 1981, Can dietary (3-carotene materially reduce human cancer rates?, Nature (London) 290: 201–208.CrossRefGoogle Scholar
  31. Saari, J. C., 1994, Retinoids in photosensitive systems, in: The Retinoids. Biology, Chemistry, and Medicine, (M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds.), vol. pp. 351–385, Raven, New York.Google Scholar
  32. Snodderly, D. M., 1995, Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins, Am. J Clin. Nutr. 62 (Suppl):1448S-1461 S.Google Scholar
  33. Stratton, S. P., Schaefer, W. H., and Liebler, D. C., 1993, Isolation and Identification of Singlet Oxygen Oxidation Products of I3-Carotene, Chem. Res. Toxicol. 6: 542–547.CrossRefGoogle Scholar
  34. Tinkler, J. H., Tavender, S. M., Parker, A. W., McGarvey, D. J., Mulroy, L., and Truscott, T. G., 1996, Investigation of carotenoid radical cations and triplet states by laser flash photolysis and time-resolved resonance Raman spectroscopy: Observation of competitive energy and electron transfer, J. Am. Chem. Soc. 118: 1756–1761.CrossRefGoogle Scholar
  35. Wang, X.-D., and Krinsky, N. I., 1997, The bioconversion of 0-carotene into retinoids, in: Subcellular Biochemistry: Fat Soluble Vitamins,(P. J. Quinn, eds.), vol. pp. in press, Plenum, London.Google Scholar
  36. Wang, X.-D., Krinsky, N. I., Benotti, P. N., and Russell, R. M., 1994, Biosynthesis of 9-cis-retinoic acid from 9-cis-13-carotene in human intestinal mucosa in vitro, Arch. Biochem. Biophys. 313: 150–155.CrossRefGoogle Scholar
  37. Wang, X.-D., Russell, R. M., Liu, C., Stickel, F., Smith, D., and Krinsky, N. I., 1996, 0-Oxidation in rabbit liver in vitro and in the perfused ferret liver contributes to retinoic acid biosynthesis from (3-apo-carotenoic acids, J. Biol. Chem. 271: 26490–26498.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Norman I. Krinsky
    • 1
    • 2
  1. 1.Department of BiochemistrySchool of MedicineBostonUSA
  2. 2.Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonUSA

Personalised recommendations