An Endogenous Lipid-Soluble Antioxidant in Animal Tissues
  • Patrik Andrée
  • Gustav Dallner
  • Lars Ernster
Part of the NATO ASI Series book series (NSSA, volume 296)


Ubiquinone (UQ) was first described by Morton and colleagues (Festenstein et al., 1955) as a quinone with a ubiquitous occurrence in various tissues, hence its name (Figure 1). Two years later, Crane et al. (1957) identified a quinone that was proposed to be a component of the mitochondrial respiratory chain, functioning as a coenzyme for electron transfer from Complexes I and II to Complex III (Figure 2). As such, it was given the name coenzyme Q. Its structure was determined by Folkers and collegues (Wolf et al., 1958) and found to be identical to ubiquinone.


Lipid Peroxidation Respiratory Chain Mevalonate Pathway Submitochondrial Particle Mevalonate Kinase Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberg, F., Appelkvist, E.-L., Dallner, G., and Ernster, L. (1992). Distribution and redox state of ubiquinones in rat and human tissues. Arch. Biochem. Biophys. 295: 230–234.CrossRefGoogle Scholar
  2. Aberg, F., Zhang, Y., Appelkvist, E.-L., and Dallner, G. (1994). Effects of clofibrate, phthalates and probucol on ubiquinone levels. Chem. Biol. Interact. 91: 1–14.CrossRefGoogle Scholar
  3. Aberg, F., Zhang, Y., Teclebrhan, H., Appelkvist, E.-L., and Dallner, G. (1996). Increases in tissue levels of ubiqui-none in association with peroxisome proliferation. Chem. Biol. Interact. 99: 205–218.CrossRefGoogle Scholar
  4. Aiyar, A.S. and Olson, R.E. (1972). Enhancement of ubiquinone-9 biosynthesis in rat-liver slices by exogenous mevalonate. Eur. J. Biochem. 27: 60–64.CrossRefGoogle Scholar
  5. Alleva, R., Tomasetti, M., Battino, M., Curatola, G., Littarru, G.P., and Folkers, K. (1995). The roles of coenzyme Q10 and vitamin E on the peroxidation of human low density lipoprotein subfractions. Proc. Natl. Acad. Sci. USA 92: 9388–9391.CrossRefGoogle Scholar
  6. Andrée, P. (1996). Oxidative stress and Mitochondrial Function. Role of Ubiquinol as Antioxidant. Doctoral Thesis, Karolinska Institute.Google Scholar
  7. Appelkvist, E.-L., Edlund, C., Löw, P., Schedin, S., Kalén, A., and Dallner, G. (1993). Effects of inhibitors of hydroxymethylglutaryl coenzyme A reductase on coenzyme Q and dolichol biosynthesis. Clin. Investig. 71, S97 - S102.CrossRefGoogle Scholar
  8. Atar, D., Mortensen, S.A., Flachs, H., and Herzog, W.R. (1993). Coenzyme Q10 protects ischemic myocardium in an open-chest swine model. Clin. Investig. 71, S103–5111.CrossRefGoogle Scholar
  9. Baxter, A., Fitzgerald, B.J., and Hutson, J.L., McCarthy, A.D., Motteran, J.M., Ross, B.C., Sapra, M., Snowden, M.A., Watson, N.S., Williams, R.J. and Wright, C. (1992). Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo. J. Biol. Chem. 267: 11705–11708.Google Scholar
  10. Bet, L., Bresolin, N., Binda, A., Nador, F., and Ferrante, C. (1987). Cardiac improvement after coenzyme Q10 treatment with Kearns-Sayre syndrome. Neurology 37: 202–204.Google Scholar
  11. Beyer, K. and Klingenberg, M. (1985). ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24: 3821–3826CrossRefGoogle Scholar
  12. Beyer, R.E., Noble, W.M., and Hirschfield, T.J. (1962). Coenzyme Q (ubiquinone) levels of tissues of rats during acclimation to cold. Can. J. Biochem. Physiol. 40: 511–518.CrossRefGoogle Scholar
  13. Beyer, R.E., Morales-Corral, P.G., Ramp, B.J., Kreitman, K.R., Falzon, M.J., Rhee, S.Y., Kuhn, T.W., Stein, M., Rosenwasser, M.J., and Cartwright, K.J. (1984). Elevation of tissue coenzyme Q (ubiquinone) and cytochrome c concentrations by endurance exercise in the rat. Arch. Biochem. Biophys. 234: 323–329.CrossRefGoogle Scholar
  14. Beyer, R.E., Burnett, B.A., Cartwright, K.J., Edington, D.W., Falzon, M.J., Kreitman, K.R., Kuhn, T.W., Ramp, B.J., Rhee, S.Y., and Rosenwasser, M.J. (1985). Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. Mech. Ageing Dey. 32: 267–281.CrossRefGoogle Scholar
  15. Beyer, R.E. and Ernster, L. (1990). The antioxidant role of coenzyme Q. In: Highlights in Ubiquinone Research. G. Lenaz, O. Barnabei, A. Rabbi, and M. Battino, eds. ( London: Taylor & Francis ), pp. 191–213.Google Scholar
  16. Beyer, R.E., Segura Aguilar, J., DiBernardo, S., Cavazzoni, M., Fato, R., Fiorentini, D., Galli, M.C., Setti, M., Landi, L., and Lenaz, G. (1996). The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc. Natl. Acad. Sci. USA 93: 2528–2532.CrossRefGoogle Scholar
  17. Boveris, A., Ramos, M.C.P., Stoppani, A.O.M., and Foglia, V.G. (1969). Phosphorylation, oxidation and ubiqui-none content in diabetic mitochondria. Proc. Soc. Exp. Biol. Med. 132: 170–174.Google Scholar
  18. Boveris, A. and Chance, B. (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134: 707–716.Google Scholar
  19. Bowyer, J.R. and Trumpower, B.L. (1981). Rapid reduction of cytochrome c, in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome bc, segment of the mitochondrial respiratory chain. J. Biol. Chem. 256: 2245–2251.Google Scholar
  20. Boyer, P.D. (1993). The binding change mechanism for ATP synthase-some probabilities and possibilities. Biochim. Biophys. Acta 1140: 215–250.CrossRefGoogle Scholar
  21. Burdon, R.H. (1995). Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 4: 775–794.CrossRefGoogle Scholar
  22. Bäckström, D., Norling, B., Ehrenberg, A., and Ernster, L. (1970). Electron spin resonance measurement on ubiquinone-depleted and ubiquinone-replenished submitochondrial particles. Biochim. Biophys. Acta 197: 108–111.CrossRefGoogle Scholar
  23. Cadenas, E., Boveris, A., Ragan, C.I., and Stoppani, A.O. (1977). Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180: 248–257.CrossRefGoogle Scholar
  24. Cadenas, E., Hochstein, P., and Ernster, L. (1992). Pro-and antioxidant functions of quinones and quinone reductases in mammalian cells. Adv. Enzymol. 65: 97–146.Google Scholar
  25. Chance, B., Sies, H., and Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527–605.Google Scholar
  26. Crane, F.L., Hatefi, Y., Lester, R.L., and Widmer, C. (1957). Isolation of a quinone from beef heart mitochondria. Biochim. Biophys. Acta 25: 220–221.CrossRefGoogle Scholar
  27. Crane, F.L. and Morré, D.J. (1977). Evidence for coenzyme Q function in Golgi membranes. In Biomedical and Clinical Aspects of Coenzyme Q, Vol 1. K. Folkers and Y. Yamamura, eds. ( Amsterdam: Elsevier ), pp. 3–14.Google Scholar
  28. Crane, F.L., Sun, I.L., Clark, M.G., Grebing, C., and Löw, H. (1985). Transplasma-membrane redox systems in growth and development. Biochim. Biophys. Acta 811: 233–264.CrossRefGoogle Scholar
  29. Crane, F.L. and Sun, S.E.E. (1993). The essential functions of coenzyme Q. Clin. Investig. 71, S55 - S59.CrossRefGoogle Scholar
  30. Crawford, D.R. and Schneider, D.L. (1982). Identification of ubiquinone-50 in human neutrophile and its role in microbicidal events. J. Biol. Chem. 257: 6662–6668.Google Scholar
  31. Cutler, R.G. (1985). Peroxide-producing potential of tissues: Inverse correlation with longevity of mammalian species. Proc. Natl. Acad. Sci. USA 82: 4798–4802.CrossRefGoogle Scholar
  32. Danielson, L. and Ernster, L. (1963). Demonstration of a mitochondrial energy-dependent pyridine nucleotide transhydrogenase reaction. Biochem. Biophys. Res. Commun. 10: 91–96.CrossRefGoogle Scholar
  33. Davies, K.J.A. and Hochstein, P. (1982). Ubisemiquinone radicals in liver: Implications for a mitochondria(Q cycle in vivo. Biochem. Biophys. Res. Commun. 107: 1292–1299.CrossRefGoogle Scholar
  34. Davies, K.J.A. (1987). Protein damage and degradation by oxygen radicals. I. General aspects. J. Biol. Chem. 262: 9895–9901.Google Scholar
  35. Davies, K.J.A. and Delsignore, M.E. (1987). Protein damage and degradation by oxygen radicals. Ill. Modification of secondary and tertiary structure. J. Biol. Chem. 262: 9908–9913.Google Scholar
  36. Davies, K.J.A., Delsignore, M.E., and Lin, S.W. (1987a). Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 262: 9902–9907.Google Scholar
  37. Davies, K.J.A., Lin, S.W., and Pacifici, R.E. (1987b). Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J. Biol. Chem. 262: 9914–9920.Google Scholar
  38. Edlund, C., Söderberg, M., and Kristensson, K. (1994). Isoprenoids in aging and neurodegeneration. Neurochem. Int. 25: 35–38.CrossRefGoogle Scholar
  39. Eggens, I., Elmberger, P.G., and Löw, P. (1989). Polyisoprenoid, cholesterol and ubiquinone levels in human hepatocellular carcinomas. Br. J. Exp. Pathol. 70: 83–92.Google Scholar
  40. Elmberger, P.G., Kalén, A., Brunk, U.T., and Dallner, G. (1989). Discharge of newly-synthesized dolichol and ubiquinone with lipoproteins to rat liver perfusate and to the bile. Lipids 24: 919–930.CrossRefGoogle Scholar
  41. Elmberger, P.G., Kalén, A., Lund, E., Reihnér, E., Eriksson, M., Berglund, L., Angelin, B., and Dallner, G. (1991). Effects of pravastatin and cholestyramine on products of the mevalonate pathway in familial hypercholesterolemia. J. Lipid Res. 32: 935–940.Google Scholar
  42. Ericsson, J. and Dallner, G. (1993). Distribution, biosynthesis, and function of mevalonate pathway lipids. In: Sub-cellular Biochemistry, Volume 21: Endoplasmic Reticulum. N. Borgese and J.R. Harris, eds. ( New York: Plenum Press ), pp. 229–272.Google Scholar
  43. Ernster, L., Lee, I.Y., Norling, B., and Persson, B. (1969). Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b. Eur. J. Biochem. 9: 299–310.CrossRefGoogle Scholar
  44. Ernster, L., Forsmark, P., and Nordenbrand, K. (1992). The mode of action of lipid-soluble antioxidants in biological membranes: Relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. BioFactors 3: 241–248.Google Scholar
  45. Ernster, L. (1993). Lipid peroxidation in biological membranes: Mechanisms and implications. In Active Oxygen, Lipid Peroxides, and Antioxidants. K. Yagi, ed. (Tokyo: Japan Sci.Soc.Press, and Boca Raton: CRC Press ), pp. 1–38.Google Scholar
  46. Ernster, L. (1994). Ubiquinol as a biological antioxidant: A review. In Oxidative Processes and Antioxidants. R. Paoletti, Samuelsson, B., Catapano, A.L., Poli, A. and Rinetti, M., eds. ( New York: Raven Press ), pp. 185–198.Google Scholar
  47. Ernster, L. and Dallner, G. (1995). Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1271: 195–204.CrossRefGoogle Scholar
  48. Esterbauer, H., Zollner, H., and Schaur, R.J. (1990). Aldehydes formed by lipid peroxidation: Mechanisms of formation, occurrence and determination. In Membrane Lipid Oxidation, Vol. I. C.D. Vigo-Pelfrey, ed. ( Boca Raton, FL: CRC Press ), pp. 239–283.Google Scholar
  49. Esterbauer, H., Schaur, R.F., and Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11: 81–128.CrossRefGoogle Scholar
  50. Eto, Y., Kang, D., Hasegawa, E., Takeshige, K., and Minakami, S. (1992). Succinate-dependent lipid peroxidation and its prevention by reduced ubiquinone in beef heart submitochondrial particles. Arch. Biochem. Biophys. 295: 101–106.CrossRefGoogle Scholar
  51. Festenstein, G.N., Heaton, F.W., Lowe, J.S., and Morton, R.A. (1955). A constituent of the unsaponifiable portion of animal tissue lipids. Biochem. J. 59: 558–566.Google Scholar
  52. Fischer, J.C., Ruitenbeck, W., Gabreels, F.J.M., Janssen, A.J.M., Renier, W.O., Sengers, R.C.A., Stadhouders, A.M., ter Lak, H.J., Trijbels, J.M.F., and Veerkamp, J.H. (1986). A mitochondrial encephalomyopathy: The first case with an established defect at the level of coenzyme Q10. Eur. J. Pediatr. 144: 441–447.Google Scholar
  53. Floridi, A., Castiglione, S., and Bianchi, C. (1989). Sites of inhibition of mitochondrial electron transport by rhein. Biochem. Pharmacol. 38: 743–751.CrossRefGoogle Scholar
  54. Floyd, R.A., Watson, J.J., Wong, P.K., Altmiller, D.H., and Rickard, R.C. (1986). Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Rad. Res. Comms. 1: 163–172.CrossRefGoogle Scholar
  55. Folkers, K., Langsjoen, P., Willis, R., Richardson, P., Xia, L.J., Ye, C.Q., and Tamagawa, H. (1990). Lovastatin decreases coenzyme Q levels in humans. Proc. Natl. Acad. Sci. USA 87: 8931–8934.CrossRefGoogle Scholar
  56. Forsmark, P., Aberg, F., Norling, B., Nordenbrand, K., Dallner, G. and Ernster, L. (1991). Inhibition of lipid per-oxidation by ubiquinol in submitochondrial particles in the absence of vitamin E. FEBS Lett. 285: 39–45.CrossRefGoogle Scholar
  57. Forsmark-Andrée, P. and Ernster, L. (1994). Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondria] protein and DNA during lipid peroxidation. Mol. Aspects Med. 15, S73 - S81.CrossRefGoogle Scholar
  58. Forsmark-Andrée, P., Dallner, G., and Ernster, L. (1995). Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Free Radic. Biol. Med. 19: 749–757.CrossRefGoogle Scholar
  59. Forsmark-Andrée, P., Persson, B., Radi, R., Dallner, G., and Ernster, L. (1996). Oxidative modification of mitochondrial nicotinamide nucleotide transhydrogenase in submitochondrial particles. Effect of endogenous ubiquinol. Arch. Biochem. Biophys. 336: 113–120.CrossRefGoogle Scholar
  60. Forsmark-Andrée, P., Lee, C.P., Dallner, G., and Ernster, L. (1997). Lipid peroxidation and changes in the ubiqui-none content ant the respiratory chain enzymes of submitochondrial particles. Free Radic. Biol. Med. 22: 391–400.CrossRefGoogle Scholar
  61. Giulivi, C., Boveris, A., and Cadenas, E. (1995). Hydroxyl radical generation during mitochondria] electron transfer and the formation of 8-hydroxydeoxyguanosine in mitochondrial DNA. Arch. Biochem. Biophys. 316: 909–916.CrossRefGoogle Scholar
  62. Glinn, M., Ernster, L., and Lee, C.P. (1991). Initiation of lipid peroxidation in submitochondrial particles: Effects of respiratory inhibitors. Arch. Biochem. Biophys. 290: 57–65.CrossRefGoogle Scholar
  63. Glinn, M., Lee, C.P., and Ernster, L. (1997). Pro-and anti-oxidant activities of the mitochondrial respiratory chain: Factors influencing NAD(P)H-induced lipid peroxidation. Biochim. Biophys. Acta 1318: 246–254.CrossRefGoogle Scholar
  64. Goda, S., Hamada, T., Ishimoto, S., Kobayashi, T., Goto, I., and Kuroiwa, Y. (1987). Clinical improvement after administration of coenzyme Q10 in a patient with mitochondrial encephalomyopathy. J. Neurol. 234: 62–63.CrossRefGoogle Scholar
  65. Goldstein, J.L. and Brown, M.S. (1990). Regulation of the mevalonate pathway. Nature (London) 343: 425–430.CrossRefGoogle Scholar
  66. Grant, A.J, Jessup, W., and Dean, R.T. (1993). Enhanced enzymatic degradation of radical damaged mitochondrial membrane components. Free Rad. Res. Comms. 19: 125–134.CrossRefGoogle Scholar
  67. Grunter, J., Ericsson, J., and Dallner, G. (1994). Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim. Biophys. Acta 1212: 259–277.CrossRefGoogle Scholar
  68. Guan, Z., Söderberg, M., Sindelar, P., Prusiner, S.B., Kristensson, K., and Dallner, G. (1996). Lipid composition in scrapie-infected mouse brain: Prion infection increases the levels of dolichyl phosphate and ubiquinone. J. Neurochem. 66: 277–285.CrossRefGoogle Scholar
  69. Halliwell, B. and Auroma, O.I. (1991). DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 281: 9–19.CrossRefGoogle Scholar
  70. Hanaki, Y., Sugiyama, S., Ozawa, T., and Ohno, M. (1991). Ratio of low-density lipoprotein cholesterol to ubiqui-none as a coronary risk factor. N. Engl. J. Med. 325: 814–815.Google Scholar
  71. Hanaki, Y., Sugiyama, S., Ozawa, T., and Ohno, M. (1993). Coenzyme Q10 and coronary artery disease. Clin. Investig. 71, S112 - S115.Google Scholar
  72. Harman, D. (1981). The aging process. Proc. Natl. Acad. Sci. USA 78: 7124–7128.CrossRefGoogle Scholar
  73. Harman, D. (1994). Aging: Prospects for further increases in the functional life span. Age 17: 119–146.CrossRefGoogle Scholar
  74. Hasegawa, E., Takeshige, K., Oishi, T., Murai, Y., and Minakami, S. (1990). 1-Methyl-4-phenylpyridinium (MPP’) induced NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun. 170: 1049–1055.CrossRefGoogle Scholar
  75. Hatefi, Y. and Yamaguchi, M. (1992). The energy-transducing nicotinamide nucleotide transhydrogenase. In Mo-lecular Mechanisms in Bioenergetics. L. Ernster, ed. ( Amsterdam: Elsevier ), pp. 265–281.CrossRefGoogle Scholar
  76. Hatefi, Y. and Yamaguchi, M. (1996). Nicotinamide nucleotide transhydrogenase: A model for utilization of sub-strate binding energy for proton translocation. FASEB J. 10: 444–452.Google Scholar
  77. Hochstein, P. and Ernster, L. (1963). ADP-activated lipid peroxidation coupled to the TPNH oxidase system of microsomes. Biochem. Biophys. Res. Commun. 12: 388–394.CrossRefGoogle Scholar
  78. Hochstein, P., Nordenbrand, K., and Ernster, L. (1964). Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem. Biophys. Res. Commun. 14: 323–328.CrossRefGoogle Scholar
  79. Hoek, J.B. and Rydström, J. (1988). Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem. J. 254: 1–10.Google Scholar
  80. Hübner, C., Hoffmann, G.F., Charpentier, C., Gibson, K.M., Finckh, B., Puhl, H., Lehr, H.A., and Kohlschutter, A. (1993). Decreased plasma ubiquinone-l0 concentration in patients with mevalonate kinase deficiency. Pediatr. Res. 34: 129–133.CrossRefGoogle Scholar
  81. Imada, I., Watanabe, M., Matsumoto, N., and Morimoto, H. (1970). Metabolism of ubiquinone-7. Biochemistry 9: 2870–2878.CrossRefGoogle Scholar
  82. Ingledew, W.J. and Ohnishi, T. (1977). The probable site of action of thenoyltrifluoracetone on the respiratory chain. Biochem. J. 164: 617–620.Google Scholar
  83. Takayanagi, R., Takeshige, K., and Minakami, S. (1980). NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol. Biochem. J. 192: 853–860.Google Scholar
  84. Takeshige, K. and Minakami, S. (1975). Reduced nicotinamide adenine dinucleotide phosphate-dependent lipid peroxidation by beef heart submitochondrial particles. J. Biochem. 77: 1067–1073.Google Scholar
  85. Takeshige, K. and Minakami, S. (1979). NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180: 129–135.Google Scholar
  86. Takeshige, K., Takayanagi, K., and Minakami, S. (1980). Reduced coenzyme Q10 as an antioxidant of lipid per-oxidation in bovine heart mitochondria. In Biomedical and Clinical Aspects of Coenzyme Q, vol. 2. Y. Yamamura, K. Folkers, and T. Ito, eds. (Amsterdam: Elsevier ), pp. 15–25.Google Scholar
  87. Thelin, A., Peterson, E., Hutson, J.L., McCarthy, A.D., Ericsson, J., and Dallner, G. (1994). Effect of squalestatin 1 on the biosynthesis of the mevalonate pathway lipids. Biochim. Biophys. Acta 1215: 245–249.CrossRefGoogle Scholar
  88. Trumpower, B.L. (1990). The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc, complex. J. Biol. Chem. 265: 11409–11412.Google Scholar
  89. Turrens, J.F., Alexandre, A., and Lehninger, A.L. (1985). Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237: 408–414.CrossRefGoogle Scholar
  90. von Jagow, G., Ljungdahl, P.O., Ohnishi, T., and Trumpower, B.L. (1984). An inhibitor of mitochondrial respiration which binds to the cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome be complex. J. Biol. Chem. 259: 6318–6326.Google Scholar
  91. Watts, G.F., Castelluccio, C., Rice-Evans. C.A., Taub, N.A., Baum, H., and Quinn, P.J. (1993). Plasma coenzyme Q (ubiquinone) concentrations in patients treated with simvastatin. J. Clin. Pathol. 46: 1055–1057.CrossRefGoogle Scholar
  92. Whitaker, S.J., Powell, S.N., and McMillan, T.J. (1991). Molecular assays of radiation-induced DNA damage. Eur. J. Cancer 27: 922–928.CrossRefGoogle Scholar
  93. Willis, R.A., Folkers, K., Tucker, J.L., Ye, C.Q., Xia, L.J., and Tamagawa, H. (1990). Lovastatin decreases coenzyme Q levels in rats. Proc. Natl. Acad. Sci. USA 87: 8928–8930.CrossRefGoogle Scholar
  94. Wolf, D.E., Hoffman, C.H., Trenner, N.R., Arison, B.H., Shunk, C.H., Linn, B.O., McPherson, J.F., and Folkers, K. (1958). Coenzyme Q. Structure studies on the coenzyme Q group. J. Am. Chem. Soc. 80: 4752–4750.CrossRefGoogle Scholar
  95. Wolff, S.P., Garner, A., and Dean, R.T. (1986). Free radicals, lipids, and protein degradation. Trends Biochem. Sci. 11: 27–31.CrossRefGoogle Scholar
  96. Yamamoto, M., Sato, T., Anno, M., Ujike, H., and Takemoto, M. (1987). Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes with recurrent abdominal symptoms and coenzyme Q10 administration. J. Neurol. Neurosurg. Psych. 50: 1475–1481.CrossRefGoogle Scholar
  97. Yamamoto, Y., Kawamura, M., Tatsuno, K., Yamashita, S., Niki, E., and Naito, C. (1991). Formation of lipid hydroperoxides in the cupric ion-induced oxidation od plasma and low density lipoprotein. In Oxidative Dmage and Repair: Chemical, Biological, and Medical Aspects. K.J.A. Davies, ed. ( New York: Pergamon Press ), pp. 287–291.Google Scholar
  98. Yu, C.A. and Yu, L. (1981). Ubiquinone-binding proteins. Biochim. Biophys. Acta 639: 99–128.CrossRefGoogle Scholar
  99. Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L., and Davies, K.J.A. (1990). The oxidative inactivation of mito-chondrial electron transport chain components and ATPase. J. Biol. Chem. 265: 16330–16336.Google Scholar
  100. Zhang, Y., Aberg, F., Appelkvist, E.-L., Dallner, G., and Ernster, L. (1995). Uptake of dietary coenzyme Q supple-ment is limited in rats. J. Nutr. 125: 446–453.Google Scholar
  101. Zhang, Y., Turunen, M., and Appelkvist, E.-L. (1996). Restricted uptake of dietary coenzyme Q is in contrats to the unrestricted uptake of a-tocopherol into rat organs and cells. J. Nutr. 126: 2089–2097.Google Scholar
  102. Zwizinski, C.W. and Schmid, H.H.O. (1992). Peroxidative damage to cardiac mitochondria: Identification and purification of modified adenine nucleotide translocase. Arch. Biochem. Biophys. 294: 178–183.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Patrik Andrée
    • 1
    • 2
  • Gustav Dallner
    • 1
    • 2
  • Lars Ernster
    • 1
  1. 1.Department of Biochemistry, Arrhenius Laboratories for Natural SciencesStockholm UniversityStockholmSweden
  2. 2.Clinical Research Center NOVUMKarolinska InstituteHuddingeSweden

Personalised recommendations