Skip to main content

Reactive Oxygen Species (ROS) and Alteration of F0F1-ATP Synthase in Aging and Liver Regeneration

  • Chapter
Free Radicals, Oxidative Stress, and Antioxidants

Part of the book series: NATO ASI Series ((NSSA,volume 296))

Abstract

The contribution of oxidative phosphorylation to cellular energy demand changes in the life span, being low in foetal tissues and increasing progressively after the birth until 80% and more of cellular ATP is provided by mitochondrial oxidative phosphorylation in the tissues from adult animals. Aging is characterized by a progressive decline of the oxidative phosphorylation process associated to alterations of respiratory complexes and F0F1—ATP synthase. The age dependent changes are tissue specific being more pronounced in the heart (a well differentiated tissue) than in liver. Damage of F0F1—ATP synthase has been also observed in the early phase of liver regeneration characterized by retrodifferentation of hepatocytes which change from oxidative to fermentative metabolism. In both cases, aging and liver regeneration, the reactive oxygen species are apparently involved in the damage of mitochondrial F0F1—ATP synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammendola, R., Fiore, F., Esposito, F., Caserta, G., Mesuraca, M., Russo, T. and Cimino, F.,1995. Differentially expressed mRNAs as a consequence of oxidative stress in intact cells. FEBS Lett. 371: 209–213.

    Google Scholar 

  • Attardi, G., and Schatz, G., 1988. Biogenesis of mitochondria. Annu.Rev.Cell.Biol. 4: 289–333.

    Article  CAS  Google Scholar 

  • Bucher, N.R.L., and Malt, R.A., 1971. Regeneration of liver and kidney. In Thirthy Years of Liver Regeneration: a Distillate ( N.L.R. Bucker ed.) Little, Brown and Co., Boston, pp. 15–26.

    Google Scholar 

  • Buckle, M., Guerrieri, F., Pazienza, A., and Papa, S., 1986. Studies on polypeptide composition, hydrolytic activity and proton conduction of mitochondrial FoF1 Hr—ATPase in regenerating rat liver. Eur. J. Biochem. 155: 439–445.

    Article  CAS  Google Scholar 

  • Capozza, G., Guerrieri, F., Vendemiale, G., Altomare, E., and Papa, S. 1994. Age related changes of the mitochondrial energy metabolism in rat liver and heart. Arch. Gerontol. Geriatr. suppl. 4: 31–38.

    Google Scholar 

  • Collison, [R., Runswick, M.J., Buchaman, S.K., Fearnley, [.M., Skehel, J.M., van Griffiths, D.E. and Walker, J.E. 1994. Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition and reconstitution with F ATPase. Biochemistry 33, 7971–7978.

    Article  Google Scholar 

  • Davies K.J.A., Lin S.W., Pacifici R.E. 1987. Protein damage and degradation by oxygen radicals. IV. Degradation of denaturated protein. J. Biol. Chem. 162: 9914–9920.

    Google Scholar 

  • Ferguson D.M., Gores, G.J., Bronk S.F., Krom R.A.F., Raaij, M.J. 1993. An increase in cytosolic protease activity during liver preservation. Transplantation 55: 627–633.

    Article  CAS  Google Scholar 

  • Goldberg, A.L., 1992, The mechanism and functions of ATP-dependent proteases in bacterial. and animal cells. Eur. J. Biochem. 203: 9–23.

    Article  CAS  Google Scholar 

  • Guerrieri, F., Kopecky, J., and Zanotti, F., 1989. Functional and Immunological characterization of mitochondrial FoF ATP synthase, in: Organelles in eukaryotic cells: molecular structure and interactions ( J.M. Tager, A. Azzi, and S. Papa, eds.) New York, London: Plenum Co., pp. 197–208.

    Chapter  Google Scholar 

  • Guerrieri, F., Capozza, G., Kalous, M., Zanotti, F., Drahota, Z., and Papa, S., 1992a. Age-dependent changes in the mitochondrial FoF,-ATP synthase. Arch. Geront. Geriatr. 14: 299–308.

    Article  CAS  Google Scholar 

  • Guerrieri, F., Capozza, G., Kalous, M., and Papa, S., 1992b. Age-dependent changes in the mitochondrial FoF, -ATP synthase. Annals of the New York Academy of Sciences. 671: 395–402.

    Article  CAS  Google Scholar 

  • Guerrieri, F., Capozza, G., Fratello, A., Zanotti, F., and Papa, S., 1993. Functional and molecular changes in FoF, ATP-synthase of cardiac muscle during aging. Cardioscience 4: 93–98.

    CAS  Google Scholar 

  • Guerrieri, F., Kalous, M., Capozza, G., Muolo, L., Drahota, Z., and Papa, S., 1994. Age dependent changes in mi- tochondria] FoF,-ATP synthase in regenerating rat-liver. Biochem. Molec. Biol. Intern. 33: 117–129.

    CAS  Google Scholar 

  • Guerrieri, F., Muolo, L., Cocco, T., Capozza, G., Turturro, N., Cantatore, P., and Papa, S., 1995. Correlation between rat liver regeneration and mitochondrial energy metabolism. Biochim. Biophys. Acta 1272: 95–100.

    Article  Google Scholar 

  • Guerrieri, F., Vendemiale, G., Turturro, N., Fratello, A., Furio, A., Muolo, L., Grattagliano, I., and Papa, S., 1996. Alteration of mitochondrial FoF,-ATP synthase during aging. Annals of the New York Academy of Sciences, 786: 62–71.

