Skip to main content

The Role of Free Radical Mediation of Protein Oxidation in Aging and Disease

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 296))

Abstract

A role of protein oxidation in aging is indicated by the following observations: The cellular level of oxidized protein increases with animal age. Age-related changes in enzyme activities can be mimicked by treatment of enzymes from young animals with reactive oxygen species (ROS) in vitro. Exposure of animals to conditions of oxidative stress leads to an increase in the intracellular level of oxidized protein. Factors that increase the life span of animals lead also to a decrease in the level of oxidized protein and vice versa. Many age-related diseases are associated with elevated levels of oxidized proteins. Some age-related changes in enzyme activities and cognitive functions can be reversed by exposing old animals to free radical spin traps. The age-related increase in oxidized proteins is a complex function of the balance between a multiplicity of prooxidants, antioxidants, and the activities of proteases that selectively degrade the oxidized forms of proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, S. and Sohal, R. S., 1993, Relationship between aging and susceptibility to protein oxidative damage, Biochem. Biophys. Res. Commun. 194, 1203–1206.

    Article  CAS  Google Scholar 

  • Ames, B. N., Shigenaga, M. K., and Hagen, T. M., 1993, Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA 90, 7915–7922.

    Article  CAS  Google Scholar 

  • Amici, A., Levine, R. L., Tsai, L., and Stadtman, E. R., 1989, Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed reactions, J. Biol. Chem. 264, 3341–3346.

    CAS  Google Scholar 

  • Amstad, P., Moret, R., and Cerotti, P., 1994, Glutathione peroxidase compensates for the hypersensitivity of Cu,Zn-superoxide dismutase overproducers to oxidant stress, J. Biol. Chem. 269, 1606–1609.

    CAS  Google Scholar 

  • Ando, Y., Nyhlin, N., Suhr, O., Holmgren, G., Uchida, K., Sahly, M. E., Yamashita, T., Terasaki, H., Nakamura, M., Uchino, M., and Ando, M., 1997, Oxidative stress is found in amyloid deposits in systemic amyloidosis, Biochem. Biophys. Res. Commun. 232, 497–502.

    Article  CAS  Google Scholar 

  • Ayene, I. S., Dodia, C., and Fisher, A. B., 1992, Role of oxygen in oxidation of lipid and protein during ischemia/reperfusion in isolated perfused rat lung, Arch. Biochem. Biophys. 296, 183–189.

    Article  CAS  Google Scholar 

  • Bandy, B. and Davison, A. J., 1990, Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging, Free Rad. Biol. Med. 8, 523–539.

    Article  CAS  Google Scholar 

  • Benzi, G. and Moretti, A., 1995, Age-and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system, Free Rad. Biol. Med. 19, 77–101.

    Article  CAS  Google Scholar 

  • Bowling, A. C., Schultz, J. B., Brown, Jr., R. H., and Beal, M. F., 1993, Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism I familial and sporadic amyotrophic lateral sclerosis, J. Neurochem. 61, 2322–2325.

    Article  CAS  Google Scholar 

  • Butterfield, D. A., Howard, B. J., Yatin, S., Allen, K. L., and Carney, J. M., 1997, Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-a-phenylnitrone, Proc. Natl. Acad. Sci. USA 94, 674–678.

    Google Scholar 

  • Carney, J. M., Smith, C. D., Carney, A. M., and Butterfield, D. A., 1994, Aging-and oxygen-induced modifications in brain biochemistry and behavior, in: Aging and Cellular Defense Mechanisms, Volume 63 ( Franceschi, C., Crepaldi, G., Cristofalo, V. J., and Vijg, J., eds.), pp. 110–119, New York Academy of Science, New York.

    Google Scholar 

  • Carney, J. M., Starke-Reed, R E., Oliver, C. N., Landum, R. W., Cheng, M. S., Wu, J. F., and Floyd, R.A., 1991, Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity loss and loss of temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-aphenylnitrone, Proc. Natl. Acad. Sci. USA 88, 3633–3636.

    Article  CAS  Google Scholar 

  • Chao, C.-C., Ma, Y.-S., and Stadtman, E. R., 1997, Modification of protein surface hydrophobicity and methionine oxidation by oxidative stress, Proc. Natl. Acad. Sci. USA 94, 2969–2974.

    Article  CAS  Google Scholar 

  • Chapman, M. L., Rubin, B. R., and Gracy, R. W., 1989, Increased carbonyl content of proteins in synovial fluid from patients with rheumatoid arthritis, J. Rheumatol. 16, 15–18.

    CAS  Google Scholar 

  • Chauhan, A., Chauhan, V. P. S., Brockerhoff, H., and Wisniewski, H. M., 1991, Action of amyloid -protein on protein kinase C activity, Life Sci. 49, 1555–1556.

    Article  CAS  Google Scholar 

  • Cordillo, E., Ayala, A., F.-Lobato, M., Bautista, J., and Machada, A., 1988, Possible involvement of histidine resi-dues in loss of enzymatic activity of rat liver malic enzyme during aging, J. Biol. Chem. 263, 8053–8057.

    Google Scholar 

  • Cross, C. E., Reznick, A. Z., Packer, L., Davis, P. A., Suzuki, Y. J., and Halliwell, B., 1992, Oxidative damage to human plasma proteins by ozone, Free Rad. Res. Commun. 15, 347–352.

    Google Scholar 

  • Davies, K. J. A., 1986, Intracellular proteolytic systems may function as secondary antioxidant defenses: A Hypothesis, J. Free Rad. Biol. Med. 2, 155–173.

    Article  CAS  Google Scholar 

  • Davies, K. J. A., 1986a, The role of intracellular proteolytic systems in antioxidant defense, In: Superoxide and superoxide dismutase in chemistry, biology, and medicine ( Rotilio, G., ed.), pp. 443–450, Elsevier Science Publishing, Amsterdam.

    Google Scholar 

  • Davies, K. J. A. and Goldberg, A. L., 1987, Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells, J. Biol. Chem. 262, 8227–8234.

    CAS  Google Scholar 

  • Davies, K. J. A. and Lin, S. W., 1988, Degradation of oxidatively denatured proteins in Escherichia coli, Free Rad. Biol. Med. 5, 215–223.

    Article  CAS  Google Scholar 

  • Davies, K. J. A. and Lin, S. W., 1988a, Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli, Free Rad. Biol. Med. 5, 225–236.

    Article  CAS  Google Scholar 

  • Davies, K. J. A., Delsignore, M. E., and Lin, S. W., 1987, Protein damage by oxygen radicals. II. Modification of amino acids, J. Biol. Chem. 262, 9902–9907.

    CAS  Google Scholar 

  • Dreyfus, J. C., Kahn, A., and Schapira, F., 1978, Post translational modifications of enzymes, Curl: Top. Cell. Regul. 14, 243–297.

    CAS  Google Scholar 

  • Forster, M. J., Dubey, A., Dawson, K. M., Stutts, W. A., Lal, H., and Sohal, R. S., 1996, Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain, Proc. Natl. Acad. Sci. USA 93, 4765–4769.

    Article  CAS  Google Scholar 

  • Friguet, B., Stadtman, E. R., and Szweda, L., 1994, Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal, J. Biol. Chem. 269, 21639–21643.

    CAS  Google Scholar 

  • Friguet, B., Szweda, L., and Stadtman, E. R., 1994, Susceptibility of glucose-6-phosphate dehydrogenase modified by 4-hydroxy-2-nonenal and metal-catalyzed oxidation to proteolysis by the multicatalytic protease, Arch. Biochem. Biophys. 311, 168–173.

    Article  CAS  Google Scholar 

  • Fucci, L., Oliver, C. N., Coon, M. J., and Stadtman, E. R., 1983, Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implications in protein turnover and aging, Proc. Natl. Acad. Sci. USA 80, 1521–1525.

    Article  CAS  Google Scholar 

  • Fulks, R. M., 1977, Regulation of glutamine synthetase degradation in Klebsiella aerogenes, Fed. Proc. Am. Soc. Exptl. Biol. 36, 919 (abstr.).

    Google Scholar 

  • Garland, D., Russell, P., and Zigler, J. S., 1988, The oxidative modification of lens protein, In: Oxygen Radicals in Biology and Medicine (Simic, M. G., Taylor, K. S., Ward, J. F., and von Sontag, V., eds.), pp. 347–353, Plenum, New York.

    Chapter  Google Scholar 

  • Garrison, W. M., 1987, Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins, Chem. Rev. 87, 381–398.

    Article  CAS  Google Scholar 

  • Gerschman, R., Gilbert, D. I., and Caccamise, D., 1988, Effect of various substances on survival times of mice exposed to different high oxygen tension, Am. J. Physiol. 192, 563–571.

    Google Scholar 

  • Gladstone, I. M. and Levine, R. L., 1994, Oxidation of proteins in neonatal lungs, Pediatrics 93, 764–768.

    Google Scholar 

  • Goldstein, I. M., Kaplan, H. B., Edelson, H. S., and Weissmann, G., 1979, Ceruloplasmin. A scavenger of superoxide anion radicals, J. Biol. Chem. 254, 4040–4045.

    CAS  Google Scholar 

  • Grant, A. J., Jessup, W., and Dean, R. J., 1993, Inefficient degradation of oxidized regions of protein molecules, Free Rad. Res. Commun. 18, 259–267.

    Article  CAS  Google Scholar 

  • Grune, T., Reinheckel, T., and Davies, K. J. A., 1996, Degradation of oxidized proteins in K562 human hematopoietic cells by proteosome, J. Biol. Chem. 271, 15504–15509.

    Article  CAS  Google Scholar 

  • Grune, T., Reinheckel, T., Joshi, M., and Davies, K. J. A., 1995, Proteolysis in cultured liver epithelial cells during oxidative stress, J. Biol. Chem. 270, 2344–2351.

    Article  CAS  Google Scholar 

  • Harris, M., Hensley, K., Butterfield, D. A., Leedle, R. A., and Carney, J. M., 1995, Direct evidence of oxidative injury produced by Alzheimer’s -amyloid peptide (1–40) in cultured hippocampal neurons, Exp. Neurol. 131, 193–202.

    Article  CAS  Google Scholar 

  • Krsek-Staples, J. A. and Webster, R. 0., 1993, Ceruloplasmin inhibits carbonyl formation in endogenous cell proteins, Free Rad. Biol. Med. 14, 115–125.

    Google Scholar 

  • Kelley, F. J. and Birch, S., 1993, Ozone exposure inhibits cardiac protein synthesis in the mouse, Free Rad. Biol. Med. 14, 443–446.

    Article  Google Scholar 

  • Ku, H.-H. and Sohal, R. S., 1993, Comparison of mitochondrial pro-oxidant generation and antioxidant defenses between rat and pigeon: Possible basis of variation in longevity and metabolic potential, Mech. Ageing Develop. 72, 67–76.

    Article  CAS  Google Scholar 

  • Levine, R. L., 1983, Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue, J. Biol. Chem. 258, 11823–11827.

    CAS  Google Scholar 

  • Levine, R. L., 1983a, Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system, J. Biol. Chem. 258, 11828–11833.

    CAS  Google Scholar 

  • Levine, R. L., Williams, J. A., Stadtman, E. R., and Schacter, E., 1994, Carbonyl assays for determination of oxidatively modified proteins, Methods Enzymol. 233, 346–357.

    Article  CAS  Google Scholar 

  • Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B.-W., Shaltiel, S., and Stadt-man, E. R., 1990, Determination of carbonyl groups in oxidatively modified proteins, Methods Enzymol. 186, 464–478.

    Article  CAS  Google Scholar 

  • Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R., 1981, Turnover of bacterial glutamine synthetase: Oxidative inactivation precedes proteolysis, Proc. Natl. Acad. Sci. USA 78, 2120–2124.

    Article  CAS  Google Scholar 

  • Lin, F., Thomas, J. P., and Girotti, A. W., 1993, Hyperexpression of catalase in selenium-deprived murine L1210 cell, Arch. Biochem. Biophys. 305, 176–185.

    Article  CAS  Google Scholar 

  • Liu, Y., Rosenthal, R. E., Starke-Reed, P.E., and Fiskum, G., 1993, Inhibition of postcardiac arrest brain protein oxidation by acetyl-L-carnitine, Free Rad. Biol. Med. 15, 667–670.

    Article  CAS  Google Scholar 

  • Marcillat, O., Zhang, Y., Lin, S. W., and Davies, K. J. A., 1988, Mitochondria contain a proteolytic system which can recognize and degrade oxidatively denatured proteins, Biochem. J. 254, 677–683.

    CAS  Google Scholar 

  • Maria, C. S., Revilla, E., P. de la Cruz, C., and Machado, A., 1995, Cu,Zn-superoxide dismutase during aging, FEBS Lett. 347, 85–88.

    Google Scholar 

  • Matsuo, M., 1993, Age-related alterations in antioxidant defense, In: Free Radicals in Aging ( Yu, B.P., ed.), pp. 143–181, CRC Press, Ann Arbor.

    Google Scholar 

  • Mickel, H. S., Oliver, C. N., and Starke-Reed, P. E., 1990, Protein oxidation and myelinolysis occur in brain following rapid correction of hyponatremia, Biochem. Biophys. Res. Commun. 172, 92–97.

    Article  CAS  Google Scholar 

  • Mordente, A., Martorana, G. E., Miggiano, G. A. D., Meucci, E., Santini, S. A., and Castelli, A., 1988, Mixed function oxidation and enzymes: Kinetic and structural properties of oxidatively modified alkaline phosphatase, Arch. Biochem. Biophys. 264, 502–509.

    Article  CAS  Google Scholar 

  • Murakami, K., Jahnegn, J. H., Li, S. W., Davies, K. J. A., and Taylor, A., 1990, Lens proteosome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin, Free Rad. Biol. Med. 8, 217–222.

    Article  CAS  Google Scholar 

  • Murphy, M. E. and Kherer, J. P., 1989, Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy, Biochem. J. 260, 359–364.

    CAS  Google Scholar 

  • Muscari, C., Frascaro, M., Guamieri, C., and Calderara, C. M., 1990, Mitochondrial function and superoxide gen-eration from submitochondrial particles of aged rat hearts, Biochem. Biophys. Acta 1015, 200–204.

    Article  CAS  Google Scholar 

  • Musci, G., Bonaccorsi di Patti, M. C., Fagiolo, U., and Calabrese, L., 1993, Age-related changes in human cern-loplasmin, J. Biol. Chem. 268, 13388–13395.

    CAS  Google Scholar 

  • Nohl, H., Breuninger, V., and Hegner, D., 1978, Influence of mitochondria) radical formation on energy-linked respiration, Eur. J. Biochem. 90, 385–390.

    Article  CAS  Google Scholar 

  • Oliver, C. N., 1987, Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils, Arch. Biochem. Biophys. 253, 62–72.

    Article  CAS  Google Scholar 

  • Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., and Floyd, R. A., 1990, Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia-reperfusion-induced injury to gerbil brain, Pmc. Natl. Acad. Sci. USA 87, 5144–5147.

    Article  CAS  Google Scholar 

  • Oliver, C. N., Ahn, B.-W., Moerman, E. J., Goldstein, S., and Stadtman, E. R., 1987, Age-related changes in oxidized proteins, J. Biol. Chem. 262, 5488–5491.

    CAS  Google Scholar 

  • Oliver, C. N., Ahn, B., Wittenberger, M. E., and Stadtman, E. R., 1985, Oxidative inactivation of enzymes: Implication in protein turnover and aging, In: Cellular Regulation and Malignant Growth ( Ebashi, S., ed.), pp. 320–331, Japan Sci. Soc. Press/Springer-Verlag, Berlin.

    Google Scholar 

  • Oliver, C. N., Ahn, B., Wittenberger, M. E., Levine, R. L., and Stadtman, E. R., 1985a, Age-related alterations of enzymes may involve mixed-function oxidation reactions, In: Modification of proteins during aging ( Adelman, R. C. and Dekker, E. E., eds.), pp. 39–52, Alan R. Liss, New York.

    Google Scholar 

  • Oliver, C. N., Fulks, R., Levine, R. L., Fucci, L., Rivett, A. J., Roseman, J. E., and Stadtman, E. R., 1984, Oxida-tive inactivation of key metabolic enzymes during aging, In: Molecular Basis of Aging ( Roy, A. K. and Chattetjee, B., eds.), pp. 235–262, Academic Press, New York.

    Google Scholar 

  • Oliver, C. N., Fucci, L., Levine, R. L., Wittenberger, M. E., and Stadtman, E. R., 1982, Inactivation of key metabolic enzymes by P450 linked mixed function oxidation systems, In: Cytochrome P-450, Biochemistry, Biophysics, and Environmental Implications ( Heitanen, E., Laitinen, M., and Hanninen, O., eds.), pp. 531–539, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Oliver, C. N., Levine, R. L., and Stadtman, E. R., 1982, Regulation of glutamine synthetase degradation, In: Experience in Biochemical Perception ( Ornston, L. N. and Sligar, S. G., eds.), pp. 233–249, Academic Press, New York.

    Google Scholar 

  • Oliver, C. N., Levine, R. L., and Stadtman, E. R., 1981, Regulation of glutamine synthetase degradation, In: Metabolic interconversion of enzymes ( Holzer, H., ed.), pp. 259–268, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Orr, W. C. and Sohal, R. S., 1994, Extension of life-span by over expression of superoxide dismutase and catalase in Drosophila melanogaster, Science 263, 1128–1130.

    Article  CAS  Google Scholar 

  • Osaki, S., 1966, Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin), J. Biol. Chem. 241, 5053–5059.

    CAS  Google Scholar 

  • P. de la Cruz, C.P., Revilla, E., Venero, J. L., Ayala, A., Cano, J., and Machado, A., 1996, Oxidative inactivation of tyrosine hydroxylase in Substantia nigra of aged rat, Free Rad. Biol. Med. 20, 53–61.

    Article  Google Scholar 

  • Pacifici, R. E., Salo, D. C., and Davies, K. J. A., 1989, Macroproteinase (M.O.P.): A 670 kDA proteinase complex that degrades oxidatively denatured proteins in red blood cells, Free Rad. Biol. Med. 7, 521–536.

    Article  CAS  Google Scholar 

  • Perez, R., Lopez, M., and Barja-De Quiroga, G., 1991, Aging and lung antioxidant enzymes, glutathione and lipid peroxidation in the rat, Free Rad. Biol. Med. 10, 35–39.

    Article  CAS  Google Scholar 

  • Poston, J. M. and Parenteau, G. L., 1992, Biochemical effects of ischemia on isolated perfused rat heart tissues, Arch. Biochem. Biophys. 295, 35–41.

    Article  CAS  Google Scholar 

  • Raddk, Z., Asano, K., Lee, K.-C., Ohno, H., Nakamura, A., Nakamoto, H., and Goto, S., 1997, High altitude training increases reactive carbonyl derivatives but not lipid peroxidation in skeletal muscle of rats, Free Rad. Biol. Med. 22, 1109–1114.

    Article  Google Scholar 

  • Reznick, A. Z., Cross, C. E., Hu, M.-L., Suzuki, Y. J., Khwaja, S., Safadi, A., Motchnik, P. A., Packer, L., and Halliwell, B., 1992, Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation, Biochem. J. 286, 607–611.

    CAS  Google Scholar 

  • Rivett, A. J., 1986, Regulation of intracellular protein turnover: Covalent modification as a mechanism of marking proteins for degradation, Curr. Top. Cell. Regul. 28, 291–337.

    CAS  Google Scholar 

  • Rivett, A. J., 1985, Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian protease, J. Biol. Chem. 260, 300–305.

    CAS  Google Scholar 

  • Rivett, A. J., 1985a, Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase, J. Biol. Chem. 260, 12600–12606.

    CAS  Google Scholar 

  • Rivett, A. J., Roseman, J. E., Oliver, C. N., Levine, R. L., and Stadtman, E. R., 1985, Covalent modification of proteins by mixed-function oxidation: Recognition by intracellular proteases, In: Intracellular Protein Catabolism ( Khairallan, E. A., Bond, J. S., and Bird, J. W. C., eds.), pp. 317–328, Alan R. Liss, Inc., New York.

    Google Scholar 

  • Roseman, J. E. and Levine, R. L., 1987, Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase, J. Biol.Chem. 262, 2101–2110.

    CAS  Google Scholar 

  • Rothstein, M., 1977, Recent developments in age-related alteration of enzymes. Mech. Aging and Dev. 6, 241–257.

    Article  CAS  Google Scholar 

  • Salo, D. C., Lin, S. W., Pacifici, R.E., and Davies, K. J. A., 1988, Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide, Free Rad. Biol. Med. 5, 335–339.

    Article  CAS  Google Scholar 

  • Samokyszyn, V. M., Miller, D. M., Reif, D. W., and Aust, S. D., 1989, Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin, J. Biol Chem. 264, 21–36.

    CAS  Google Scholar 

  • Sawada, M. and Carlson, J. C., 1987, Changes in superoxide radical and lipid peroxide formation in brain, heart, and liver during lifetime of the rat, Mech. Aging and Dev. 41, 125–137.

    Article  CAS  Google Scholar 

  • Shacter, E., Williams, J. A., and Levine, R. L., 1995, Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation, Free Rad. Biol. Med. 18, 815–821.

    Article  CAS  Google Scholar 

  • Shacter, E., Williams, J. A., Lim, M., and Levine, R. L., 1994, Differential susceptibility of plasma proteins to oxi- dative modification: Examination by Western blot immunoassay, Free Rad. Biol. Med. 17, 429–437.

    Article  CAS  Google Scholar 

  • Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., and Floyd, R. A., 1991, Excess brain protein oxidation and enzyme dysfunction in normal and Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 88, 10540–10543.

    Article  CAS  Google Scholar 

  • Smith, M. A., Perry, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N., 1996, Oxidative damage in Alzheimer’s disease, Nature 382, 120–121.

    Article  CAS  Google Scholar 

  • Smith, M. A., Rudnicka-Nawrot, M., Richey, R. L., Praprotnik, D., Mulvihill, P., Miller, C. A., Sayre, C. A., and Perry, G., 1995, Carbonyl-related posttranslational modification of neurofilament protein in neurofibrillary pathology of Alzheimer’s disease, J. Neurochem. 64, 2660–2666.

    Article  CAS  Google Scholar 

  • Sohal, R. S., 1993, The free radical hypothesis of aging: An appraisal of the current status, Aging Clin. Exp. Res. 5, 3–17.

    CAS  Google Scholar 

  • Sohal, R. S. and Dubey, A., 1994, Mitochondrial oxidative damage, hydrogen peroxide release, and aging, Free Rad. Biol. Med. 16, 621–626.

    Article  CAS  Google Scholar 

  • Sohal, R. S., Agarwal, S., and Sohal, B. H., 1995, Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus), Mech. Aging and Development 81, 15–25.

    Article  CAS  Google Scholar 

  • Sohal, R. S., Ku, H.-H., Agarwal, S., Forster, M. J., and Lal, H., 1994, Mech. Aging and Dis. 79, 121–133.

    Article  Google Scholar 

  • Sohal, R. S., Agarwal, S., Dubey, A., and Orr, W. C., 1993, Protein oxidative damage is associated with life expectancy of houseflies, Proc. Natl. Acad. Sci. USA 90, 7255–7259.

    Article  CAS  Google Scholar 

  • Sohal, R. S., Ku, H.-H., and Agarwal, S., 1993, Biochemical correlates of longevity in two closely related rodent species, Biochem. Biophys. Res. Commun. 196, 7–11.

    Article  CAS  Google Scholar 

  • Sohal, R. S., Arnold, L. A., and Sohal, B. H., 1990, Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species, Free Rad. Biol. Med. 10, 495–500.

    Article  Google Scholar 

  • Spoerri, P. E., 1984, Mitochondrial alterations in aging mouse neuroblastoma cells in culture. Monogr. Dev. Biol. 17, 210–220.

    CAS  Google Scholar 

  • Stadtman, E. R., 1992, Protein oxidation and aging, Science 257, 1220–1224.

    Article  CAS  Google Scholar 

  • Stadtman, E. R., 1986, Oxidation of proteins by mixed-function oxidation systems: Implication in protein turnover, aging, and neutrophil function, Trends Biochem. Sci. 11, 11–12.

    Article  CAS  Google Scholar 

  • Stafford, R. E., Mak, T. M., Kramer, J. H., and Weglicki, W. B., 1993, Protein oxidation in magnesium deficient rat brains and kidneys, Biochem. Biophys. Res. Commun. 196, 596–600.

    Article  CAS  Google Scholar 

  • Starke, P. E., Oliver, C. N., and Stadtman, E. R., 1987, Modification of hepatic proteins in rats exposed to high oxygen concentration, FASEB J. 1, 36–39.

    CAS  Google Scholar 

  • Starke-Reed, P. E. and Oliver, C. N., 1989, Protein oxidation and proteolysis during aging and oxidative stress, Arch. Biochem. Biophys. 275, 559–567.

    Article  CAS  Google Scholar 

  • Szweda, L. I. and Stadtman, E. R., 1992, Iron-catalyzed oxidative modification of glucose-6-phosphate dehydrogenase from Leuconostoc. mesenteroides, J. Biol. Chem. 267, 3096–3100.

    CAS  Google Scholar 

  • Takahashi, R. and Goto, S., 1990, Alteration of aminoacyl-tRNA synthetase with age: Heat labilization of the enzyme by oxidative damage, Arch. Biochem. Biophys. 277, 228–233.

    Article  CAS  Google Scholar 

  • Takahashi, R., and Goto, S., 1987, Influence of dietary restriction on accumulation of heat-labile enzyme molecules in the liver and brain of mice, Arch. Biochem. Biophys. 257, 200–206.

    Article  CAS  Google Scholar 

  • Toyokuni, S. Uchida, K., Okamoto, K., Hattori-Nakakuki, Y., Hiai, H., and Stadtman, E. R., 1994, Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen ferric nitrilotriacetate, Proc. Natl. Acad. Sci. USA 91, 2616–2620.

    CAS  Google Scholar 

  • Uchida, K. and Stadtman, E. R., 1993, Covalent modification of 4-hydroxynonenal to glyceraldehyde-3-phosphate, J. Biol. Chem. 268, 6388–6393.

    CAS  Google Scholar 

  • Uchida, K., Toyokuni, S., Nishikawa, K., Kawakishi, S., Oda, H., Hiai, H., and Stadtman, E. R., 1994, Michael addition-type 4-hydroxy-2-nonenal adducts in modified low density lipoproteins: Markers for atherosclerosis, Biochemistry 33, 12487–12494.

    Article  CAS  Google Scholar 

  • Wieland, P. and Lauterburg. B. H., 1995, Oxidation of mitochondrial proteins, DNA following administration of ethanol, Biochem. Biophys. Res. Commun. 213, 815–819.

    Article  CAS  Google Scholar 

  • Winter, M. L. and Liehr, J. G., 1991, Free radical-induced carbonyl content in protein of estrogen-treated hamsters assayed by sodium boro[3H]hydride reduction, J. Biol. Chem. 266, 14446–14450.

    CAS  Google Scholar 

  • Witt, E. H., Reznick, A. Z., Viguie, C. A., Starke-Reed, P. E., and Packer, L. (1992) Exercise, oxidative damage, and effects of antioxidant manipulation, J. Nute 122, 766–773.

    CAS  Google Scholar 

  • Wolff, S. R and Dean, R. T., 1987, Glucose autooxidation and protein modification, Biochem. J. 245, 243–250.

    CAS  Google Scholar 

  • Wolff, S. P., Garner, A., and Dean, R. T., 1986, Free radicals, lipids, and protein degradation, Trends Biochem. Sci. 11, 27–31.

    Article  CAS  Google Scholar 

  • Youngman, L. D., Park, J.-Y. K., and Ames, B., 1992, Protein oxidation associated with aging is reduced by dietary restriction of protein calories, Proc. Natl. Acad. Sci. USA 89, 9112–9116.

    Article  CAS  Google Scholar 

  • Zhou, J. Q. and Gafni, A., 1991, Exposure of rat muscle phosphoglycerate kinase to a nonenzymatic MFO system generates the old form of enzyme, J. Gerontol. 46, B217 - B221.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stadtman, E.R. (1998). The Role of Free Radical Mediation of Protein Oxidation in Aging and Disease. In: Özben, T. (eds) Free Radicals, Oxidative Stress, and Antioxidants. NATO ASI Series, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2907-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2907-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3292-1

  • Online ISBN: 978-1-4757-2907-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics