Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 296))

Abstract

Oxidative stress can be viewed as the disturbance in the oxidant—antioxidant balance in favor of the former (Sies, 1985). Over the years, the research disciplines interested in oxidative stress have been growing steadfastedly, thus increasing our knowledge of the importance of the cell redox status and aiding at the recognition of oxidative stress as a process with implications for a large number of pathophysiological states. From this multi- and interdisciplinary interest in oxidative stress emerges a picture that attest to the vast consequences of the complex and dynamic interplay of oxidants and antioxidants in a cellular setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, C.M., Hallberg, A., Linden, M., Brattsand, R., Moldéus, P., and Cotgreave, I.A., 1994, Antioxidant activity of some diarylselenides in biological systems. Free Rad. BioL Med. 16: 17–28.

    Article  Google Scholar 

  • Aruoma, O.I., and Halliwell, B., 1989, Inactivation of a1-antiproteinase by hydroxyl radicals. The effect of uric acid. FEBS Lett. 244: 76–80.

    Article  CAS  Google Scholar 

  • Asmus, K.-D., 1990, Sulfur-centered free radicals. Meth. Enzymol. 186: 168–180.

    Article  CAS  Google Scholar 

  • Azzi, A., Boscoboinik, D., Cantoni, 0., Fazzio, A., Marilley, D., O’Donnel, V., Özer, N.K., Spycher, S., TabatabaVakili, S., and Tasinato, A., 1997, Modulation by oxidants and antioxidants of signal transduction and smooth muscle cell proliferation, In Oxidative Stress and Signal Transduction, ( Forman, H.J., and Cadenas, E., eds.), pp. 323–342, Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Becker, B.H., 1993, Towards the physiological function of uric acid. Free Rad. Biol. Med. 14: 615–631.

    Article  CAS  Google Scholar 

  • Beyer, R.E., and Ernster, L., 1990, The antioxidant role of coenzyme Q. In Highlights in Ubiquinone Research (Lenazz, G., Barnabei, 0., Rabbi, A., and Battino, M., eds.), pp. 191–213, Taylor and Francis, London. Bielski, B.H.J., 1982, Chemistry of ascorbic acid radicals. In Ascorbic Acid: Chemistry, Metabolism, and Uses ( Seib, P.A., and Tolbeert, B.M., eds.), pp. 81–100, American Chemical Society, Washington.

    Google Scholar 

  • Bielski, B.H.J., and Cabelli, D.E., 1991, Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. /nt. J. Radial. Biol. 59: 291–319.

    Article  CAS  Google Scholar 

  • Bieri, J.G., and Tolliver, T.J., 1981, On the occurrence of a-tocopherylquinone in rat tissue. Lipids 16: 777–789.

    Article  CAS  Google Scholar 

  • Boveris, A., and Cadenas, E., 1997, Cellular sources and steady-state levels of reactive oxygen species. In Oxygen, Gene Expression, and Cellular Function ( Clerch, L.B., and Massaro, D.J., eds.), pp. 1–25, Marcel Dekker Inc., New York.

    Google Scholar 

  • Bowry, V.W., Ingold, K.U., and Stocker, R., 1992, Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a prooxidant. Biochem. 1 288: 341–344.

    Google Scholar 

  • Bowry, V.W., and Stocker, R., 1993, Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J. Am. Chem. Soc. 115: 6029–6044.

    CAS  Google Scholar 

  • Brown, L.A.S., and Jones, D.P., 1997, The biology of ascorbic acid, In Handbook of Synthetic Antioxidants, ( Packer, L., and Cadenas, E., eds.), pp. 117–154, Marcel Dekker Inc., New York.

    Google Scholar 

  • Buettner, G.R., and Jurkiewicz, B.A., 1993, Ascorbate free radical as a marker of oxidative stress: An EPR study. Free Rad. Biol. Med. 14: 49–55.

    Article  CAS  Google Scholar 

  • Buettner, G.R., and Jurkiewicz, B.A., 1997, Chemistry and Biochemistry of Ascorbic acid, In Handbook of Synthetic Antioxidants, ( Packer, L., and Cadenas, E., eds.), pp. 91–115, Marcel Dekker Inc., New York.

    Google Scholar 

  • Cadenas, E., Boveris, A., Ragan, C.I., and Stoppani, A.O.M., 1977, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heart mitochondria. Arch. Biochem. Biophys. 180: 248–257.

    Article  CAS  Google Scholar 

  • Cadenas, E., Merenyi, G., and Lind, J., 1989, Pulse radiolysis study on the reactivity of trolox C phenoxyl radical with superoxide anion. FEBS Lett. 253: 235–238.

    Article  CAS  Google Scholar 

  • Cadenas, E., Hochstein, P., and Ernster, L, 1992, Pro-and antioxidant functions of quinones and quinone reductases in mammalian cells. Adv. Enzymol. 65: 97–146.

    CAS  Google Scholar 

  • Cadenas, E., and Packer, L. (eds.), 1996, Handbook of Natural Antioxidants, Marcel Dekker Inc., New York.

    Google Scholar 

  • Clerch, L.B., and Massaro, D.J. (eds.), 1997, Oxygen, Gene Expression, and Cellular Function, Marcel Dekker Inc., New York.

    Google Scholar 

  • Cotgreave, I.A., and Engman, L., 1997, The development of diaryl chalcogenides and a-(phenylselenyl) ketones with antioxidant and glutathione peroxidase-mimetic properties, In Handbook of Synthetic Antioxidants ( Packer, L., and Cadenas, E., eds.), pp. 305–320, Marcel Dekker Inc., New York.

    Google Scholar 

  • D’Arcy-Dohert, M., Wilson, I., Wardman, P., Basra, J., Patterson, L.H., and Cohen, G.M., 1986, Peroxidase activation of 1-naphthol to pahthoxy or naphthoxy-derived radicals and their reactions with glutathione, Chem. Biol. Interact. 58: 199–215.

    Article  Google Scholar 

  • Floyd, R.A., Liu, G.-J., and Wong, P.K., 1997, Nitrone radical traps as protectors of oxidative damage in the central nervous system, In Handbook of Synthetic Antioxidants ( Packer, L., and Cadenas, E., eds.), pp. 339–350, Marcel Dekker Inc., New York.

    Google Scholar 

  • Forman, H.J., and Cadenas, E. (eds.), 1997, Oxidative Stress and Signal Transduction, Chapman and Hall, New York.

    Google Scholar 

  • Forsmark, P., Aberg, F., Norling, B., Nordenbrand, K., Dallner, G., and Ernster, L., 1991, Vitamin E and ubiquinol as inhibitors of lipid peroxidation in biological membranes. FEBS Lett. 285: 39–43.

    CAS  Google Scholar 

  • Giulivi, C., and Cadenas, E., 1994, Ferrylmyoglobin: Formation and chemical reactivity toward electron-donating compounds. Meth. Enzymol. 233: 189–202.

    Article  CAS  Google Scholar 

  • Haennen, G.R.M.M., and Bast, A., 1991, Scavenging of hypochlorous acid by lipoic acid. Biochem. Pharmacol. 42: 2244–2246.

    Article  Google Scholar 

  • Halliwell, B., 1997, Uric acid: An example of antioxidant evaluation, In Handbook of Antioxidants ( Cadenas, E., and Packer, L., eds.), pp. 243–258, Marcel Dekker Inc., New York.

    Google Scholar 

  • Hensley, K., Carney, J.M., Stewart, C.A., Tabatabaie, T., Pye, Q., and Floyd, R.A., 1997, Nitrone-based free radical traps as neuroprotective agents in cerebral ischaemia and other pathologies. Int. Rev. Neurobiol. 40: 299–317.

    Article  CAS  Google Scholar 

  • Imlay, J.A., and Fridovich, I., 1991, Assay of metabolic superoxide production in Escherichia Coli. J. Biol. Chem. 266: 6957–6965.

    CAS  Google Scholar 

  • Ingold, K.U., Bowry, V.S., Stocker, R., and Wallilng, C., 1993, Autoxidation of lipids and antioxidation by a-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: Unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein, Proc. Natl. Acad. Sci. USA 90: 45–49.

    Article  CAS  Google Scholar 

  • Kittridge, K., and Willson, R.L., 1984, Uric acid substantially enhances the free radical inactivation of alcohol dehydrogenase. FEBS Leu. 170: 162–164.

    Article  CAS  Google Scholar 

  • Liebler, D.C., Kaysen, K.L., and Kennedy, T.A.S., 1989, Redox cycles of vitamin E: Hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxyl)tocopherones. Biochemistry 28: 9772–9777.

    Article  CAS  Google Scholar 

  • Maiorino, M., Roveri, A., Coassin, M., and Ursini, F. (1988), Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51). Biochem. Pharmacol. 37: 2267–2271.

    Article  CAS  Google Scholar 

  • Maples, K.R., and Mason, R.P., 1988, Free radical metabolite of uric acid. J. Biol. Chem. 263: 1709–1712.

    CAS  Google Scholar 

  • Masumoto, H., and Sies, H., 1996, The reaction of ebselen with peroxynitrite. Chem. Res. Toxicol. 9: 262–267.

    Article  CAS  Google Scholar 

  • Mehlhorn, R.J., and Swanson, C.E., 1992, Nitroxide-stimulated H202 decomposition by peroxidases and pseudo-peroxidases. Free Radic. Res. Comms. 17: 157–175.

    Article  CAS  Google Scholar 

  • Mehlhorn, R.J., and Gomez, J., 1993, Hydroxyl and alkoxyl radical production by oxidation products of metmyoglobin. Free Radic. Res. Comms. 18: 29–41.

    Article  CAS  Google Scholar 

  • Noguchi, N., and Niki, E., 1997, Antioxidant properties of Ebselen, In Handbook of Synthetic Antioxidants ( Packer, L., and Cadenas, E., eds.), pp. 285–304, Marcel Dekker Inc., New York.

    Google Scholar 

  • Ordoflez, I.D., and Cadenas, E., 1992, Thiol oxidation coupled to DT-diaphorase-catalyzed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase. Biochem. J. 286: 481–490.

    Google Scholar 

  • Packer, L., and Cadenas, E. (eds.), 1997, Handbook of Synthetic Antioxidants, Marcel Dekker Inc., New York Packer, L., Witt, E.H., and Tritschler, H.J., 1997, Antioxidant properties and clinical applications of alpha-lipoic acid and dihydrolipoic acid. In Handbook of Antioxidants (Cadenas, E., and Packer, L., eds.), pp. 545–591, Marcel Dekker Inc., New York.

    Google Scholar 

  • Peinado, J., Sies, H., and Akerboom, T.P.M., 1989, Hepatic lipoate uptake. Arch. Biochem. Biophys. 273:389–395. Rice-Evans, C.A., and Diplock, A.T., 1993, Current status of antioxidant therapy. Free Radical Biol. Med. 15: 77–96.

    Google Scholar 

  • Roussyn, I., Briviba, K., Masumoto, H., and Sies, H., 1996, Selenium-containing compounds protect DNA from damage caused by peroxynitrite. Arch. Biochem. Biophys. 330: 216–218.

    Article  CAS  Google Scholar 

  • Samuni, A., and Krishna, M.C., 1997, Antioxidant properties of nitroxides and nitroxide SOD mimics, In Handbook of Synthetic Antioxidants ( Packer, L., and Cadenas, E., eds.), pp. 351–373, Marcel Dekker Inc., New York.

    Google Scholar 

  • Schöneich, C., Narayanaswami, V., Asmus, K.-D., and Sies, H., 1990, Reactivity of ebselen and related selenoorganic compounds with 1,2-dichloroethane radical cations and halogenated peroxyl radicals. Arch. Biochem. Biophys. 282: 18–25.

    Article  Google Scholar 

  • Scurlock, R., Rougee, M., Bensasson, R.V., Evers, M., and Dereu, N., 1991, Deactivation of singlet molecular oxygen by organ-selenium compounds exhibiting glutathione peroxidase activity and by sulfur-containing homologs. Photochem. Photobiol. 54: 733–736.

    Article  CAS  Google Scholar 

  • Sies, H. (ed.), 1985, Oxidative Stress, Academic Press, London.

    Google Scholar 

  • Sies, H., 1993, Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Rad. Biol. Med. 14: 313–323.

    Article  CAS  Google Scholar 

  • Sies, H. (ed.), 1997, Antioxidants in Disease Mechanisms and Therapy, Academic Press, San Diego.

    Google Scholar 

  • Sies, H., and Masumoto, H., 1997, Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite, In Antioxidants in Disease Mechanisms and Therapy ( Sies, H., ed.), pp. 229–246, Academic Press, London.

    Google Scholar 

  • Simic, M.G., and Jovanovic, S.V., 1989, Antioxidation mechanisms of uric acid. J. Am. Chem. Soc. 111: 5778–5782.

    Article  CAS  Google Scholar 

  • Surdhar, P.S., and Armstrong, D.A., 1986, Redox potential of some sulfur-containing radicals, J. Phys. Chem. 90: 5915–5917.

    Article  CAS  Google Scholar 

  • Tabatabaie, T., and Floyd, R.A., 1994, Susceptibility of glutathione peroxidase and glutathione reductase to oxida- tive damage and the protective effect of spin trapping agents. Arch. Biochem. Biophys. 314: 112–119.

    Article  CAS  Google Scholar 

  • Tabatabaie, T., Kotake, Y., Wallis, G., Jacob, J.M., and Floyd, R.A., 1997, Spin trapping agent phenyl N-tert-butylnitrone protects against the onset of drug-induced insulin-dependent diabetes mellitus. FEBS Lett. 407: 148–152.

    Article  CAS  Google Scholar 

  • Tabatabaie, T., Stewart, C., Pye, Q., Kotake, Y., and Floyd, R.A., 1996, In vivo trapping of nitric oxide in the brain of neonatal rats treated with the HIV-1 envelope protein gp120: Protective effectgs of a-phenyl-tert-butylnitrone. Biochem. Biophys. Res. Commun. 221: 386–390.

    CAS  Google Scholar 

  • von Sonntag, C., 1987, The Chemical Basis of Radiation Biology, Taylor and Francis, London.

    Google Scholar 

  • Wardman, P., 1988, Conjugation and oxidation of glutathione via thiyl free radicals. In Glutathione Conjugation, Mechanisms, and Biological Significance ( Sies, H., and Ketterer, B., eds.), pp. 44–72, Academic Press, London.

    Google Scholar 

  • Wardman, P., 1990, Thiol reactivity towards towards drugs and radicals: Some implications in the radiotherapy and chemotherapy of cancer. In Sulfur-centered Reactive Intermediates in Chemistry and Biology (Chatgilialoglu, C., and Asmus, K.-D., eds.), pp. 415–427, Plenum Press, New York.

    Google Scholar 

  • Wilson, I., Wardman, P., Cohen, G.M., and D’Arcy-Doherty, M., 1986, Reductive role of glutathione in the redox cycling of oxidizable drugs. Biochem. Pharmacol. 35: 21–22.

    Article  CAS  Google Scholar 

  • Willson, R.L., Dunster, C.A., Forni, L.G., Gee, C.A., and Kittridge, K.J., 1985, Organic free radicals and proteins in biochemical injury: Electron-or hydrogen-transfer reactions? Phil. Trans. R. Soc. Lond. B 311: 545–563.

    Article  CAS  Google Scholar 

  • Winterbourn, C.C., and Munday, R., 1990, Concerted action of reduced glutathione and superoxide dismutase in preventing redox cycling of dihydropyrimidines, and their role in atnioxidant defence, Free Rad. Res. Commun. 8: 287–293.

    Article  CAS  Google Scholar 

  • Young, H.K., Floyd, R.A., Maidt, M.L., and Dynlacht, J.R., 1996, Evaluation of nitrone spin-trapping as radioprotectors. Radiat. Res. 146: 227–231.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cadenas, E. (1998). Mechanisms of Antioxidant Action. In: Özben, T. (eds) Free Radicals, Oxidative Stress, and Antioxidants. NATO ASI Series, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2907-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2907-8_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3292-1

  • Online ISBN: 978-1-4757-2907-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics