The Role of Oxidative Stress in the Pathological Sequelae of Alzheimer Disease

  • Mark A. Smith
  • George Perry
Part of the NATO ASI Series book series (NSSA, volume 296)


Oxidative stress and damage are accepted features of degenerating and at risk neuronal populations in Alzheimer disease (Smith et al., 1994a,b, 1995a, 1996a, 1997a,b; Sayre et al., 1997a). Nonetheless, there is controversy concerning how oxidative stress meshes with currently accepted disease hypotheses as well as whether oxidative stress is an initiator of the disease or is instead a result of the disease process (Figure 1).


Alzheimer Disease Neurofibrillary Tangle Heme Oxygenase Senile Plaque Paired Helical Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, A. C., Zaidi, T., Grundke-Igbal, I., and Iqbal, K., 1994, Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease, Proc. Natl. Acad. Sci. USA 91: 5562–5566.CrossRefGoogle Scholar
  2. Alonso, A. C., Grundke-Iqbal, I., and Iqbal, K., 1996, Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules, Nature Med. 2: 783–787.CrossRefGoogle Scholar
  3. Baynes, J. W., 1991, Role of oxidative stress in development of complications in diabetes, Diabetes 40, 405–412.CrossRefGoogle Scholar
  4. Behl, C., Davis, J., Cole, G. M., and Schubert, D., 1992, Vitamin E protects nerve cells from amyloid-13 protein toxicity, Biochem. Biophys. Res. Commun. 186: 944–950.CrossRefGoogle Scholar
  5. Behl, C., Davis, J. B., Lesley, R., and Schubert, D., 1994, Hydrogen peroxide mediates amyloid ß protein toxicity, Cell 77: 817–827.CrossRefGoogle Scholar
  6. Bennett, D. A., Cochran, E. J., Saper, C. B., Leverenz, J. B., Gilley, D. W., and Wilson, R. S., 1993, Pathological changes in frontal cortex from biopsy to autopsy in Alzheimer’s disease, Neurobiol. Aging 14: 589–596.CrossRefGoogle Scholar
  7. Berlin, V. and Haseltine, W. A., 1981, Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen, J. Biol. Chem. 256: 4747–4756.Google Scholar
  8. Breitner, J. C. S., Gau, B. A., Welsh, K. A., Plassman, B. L., McDonald, W. M., Helms, M. J., and Anthony, J. C., 1994, Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study, Neurology 44: 227–232.CrossRefGoogle Scholar
  9. Butterfield, D. A., Hensley, K., Harris, M., Mattson, M., and Carney, J., 1994, (3-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease, Biochem. Biophys. Res. Commun. 200: 710–715.Google Scholar
  10. Carette, B., Poulain, P., and Delacourte, A., 1993, Electrophysiological effects of 25–35 amyloid-I3-protein on guinea-pig lateral septal neurons, Neurosci. Lett. 151: 111–114.CrossRefGoogle Scholar
  11. Colton, C. A., and Gilbert, D. L., 1987, Production of superoxide anions by a CNS macrophage, the microglia, FEBS Lett. 223: 284–288.CrossRefGoogle Scholar
  12. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families, Science 261: 921–923.CrossRefGoogle Scholar
  13. Cotman, C. W., and Su, J. H., 1996, Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol. 6: 493–506.CrossRefGoogle Scholar
  14. Cras, R, Smith, M. A., Richey, P. L., Siedlak, S. L., Mulvihill, P., and Perry, G., 1995, Extracellularneurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease, Acta Neuropathol. 89: 291–295.CrossRefGoogle Scholar
  15. Davis, R. E., Miller, S., Hermstadt, C., Ghosh, S. S., Fahy, E., Shinobu, L. A., Galasko, D., Thal, L. J., Beal, M. F., Howell, N., and Parker, W. D. Jr., 1997, Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease, Proc. Natl. Acad. Sci. USA 94: 4526–4531.CrossRefGoogle Scholar
  16. El Khoury, J., Hickman, S. E., Thomas, C. A., Cao, L., Silverstein, S. C., and Loike, J. D., 1996, Scavenger receptor-mediated adhesion of microglia to 13-amyloid fibrils, Nature 382: 716–719.CrossRefGoogle Scholar
  17. Friguet, B., Stadtman, E. R., and Szweda, L. I., 1994, Modification of glucose-6-phosphate dehydrogenase by 4hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J. Biol. Chem. 269: 21639–21643.Google Scholar
  18. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieber-burg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., Penniman, E., Power, M., Schenk, D., Seubert, P., Snyer, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J., 1995, Alzheimer-type neuropathology in transgenic mice overexpressing V717F ß-amyloid precursor protein, Nature 373: 523–527.CrossRefGoogle Scholar
  19. Goedert, M., Sisodia, S. S., and Price, D. L., 1991, Neurofibrillary tangles and beta-amyloid deposits in Alzheimer’s disease, Curr. Opin. Neurobiol. 1: 441–447.CrossRefGoogle Scholar
  20. Good, P. F., Perl, D. P., Bierer, L. M., and Schmeidler, J., 1992, Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study, Ann. Neurol. 31: 286–292.CrossRefGoogle Scholar
  21. Goodman, Y., Steiner, M. R., Steiner, S. M., and Mattson, M. P., 1994, Nordihydroguaiaretic acid protects hippocampal neurons against amyloid beta-peptide toxicity, and attenuates free radical and calcium accumulation, Brain Res. 654: 171–176.CrossRefGoogle Scholar
  22. Greenberg, S. G., Davies, P., Schein, J. D., and Binder, L. I., 1992, Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau, J. Biol. Chem. 267: 564–569.Google Scholar
  23. Grundke-Igbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., Binder, L. I., 1986, Abnormal phosphorylation of the microtubule-associated protein t (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA 83: 4913–4917.CrossRefGoogle Scholar
  24. Gustke, N., Steiner, B., Mandelkow, E. M., Biernat, J., Meyer, H. E., Goedert, M., and Mandelkow, E., 1992, The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and ThrPro motifs, FEBS Lett. 307: 199–205.CrossRefGoogle Scholar
  25. Guyton, K. Z., Liu, Y., Gorospe, M., Xu, Q., and Holbrook, N. J., 1996, Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury, J. Biol. Chem. 271: 4138–4142.CrossRefGoogle Scholar
  26. Harris, M. E., Carney, J. M., Cole, P. S., Hensley, K., Howard, B. J., Martin, L., Bummer, P., Wang, Y., Pedigo, N. W. J., and Butterfield, D. A., 1995, (3-amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: implications for Alzheimer’s disease, Neuroreport 6: 1875–1879.Google Scholar
  27. Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butterfield, D. A., 1994, A model for ß-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease, Proc. Natl. Acad. Sci. USA 91: 3270–3274.CrossRefGoogle Scholar
  28. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G., 1996, Correlative memory deficits, Ap elevation, and amyloid plaques in transgenic mice, Science 274: 99–102.CrossRefGoogle Scholar
  29. Iqbal, K., Zaidi, T., Bancher, C., and Grundke-Iqbal, I., 1994, Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation, FEBS Lett. 349: 104–108.CrossRefGoogle Scholar
  30. Iversen, L. L., Mortishire-Smith, R. J., Pollack, S. J., and Shearman, M. S., 1995, The toxicity in vitro of ß-amyloid protein, Biochem. J. 331: 1–16.Google Scholar
  31. Katzman, R., 1986, Alzheimer’s disease, N. Engl. J. Med. 314: 964–973.CrossRefGoogle Scholar
  32. Koh, J. Y., Yang, L. L., and Cotman, C. W., 1990, (3-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage, Brain Res. 533: 315–320.Google Scholar
  33. Ledesma, M. D., Correas, I., Avila, J., and Diaz-Nido, J., 1992, Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer’s disease, FEBS Lett. 308: 218–224.CrossRefGoogle Scholar
  34. Ledesma, M. D., Bonay, P., Colaco, C., and Avila, J., 1994, Analysis of microtubule-associated protein tau glycation in paired helical filaments, J. Biol. Chem. 269: 21614–21619.Google Scholar
  35. Lockhart, B. P., Benicourt, C., Junien, J. L., and Privat, A., 1994, Inhibitors of free radical formation fail to attenuate direct 13-amyloid25–35 peptide-mediated neurotoxicity in rat hippocampal cultures, J. Neurosci. Res. 39: 494–505.CrossRefGoogle Scholar
  36. Mann, D. M. A., Marcyniuk, B., Yates, P. 0., Neary, D., and Snowden, J. S., 1988, The progression of the pathological changes of Alzheimer’s disease in frontal and temporal neocortex examined both at biopsy and at autopsy, Neuropathol. Appl. Neurobiol. 14: 177–195.Google Scholar
  37. Masliah, E. and Terry, R. D., 1993, Role of synaptic pathology in the mechanisms of dementia in Alzheimer’s disease, Clin. Neurosci. 1: 192–198.Google Scholar
  38. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E., 1992, ß-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity, J. Neurosci. 12: 376–389.Google Scholar
  39. Mattson, M. P., Carney, J. W., and Butterfield, D. A., 1995, A tombstone in Alzheimer’s?, Nature 373: 481.CrossRefGoogle Scholar
  40. McGeer, P. L., and Rogers, J., 1992, Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease, Neurology 42: 447–449.CrossRefGoogle Scholar
  41. McLachlan, D. R., Kruck, T. P., Lukiw, W. J., and Krishnan, S. S., 1991, Would decreased aluminum ingestion reduce the incidence of Alzheimer’s disease?, Can. Med. Assoc. J. 145: 793–804.Google Scholar
  42. McShea, A., Harris, P. L. R., Webster, K. R., Wahl, A., and Smith, M. A., 1997, Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease., Am. J. Pathol. 150 (in press).Google Scholar
  43. Miyata, M. and Smith, J. D., 1996, Apolipoprotein E allelle-specific antioxidant activity and effects on cytotoxicity by oxidative insults and (3-amyloid peptides, Nature Genetics 14: 55–61.CrossRefGoogle Scholar
  44. Montine, T. J., Amarnath, V., Martin, M. E., Strittmatter, W. J., and Graham, D. G., 1996a, E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures, Am. J. Pathol. 148: 89–93.Google Scholar
  45. Montine, T. J., Huang, D. Y., Valentine, W. M., Amarnath, V., Saunders, A., Weisgraber, K. H., Graham, D. G., and Strittmatter, W. J., 1996b, Crosslinking of apolipoprotein E by products of lipid peroxidation, J. Neuropathol. Exp. Neurol. 55: 202–210.CrossRefGoogle Scholar
  46. Oteiza, P. I., 1994, A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation, Arch. Biochem. Biophys. 308: 374–379.CrossRefGoogle Scholar
  47. Pappolla, M. A., Omar, R. A., Kim, K. S., and Robakis, N. K., 1992, Immunohistochemical evidence of antioxidant stress in Alzheimer’s disease, Am. J Pathol. 140: 621–628.Google Scholar
  48. Perry, G., Kawai, M., Tabaton, M., Onorato, M., Mulvihill, P., Richey, P., Morandi, A., Connolly, J. A., and Gambetti, P., 1991, Neuropil threads of Alzheimer’s disease show a marked alteration of the normal cytoskeleton, J. Neurosci. 11: 1748–1755.Google Scholar
  49. Pope, W. B., Lambert, M. P., Leypold, B., Seupaul, R., Sletten, L., Krafft, G., and Klein, W. L., 1994, Microtubule-associated protein tau is hyperphosphorylated during mitosis in the human neuroblastoma cell line SH-SY5Y, Exp. Neurol. 126: 185–194.CrossRefGoogle Scholar
  50. Prehn, J. H., Bindokas, V. R, Jordan, J., Galindo, M. F., Ghadge, G. D., Roos, R. R, Boise, L. H., Thompson, C. B., Krajewski, S., Reed, J. C., and Miller, R. J., 1996, Protective effect of transforming growth factor-13 1 on 13-amyloid neurotoxicity in rat hippocampal neurons, Mol. Pharmacol. 49: 319–328.Google Scholar
  51. Premkumar, D. R. D., Smith, M. A., Richey, P. L., Petersen, R. B., Castellani, R., Kutty, R. K., Wiggert, B., Perry, G., and Kalaria, R. N., 1995, Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease, J. Neurochem. 65: 1399–1402.Google Scholar
  52. Preuss, U., Doring, F., Illenberger, S., and Mandelkow, E. M., 1995, Cell cycle-dependent phosphorylation and microtubule binding of tau protein stably transfected into Chinese hamster ovary cells, Mol. Biol. Cell 6: 1397–1410.Google Scholar
  53. Rich, J. B., Rasmusson, D. X., Folstein, M. F., Carson, K. A., Kawas, C., and Brandt, J., 1995, Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease, Neurology 45: 51–55.CrossRefGoogle Scholar
  54. Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., Zalinski, J., Cofield, M., Mansukhani, L., Willson, P., and Kogan, F., 1993, Clinical trial of indomethacin in Alzheimer’s disease, Neurology 43: 1609–1611.CrossRefGoogle Scholar
  55. Roses, A. D., 1995, On the metabolism of apolipoprotein E and the Alzheimer diseases, Exp. Neurol. 132: 149–156.CrossRefGoogle Scholar
  56. Sayre, L. M., Zelasko, D. A., Harris, P. L. R., Perry, G., Salomon, R. G., and Smith, M. A., 1997a, 4-Hy- droxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease, J. Neurochem. 68: 2092–2097.Google Scholar
  57. Sayre, L. M., Zagorski, M. G., Surewicz, W. K., Krafft, G. A., and Perry, G., 1997b, Mechanisms of neurotoxicity associated with amyloid 13 deposition and the role of free radicals in the pathogenesis of Alzheimer’s disease. A critical appraisal. Chem. Res. Toxicol. (in press).Google Scholar
  58. Schreck, R., Rieber, P., Baeuerle, P. A., 1991, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-KB transcription factor and HIV-1, EMBO J. 10, 2247–2258.Google Scholar
  59. Selkoe, D. J., Ihara, Y., and Salazar, F. J., 1992, Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea, Science 215: 1243–1245.CrossRefGoogle Scholar
  60. Selkoe, D. J., 1996, Amyloid beta-protein and the genetics of Alzheimer’s disease, J. Biol. Chem. 271: 18295–18298.Google Scholar
  61. Selkoe, D. J., 1997, Alzheimer’s disease: genotypes, phenotypes, and treatments, Science 275: 630–631.CrossRefGoogle Scholar
  62. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J. -F., Bruni, A. C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Polinsky, R. J., Wasco, W., Da Silva, H. A. R., Haines, J. L., Pericak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., Rommens, J. M., St. George-Hyslop, P. H., 1995, Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease, Nature 375: 754–760.CrossRefGoogle Scholar
  63. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., and Marksberry, W. R., 1991, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease, Proc. Natl. Acad. Sci. USA 88: 10540–10543.CrossRefGoogle Scholar
  64. Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S.-D., Stern, D., Sayre, L. M., Monnier, V. M., and Perry, G., 1994a, Advanced Maillard reaction products are associated with Alzheimer disease pathology, Proc. Natl. Acad. Sci. USA 91: 5710–5714.CrossRefGoogle Scholar
  65. Smith, M. A., Kutty, R. K., Richey, P. L., Yan, S.-D., Stem, D., Chader, G. J., Wiggert, B., Petersen, R. B., and Perry, G., 1994b, Herne oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease, Am. J. Pathol. 145: 42–47.Google Scholar
  66. Smith, M. A., Sayre, L. M., Monnier, V. M., and Perry, G., 1995a, Radical AGEing in Alzheimer’s disease, Trends Neurosci. 18: 172–176.CrossRefGoogle Scholar
  67. Smith, M. A., Rudnicka-Nawrot, M., Richey, P. L., Praprotnik, D., Mulvihill, P., Miller, C. A., Sayre, L. M., and Perry, G., I 995b, Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease, J. Neurochem. 64: 2660–2666.Google Scholar
  68. Smith, M. A., Sayre, L. M., Vitek, M. P., Monnier, V. M., and Perry, G., 1995c, Early AGEing and Alzheimer’s, Nature 374: 316.CrossRefGoogle Scholar
  69. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N., 1996a, Oxidative damage in Alzheimer’s, Nature 382: 120–121.CrossRefGoogle Scholar
  70. Smith, M. A., Siedlak, S. L., Richey, P. L., Nagaraj, R. H., Elhammer, A., and Perry, G., 19966, Quantitative solubilization and analysis of insoluble paired helical filaments from Alzheimer disease, Brain Res. 717: 99–108.Google Scholar
  71. Smith, M. A., Harris, P.L.R., Sayre, L.M. and Perry, G., 1997a, Redox-active iron is associated with the pathological lesions in Alzheimer disease, J. Neuropath. Exp. Neurol. 56: 608.CrossRefGoogle Scholar
  72. Smith, M. A., Harris, P. L. R., Sayre, L. M., Beckman, J. S., and Perry, G., 1997b, Widespread peroxynitrite-mediated damage in Alzheimer’s disease, J. Neurosci. 17: 2653–2657.Google Scholar
  73. Smith, M. A., 1997, Alzheimer Disease, in: International Review of Neurobiology,(R. J. Bradley and R. A. Harris, eds.), in press, Academic Press, San Diego.Google Scholar
  74. Sternberger, N. H., Sternberger, L. A., and Ulrich, J., 1985, Aberrant neurofilament phosphorylation in Alzheimer disease, Proc. Natl. Acad. Sci. USA 82: 4274–4276.CrossRefGoogle Scholar
  75. Stewart, W. F., Kawas, C., Corrada, M., and Metter, E. J., 1997, Neurology 48: 626–631.CrossRefGoogle Scholar
  76. Strittmatter, W. J., Weisgraber, K. H., Huang, D. Y., Dong, L. M., Salvesen, G. S., Pericak-Vance, M., Schmechel, D., Saunders, A. M., Goldgaber, D., and Roses, A. D., 1993, Binding of human apolipoprotein E to synthetic amyloid ß peptide: isoform-specific effects and implications for late-onset Alzheimer disease, Proc. Natl. Acad. Sci. USA 90: 8098–8102.CrossRefGoogle Scholar
  77. Su, J. H., Anderson, A. J., Cummings, B. J., and Cotman, C. W., 1994, Immunohistochemical evidence for apoptosis in Alzheimer’s disease, Neuroreport 5: 2529–2533.CrossRefGoogle Scholar
  78. Trojanowski, J. Q., Schmidt, M. L., Shin, R.-W., Bramblett, G. T., Goedert, M., and Lee, V. M.-Y., 1993, PHF-t (A68): From pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer’s disease, Clin. Neurosci. 1: 184–191.Google Scholar
  79. Vincent, I., Rosado, M., and Davies, P., 1996, Mitotic mechanisms in Alzheimer’s disease?, J. Cell Biol. 132: 413–425.CrossRefGoogle Scholar
  80. Vitek, M. R, Bhattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K., and Cerami, A., 1994, Advanced glycation end products contribute to amyloidosis in Alzheimer disease, Proc. Natl. Acad. Sci. USA 91: 4766–4770.CrossRefGoogle Scholar
  81. Wolozin, B., Iwasaki, K., Vito, R, Ganjei, J. K., Lacana, E., Sunderland, T., Zhao, B., Kusiak, J. W., Wasco, W., and D’Adamio, L., 1996, Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation, Science 274: 1710–1713.CrossRefGoogle Scholar
  82. Yan, S.-D., Chen, X., Schmidt, A.-M., Brett, J., Godman, G., Zou, Y.-S., Scott, C. W., Caputo, C., Frappier, T., Smith, M. A., Perry, G., Yen, S.-H., and Stern, D., 1994, Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress, Proc. Natl. Acad. Sci. USA 91: 7787–7791.CrossRefGoogle Scholar
  83. Yan, S.-D., Yan, S. F., Chen, X., Fu, J., Chen, M., Kuppusamy, R, Smith, M.A., Perry, G., Godman, G.C., Nawroth, P., Zweier, J.L. and Stern, D., 1995, Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid 0-peptide, Nature Medicine 1: 693–699.CrossRefGoogle Scholar
  84. Yan, S.-D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, R, Stern, D., Schmidt, A. M., 1996, RAGE and amyloid-13 peptide neurotoxicity in Alzheimer’s disease, Nature 382: 685–691.CrossRefGoogle Scholar
  85. Yankner, B. A., Duffy, L. K., and Kirschner, D. A., 1990, Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides, Science 250: 279–282.CrossRefGoogle Scholar
  86. Zhang, Z., Rydel, R. E., Drzewiecki, G. J., Fuson, K., Wright, S., Wogulis, M., Audia, J. E., May, R. C., and Hyslop, R A., 1996, Amyloid beta-mediated oxidative and metabolic stress in rat cortical neurons: no direct evidence for a role for H02 generation, J. Neurochem. 67: 1595–1606.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mark A. Smith
    • 1
  • George Perry
    • 1
  1. 1.Institute of PathologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations