Reactive Oxygen Species (ROS) and Alteration of F0F1-ATP Synthase in Aging and Liver Regeneration

  • Ferruccio Guerrieri
  • Giovanna Pellecchia
  • Sergio Papa
Part of the NATO ASI Series book series (NSSA, volume 296)


The contribution of oxidative phosphorylation to cellular energy demand changes in the life span, being low in foetal tissues and increasing progressively after the birth until 80% and more of cellular ATP is provided by mitochondrial oxidative phosphorylation in the tissues from adult animals. Aging is characterized by a progressive decline of the oxidative phosphorylation process associated to alterations of respiratory complexes and F0F1—ATP synthase. The age dependent changes are tissue specific being more pronounced in the heart (a well differentiated tissue) than in liver. Damage of F0F1—ATP synthase has been also observed in the early phase of liver regeneration characterized by retrodifferentation of hepatocytes which change from oxidative to fermentative metabolism. In both cases, aging and liver regeneration, the reactive oxygen species are apparently involved in the damage of mitochondrial F0F1—ATP synthase.


Liver Regeneration Liver Mitochondrion Mitochondrial Oxidative Phosphorylation Reactive Oxygen Species Damage Submitochondrial Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammendola, R., Fiore, F., Esposito, F., Caserta, G., Mesuraca, M., Russo, T. and Cimino, F.,1995. Differentially expressed mRNAs as a consequence of oxidative stress in intact cells. FEBS Lett. 371: 209–213.Google Scholar
  2. Attardi, G., and Schatz, G., 1988. Biogenesis of mitochondria. Annu.Rev.Cell.Biol. 4: 289–333.CrossRefGoogle Scholar
  3. Bucher, N.R.L., and Malt, R.A., 1971. Regeneration of liver and kidney. In Thirthy Years of Liver Regeneration: a Distillate ( N.L.R. Bucker ed.) Little, Brown and Co., Boston, pp. 15–26.Google Scholar
  4. Buckle, M., Guerrieri, F., Pazienza, A., and Papa, S., 1986. Studies on polypeptide composition, hydrolytic activity and proton conduction of mitochondrial FoF1 Hr—ATPase in regenerating rat liver. Eur. J. Biochem. 155: 439–445.CrossRefGoogle Scholar
  5. Capozza, G., Guerrieri, F., Vendemiale, G., Altomare, E., and Papa, S. 1994. Age related changes of the mitochondrial energy metabolism in rat liver and heart. Arch. Gerontol. Geriatr. suppl. 4: 31–38.Google Scholar
  6. Collison, [R., Runswick, M.J., Buchaman, S.K., Fearnley, [.M., Skehel, J.M., van Griffiths, D.E. and Walker, J.E. 1994. Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition and reconstitution with F ATPase. Biochemistry 33, 7971–7978.CrossRefGoogle Scholar
  7. Davies K.J.A., Lin S.W., Pacifici R.E. 1987. Protein damage and degradation by oxygen radicals. IV. Degradation of denaturated protein. J. Biol. Chem. 162: 9914–9920.Google Scholar
  8. Ferguson D.M., Gores, G.J., Bronk S.F., Krom R.A.F., Raaij, M.J. 1993. An increase in cytosolic protease activity during liver preservation. Transplantation 55: 627–633.CrossRefGoogle Scholar
  9. Goldberg, A.L., 1992, The mechanism and functions of ATP-dependent proteases in bacterial. and animal cells. Eur. J. Biochem. 203: 9–23.CrossRefGoogle Scholar
  10. Guerrieri, F., Kopecky, J., and Zanotti, F., 1989. Functional and Immunological characterization of mitochondrial FoF ATP synthase, in: Organelles in eukaryotic cells: molecular structure and interactions ( J.M. Tager, A. Azzi, and S. Papa, eds.) New York, London: Plenum Co., pp. 197–208.CrossRefGoogle Scholar
  11. Guerrieri, F., Capozza, G., Kalous, M., Zanotti, F., Drahota, Z., and Papa, S., 1992a. Age-dependent changes in the mitochondrial FoF,-ATP synthase. Arch. Geront. Geriatr. 14: 299–308.CrossRefGoogle Scholar
  12. Guerrieri, F., Capozza, G., Kalous, M., and Papa, S., 1992b. Age-dependent changes in the mitochondrial FoF, -ATP synthase. Annals of the New York Academy of Sciences. 671: 395–402.CrossRefGoogle Scholar
  13. Guerrieri, F., Capozza, G., Fratello, A., Zanotti, F., and Papa, S., 1993. Functional and molecular changes in FoF, ATP-synthase of cardiac muscle during aging. Cardioscience 4: 93–98.Google Scholar
  14. Guerrieri, F., Kalous, M., Capozza, G., Muolo, L., Drahota, Z., and Papa, S., 1994. Age dependent changes in mi- tochondria] FoF,-ATP synthase in regenerating rat-liver. Biochem. Molec. Biol. Intern. 33: 117–129.Google Scholar
  15. Guerrieri, F., Muolo, L., Cocco, T., Capozza, G., Turturro, N., Cantatore, P., and Papa, S., 1995. Correlation between rat liver regeneration and mitochondrial energy metabolism. Biochim. Biophys. Acta 1272: 95–100.CrossRefGoogle Scholar
  16. Guerrieri, F., Vendemiale, G., Turturro, N., Fratello, A., Furio, A., Muolo, L., Grattagliano, I., and Papa, S., 1996. Alteration of mitochondrial FoF,-ATP synthase during aging. Annals of the New York Academy of Sciences, 786: 62–71.CrossRefGoogle Scholar
  17. Hansford, R.G., 1983. Bioenergetics in aging. Biochim. Biophys. Acta 726: 41–80.CrossRefGoogle Scholar
  18. Harman, D., 1956. Aging: a theory based on free readical and radiation chemistry. J. Gerontol 11:298–300. Izquierdo, J.M., Luis, A.M., and Cuezva, J.M., 1990. Postnatal mitochondrial differentation in rat-liver. Jour. Biol. Chem. 265: 9090–9097.Google Scholar
  19. Lee, C.P., and Ernster, L., 1968. Studies of the energy transfer system of submitochondrial particles. Effects of oligomycin and aurovertin. Eur. J. Biochem. 3: 391–409.CrossRefGoogle Scholar
  20. Levine R.L., Garland D., Oliver C.N., Amici A. Climent 1., Lenz A.G., Ahn B.W. et al., 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186: 464–478.CrossRefGoogle Scholar
  21. Michelopulos, G.K., 1990. Liver regeneration: molecular mechanisms of growth control. FASEB J. 4: 176–187.Google Scholar
  22. Miguel, J., and Fleming, J., 1986. Theoretical and experimental support for an oxygen radical mitochondrial injury. Hypothesis of cell aging in: Free radicals, aging and degenerative diseases (J.E. Johnson, R. Walford, D. Harman and J. Miguel).Google Scholar
  23. Nohl, H., and Kramer, R., 1980. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech. Ageing Dev. 14: 137–144.CrossRefGoogle Scholar
  24. Olafsdottir, K., Pascoe, G.A., and Reed, D.J., 1988. Mitochondrial glutathione status during Cat ionophore-induced injury to isolated hepatocytes. Arch.Biochem.Biophys. 263: 226–235.CrossRefGoogle Scholar
  25. Pansini, A., Guerrieri, F., and Papa, S., 1978. Control of proton conduction by the H.-ATPase in the inner mitochondrial membrane. Eur. J. Biochem. 92: 545–551.CrossRefGoogle Scholar
  26. Papa, S., 1996. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim. Biophys. Acta 1276: 87–105.CrossRefGoogle Scholar
  27. Papa, S., Guerrieri, F., Capuano, F., and Zanotti F., 1997. The mitochondrial ATP synthase in normal and neoplastic cell growth, in: Cell growth and oncogenesis (P. Bannash, D. Kanduc, S. Papa, and J. M. Tager, eds.) Basel: Birkhäuser Verlag 1997 in press.Google Scholar
  28. Rastogi, R., Saksena, S., Garg, N.K., and Dhawan, B.N., 1995. Effect of picroliv on antioxidant-system in liver of rats, after partial hepatectomy. Phytotherapy Research 9: 364–367.CrossRefGoogle Scholar
  29. Slater, T., and Sawyer, B., 1971. The stimulatory effect of carbon tetrachloride and other halogenoalkanes on per-oxidative reactions in rat liver fractions in vitro. Biochem. J. 123: 805–814.Google Scholar
  30. Schägger H., von Jagow G. 1991. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199: 223–231.CrossRefGoogle Scholar
  31. Stadtman, E.R. 1992. Protein oxidation and aging. Science 257: 1220–1224.CrossRefGoogle Scholar
  32. Steer, C.J., 1995. Liver regeneration. The FASEB Journal 9: 1396–1400.Google Scholar
  33. Tsai, I.L., King, K.L., Chang, C.C., Wei, Y., 1992. Changes of mitochondrial respiratory functions and superoxide dismutase activity during liver regeneration. Biochem. Mt. 28: 205–217.Google Scholar
  34. Valcarce, C., Navarete, R.M., Encabo, P., Loeches, E., Satrùstegui, J. and Cuezva, J.M., 1988. Postnatal development of rat liver mitochondrial function. The roles of protein synthesis and adenine nucleotides. Journ. Biol. Chem. 263: 7767–7775.Google Scholar
  35. Vina, J. (ed), 1990. Glutathione:Metabolism and physiological function. CRC Press Boston.Google Scholar
  36. Vendemiale, G., Guerrieri, F., Grattagliano, I., Didonna, D., Muolo, L., and Altomare, E., 1995. Mitochondrial oxidative phosphorylation and intracellular glutathione compartmentation during rat liver regeneration. Hepatology 21: 1450–1454.CrossRefGoogle Scholar
  37. Vendemiale, G., Grattagliano, I., Altomare, E., Turturro, N. and Guerrieri, F., 1996. Effect of acetaminophen administration on hepatic glutathione compartimentation and mitochondrial energy metabolism in the rat. Biochemical Pharmacology 52: 1147–1154.CrossRefGoogle Scholar
  38. Zhang, Y., Marcillat, O., Gulivi, C., Ernster, L. and Davies, J.A. 1990. The oxidative inactivation of mitochondria] electron transport chain components and ATPase. Jour. Biol. Chem. 265: 16330–16336.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ferruccio Guerrieri
    • 1
  • Giovanna Pellecchia
    • 1
  • Sergio Papa
    • 1
  1. 1.Institute of Medical BiochemistryChemistry University of BariItaly

Personalised recommendations