    Article  CAS  Google Scholar 

  • Hansford, R.G., 1983. Bioenergetics in aging. Biochim. Biophys. Acta 726: 41–80.

    Article  CAS  Google Scholar 

  • Harman, D., 1956. Aging: a theory based on free readical and radiation chemistry. J. Gerontol 11:298–300. Izquierdo, J.M., Luis, A.M., and Cuezva, J.M., 1990. Postnatal mitochondrial differentation in rat-liver. Jour. Biol. Chem. 265: 9090–9097.

    Google Scholar 

  • Lee, C.P., and Ernster, L., 1968. Studies of the energy transfer system of submitochondrial particles. Effects of oligomycin and aurovertin. Eur. J. Biochem. 3: 391–409.

    Article  CAS  Google Scholar 

  • Levine R.L., Garland D., Oliver C.N., Amici A. Climent 1., Lenz A.G., Ahn B.W. et al., 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186: 464–478.

    Article  CAS  Google Scholar 

  • Michelopulos, G.K., 1990. Liver regeneration: molecular mechanisms of growth control. FASEB J. 4: 176–187.

    Google Scholar 

  • Miguel, J., and Fleming, J., 1986. Theoretical and experimental support for an oxygen radical mitochondrial injury. Hypothesis of cell aging in: Free radicals, aging and degenerative diseases (J.E. Johnson, R. Walford, D. Harman and J. Miguel).

    Google Scholar 

  • Nohl, H., and Kramer, R., 1980. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech. Ageing Dev. 14: 137–144.

    Article  CAS  Google Scholar 

  • Olafsdottir, K., Pascoe, G.A., and Reed, D.J., 1988. Mitochondrial glutathione status during Cat ionophore-induced injury to isolated hepatocytes. Arch.Biochem.Biophys. 263: 226–235.

    Article  CAS  Google Scholar 

  • Pansini, A., Guerrieri, F., and Papa, S., 1978. Control of proton conduction by the H.-ATPase in the inner mitochondrial membrane. Eur. J. Biochem. 92: 545–551.

    Article  CAS  Google Scholar 

  • Papa, S., 1996. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim. Biophys. Acta 1276: 87–105.

    Article  Google Scholar 

  • Papa, S., Guerrieri, F., Capuano, F., and Zanotti F., 1997. The mitochondrial ATP synthase in normal and neoplastic cell growth, in: Cell growth and oncogenesis (P. Bannash, D. Kanduc, S. Papa, and J. M. Tager, eds.) Basel: Birkhäuser Verlag 1997 in press.

    Google Scholar 

  • Rastogi, R., Saksena, S., Garg, N.K., and Dhawan, B.N., 1995. Effect of picroliv on antioxidant-system in liver of rats, after partial hepatectomy. Phytotherapy Research 9: 364–367.

    Article  CAS  Google Scholar 

  • Slater, T., and Sawyer, B., 1971. The stimulatory effect of carbon tetrachloride and other halogenoalkanes on per-oxidative reactions in rat liver fractions in vitro. Biochem. J. 123: 805–814.

    CAS  Google Scholar 

  • Schägger H., von Jagow G. 1991. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199: 223–231.

    Article  Google Scholar 

  • Stadtman, E.R. 1992. Protein oxidation and aging. Science 257: 1220–1224.

    Article  CAS  Google Scholar 

  • Steer, C.J., 1995. Liver regeneration. The FASEB Journal 9: 1396–1400.

    CAS  Google Scholar 

  • Tsai, I.L., King, K.L., Chang, C.C., Wei, Y., 1992. Changes of mitochondrial respiratory functions and superoxide dismutase activity during liver regeneration. Biochem. Mt. 28: 205–217.

    CAS  Google Scholar 

  • Valcarce, C., Navarete, R.M., Encabo, P., Loeches, E., Satrùstegui, J. and Cuezva, J.M., 1988. Postnatal development of rat liver mitochondrial function. The roles of protein synthesis and adenine nucleotides. Journ. Biol. Chem. 263: 7767–7775.

    CAS  Google Scholar 

  • Vina, J. (ed), 1990. Glutathione:Metabolism and physiological function. CRC Press Boston.

    Google Scholar 

  • Vendemiale, G., Guerrieri, F., Grattagliano, I., Didonna, D., Muolo, L., and Altomare, E., 1995. Mitochondrial oxidative phosphorylation and intracellular glutathione compartmentation during rat liver regeneration. Hepatology 21: 1450–1454.

    Article  CAS  Google Scholar 

  • Vendemiale, G., Grattagliano, I., Altomare, E., Turturro, N. and Guerrieri, F., 1996. Effect of acetaminophen administration on hepatic glutathione compartimentation and mitochondrial energy metabolism in the rat. Biochemical Pharmacology 52: 1147–1154.

    Article  CAS  Google Scholar 

  • Zhang, Y., Marcillat, O., Gulivi, C., Ernster, L. and Davies, J.A. 1990. The oxidative inactivation of mitochondria] electron transport chain components and ATPase. Jour. Biol. Chem. 265: 16330–16336.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Papa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guerrieri, F., Pellecchia, G., Papa, S. (1998). Reactive Oxygen Species (ROS) and Alteration of F0F1-ATP Synthase in Aging and Liver Regeneration. In: Özben, T. (eds) Free Radicals, Oxidative Stress, and Antioxidants. NATO ASI Series, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2907-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2907-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3292-1

  • Online ISBN: 978-1-4757-2907-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics