Alkaloids pp 109-146 | Cite as

Enzymology of Alkaloid Biosynthesis

  • Margaret F. Roberts


The biogenesis of alkaloids has been the cause of much speculation and since the beginning of the century there has been a great effort directed at the elucidation of some of the pathways. The advent of isotopically labeled compounds in the 1950s heralded the beginning of research that has given an insight into many aspects of alkaloid biosynthesis and metabolism.


Cell Suspension Culture Ergot Alkaloid Anthranilic Acid Indole Alkaloid Alkaloid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Reviews

  1. The Alkaloids, 1950–1995, Vols. 1–47, Academic Press, New York.Google Scholar
  2. Brochmann-Hanssen, E., 1985, Biosynthesis of morphinan alkaloids, in: The Chemistry and Biology of Isoquinoline Alkaloids (J. D. Phillipson, M. F. Roberts, and M. H. Zenk, eds.). Springer-Verlag, Berlin, pp. 229–239.CrossRefGoogle Scholar
  3. Cordell, G. A., 1981, Introduction to Alkaloids—A Biogenetic Approach, Wiley, New York.Google Scholar
  4. Hartmann, T., 1988, Quinolizidines and pyrrolizidines, in: Cell Culture and Somatic Cell Genetics of Plants, Vol. 5 (F. Constabel and I. K. Vasil, eds.) Academic Press, San Diego, pp. 277–288.Google Scholar
  5. Herbert, R. B., 1989, The Biosynthesis of Secondary Metabolites, 2d ed., Chapman & Hall, London.CrossRefGoogle Scholar
  6. Luckner, M., Nover, L., and Bohm, H., 1977, Molecular Biology, Biochemistry and Biophysics: Secondary Metabolism and Cell Differentiation, Springer-Verlag, Berlin.Google Scholar
  7. Mann, J., 1987, Secondary Metabolism, 2nd ed. Clarendon Press, Oxford.Google Scholar
  8. Mothes, K., Schutte, H. R., and Luckner, M., 1985, Biochemistry of Alkaloids, VEB Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
  9. Pelletier, S. W., 1983–1995, Alkaloids: Chemical and Biological Perspectives, Vols. 1–8, Pergamon Press, Oxford.Google Scholar
  10. Phillipson, J. D., and Zenk, M. H., (eds.), 1980, Indole and Bio genetically Related Alkaloids, Academic Press, New York.Google Scholar
  11. Phillipson, J. D., Roberts, M. F., and Zenk, M. H., (eds.), 1985, The Chemistry and Biology of Isoquinoline Alkaloids, Springer-Verlag, Berlin.Google Scholar
  12. Robinson, R., 1955, The Structural Relationships of Natural Products, Clarendon Press, Oxford.Google Scholar
  13. Stöckigt, J., 1984, Biosynthesis of tryptophan alkaloids in higher plants: Formation of the sarpagine-ajmaline group, in: Progress in Tryptophan and Serotonin Research (H. G. Schlossberger, W. Kochen, B. Linzen, and H. Steinhart, eds.), de Gruyter, Berlin, pp. 777–784.Google Scholar
  14. Zenk, M. H., 1989, Biosynthesis of alkaloids using plant cell culture, Recent Adv. Phytochem. 23:429–457.Google Scholar
  15. Zenk, M. H., 1990, Plant cell cultures: A potential in food and biotechnology, Food Biotechnol. 4:461–470.CrossRefGoogle Scholar
  16. Zenk, M. H., 1995, Chasing the enzymes of alkaloid biosynthesis, in: Organic Reactivity: Physical and Biological Aspects (B. T. Golding, R. J. Griffin, and H. Maskill, eds.), The Royal Society of Chemistry, Newcastle upon Tyne, U.K., pp. 89–109.Google Scholar

Key References

  1. Amann, M., Nagakura, N., and Zenk, M. H., 1984, (S)-tetrahydroprotoberberine oxidase the final enzyme in protoberberine biosynthesis, Tetrahedron Lett. 25:953–954.CrossRefGoogle Scholar
  2. Amann, M., Wanner, G., and Zenk, M. H., 1986, Purification and characterization of (S)-tetrahydroberberine oxidase from cultured Coptis japonica cells, Phytochemistry 37:979–982.Google Scholar
  3. Amann, M., Nagakura, N., and Zenk, M. H., 1988, Purification and properties of (S)-tetrahydroprotoberberine oxidase from suspension-cultured cells of Berberis wilsoniae Eur. J. Biochem., 175:17–25.CrossRefGoogle Scholar
  4. Arakawa, H., Clark, W. G., Psenak, M. and Coscia, C. J., 1992, Purification and characterization of dihydrobenzophenanthridine oxidase from elicited Sanguinaria canadensis cell cultures, Arch. Biochem. Biophys. 299:1–7.PubMedCrossRefGoogle Scholar
  5. Aslanov, K. A., Kushmuradov, Y. K., and Sadykov, A. S., 1987, Lupine alkaloids, In: The Alkaloids, Vol. 31 (A. Brossi, ed.), Academic Press, New York, pp. 117–192.Google Scholar
  6. Balsevich, J., Constabel, F., and Kurz, W. G. W., 1982, Efficient incorporation of 10-hydroxygeraniol and 10-hydroxynerol into indole alkaloids by a cell suspension culture of Catharanthus roseus, Planta Med. 44:231–233.CrossRefGoogle Scholar
  7. Barton, D. H. R., Kirby, G. W., Steglich, W., Thomas, G. M., Battersby, A. R., Dobson, T. A., and Ramuz H., 1965, Investigations on the biosynthesis of morphinan alkaloids, J. Chem. Soc. 2423–2438.Google Scholar
  8. Battersby, A. R., Binks, R., Francis, R. J., McCaldin, D. J., and Ramuz H., 1964, Alkaloid biosynthesis, Part IV 1-Benzylisoquinolines as precursors of thebaine, codeine and morphine, J. Chem. Soc. 3600–3610.Google Scholar
  9. Battersby, A. R., Foulkes, D. M., and Binks, R., 1965, Alkaloid biosynthesis, Part VIII. Use of optically active precursors for investigation of the biosynthesis of morphine alkaloids, J. Chem. Soc. 3323–3332.Google Scholar
  10. Bauer, W., and Zenk, M. H., 1991, Two methylenedioxy bridge forming cytochrome P-450 dependent enzymes are involved in (S)-stylopine biosynthesis, Phytochemistry 30:2953–2961.CrossRefGoogle Scholar
  11. Baumert, A., Kuzovkina, N. I., Krauss, G., Hieke, M., and Gröger, D., 1982, Biosynthesis of rutacridone in tissue cultures of Ruta graveolens L., Plant Cell Rep. 1:168–171.CrossRefGoogle Scholar
  12. Baumert, A., Kuzovkina, N., Hieke, M., and Gröger, D., 1983, N-methylation of anthranilic acid to N-methylanthranilic acid by cell free extracts from Ruta graveolens tissue cultures, Planta Med. 48:258–262.PubMedCrossRefGoogle Scholar
  13. Baumert, A., Kuzovkina, N., and Gröger, D., 1985, Activation of anthranilic acid and N-methylanthranilic acid by cell free extracts from Ruta graveolens tissue cultures, Planta Med. 50:125–127.CrossRefGoogle Scholar
  14. Baumert, A., Porzel, A., Schmidt, J., and Gröger, D., 1992, Formation of 1,3-dihydroxy-N-methylacridone from N-methylanthranoyl-CoA and malonyl-CoA by cell cultures of Ruta graveolens, Z. Naturforsch. 47c:365–368.Google Scholar
  15. Baumert, A., Maier, W., Gröger, D., and Deutzmann, R., 1994, Purification and properties of acridone synthase from cell suspension cultures of Ruta graveolens L., Z. Naturforsch. 49c:26–32.Google Scholar
  16. Borkowski, P. R., Horn, J. S., and Rapoport, H., 1978, Role of 1,2-dehydroreticulinium ion in the biosynthetic conversion of reticuline to thebaine, J. Am. Chem. Soc. 100:276–281.CrossRefGoogle Scholar
  17. Bowman, W. C., and Sanghvi, I. S., 1963, Pharmacological actions of hemlock (Conium maculatum), J. Pharm. Pharmacol. 15:1–15.PubMedCrossRefGoogle Scholar
  18. De Carolis, E., Chan, F., Balsevich, J., and De Luca, V., 1990, Isolation and characterisation of a 2-oxygluterate dependent dioxygenase involved in the second-to-last step in vindoline biosynthesis, Plant Physiol. 94: 1323–1329.PubMedCrossRefGoogle Scholar
  19. De-Eknamkul, W., and Zenk, M. H., 1990, Enzymic formation of (R)-reticuline from 1,2-dehydroreticuline in the opium poppy plant, Tetrahedron Lett. 34:4855–4858.CrossRefGoogle Scholar
  20. De-Eknamkul, W., and Zenk, M. H., 1992, Purification and properties of 1,2-dehydroreticuline reductase from Papaver somniferum seedlings, Phytochemistry 31:813–821.Google Scholar
  21. De Luca, V., and Cutler, A. J., 1987, Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus, Plant Physiol. 85:1099–1102.CrossRefGoogle Scholar
  22. De Luca, V., and Kurz, W. G. W., 1988, Monoterpene indole alkaloids in: Cell Culture and Somatic Cell Genetics of Plants, Vol. 5 (F. Constabel and J. K. Vasil, eds.), Academic Press, San Diego, pp. 385–401.Google Scholar
  23. De Luca, V., Balsevich, J., and Kurz, W. G. W., 1985, Acetyl coenzyme A: deacetylvindoline O-acetyltransferase, a novel enzyme from Catharanthus roseus, J. Plant Physiol. 121:417–428.CrossRefGoogle Scholar
  24. De Luca, V., Balsevich, J., Tyler, R. T., Eilert, U., Panchuck, B. D., and Kurz, W. G. W., 1986, Biosynthesis of indole alkaloids: Developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus, J. Plant Physiol. 125:147–156.CrossRefGoogle Scholar
  25. De Luca, V., Fernandez, J. A., Campbell, D., and Kurz, W. G. W., 1988, Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus, Plant Physiol. 86:447–450.CrossRefGoogle Scholar
  26. Dethier, M., and De Luca, V., 1993, Partial purification of a N-methyltransferase involved in vindoline biosynthesis in Catharanthus roseus, Phytochemistry 31:663–678.Google Scholar
  27. Dring, J. V., Nash, R. J., Roberts, M. F., and Reynolds, T., 1984, Hemlock alkaloids in aloes. Occurrence and distribution of γ-coniceine, Planta Med. 5:442–443.CrossRefGoogle Scholar
  28. Endo, T., Goodbody, A., Vukovic, J., and Misawa, M., 1986, Enzymes from Catharanthus roseus cell suspension cultures that couple vindoline and catharanthine to form 3′,4′-anhydrovinblastine, Phytochemistry 27:2147–2149.CrossRefGoogle Scholar
  29. Evans, W. C., 1996, Trease and Evans Pharmacognosy W. B. Saunders, London, pp. 385–391.Google Scholar
  30. Fahn, W., and Stöckigt, J., 1990, Purification of acetyl-CoA: 17-O-deacetylvindoline 17-O-acetyltransferase from Catharanthus roseus leaves, Plant Cell Rep. 8:613–616.CrossRefGoogle Scholar
  31. Fahn, W., Gundlach, H., Deus-Neumann, B., and Stöckigt, J., 1985a, Late enzymes of vindoline biosynthesis. Acetyl-CoA:17–0-deacetylvindoline 17-O-acetyl-transferase, Plant Cell Rep. 4:333–336.CrossRefGoogle Scholar
  32. Fahn, W., Laussermair, E., Deus-Neumann, B., and Stöckigt, J., 1985b, Late enzymes in vindoline biosynthesis. S-adenosyl-L-methionine: 11-O-demethyl-17-O-deacetylvindoline 11-O-methytransferase and unspecific acetylesterase, Plant Cell Rep. 4:337–340.CrossRefGoogle Scholar
  33. Fairbairn, J. W., and Suwal, P. N., 1961, The alkaloids of hemlock (Conium maculatum L.) II Evidence for a rapid turnover of the major alkaloids, Phytochemistry 1:38–46.CrossRefGoogle Scholar
  34. Falkenhagen, H., and Stöckigt, J., 1995, Enzymic biosynthesis of vomilenine, a key intermediate of the ajmaline pathway, catalysed by a novel cytochrome P450-dependent enzyme from plant cell cultures of Rauwolfia serpentina, Z. Naturforsch. 50c:45–53.Google Scholar
  35. Ross, H. G., and Anderson, J. A., 1980, Biosynthesis of ergot toxins, in: The Biosynthesis of Mycotoxins (P. S. Steyn, ed.), Academic Press, New York, pp. 17–67.Google Scholar
  36. Fraser, A. M., and Robins, D. J., 1987, Application of 2H-NMR spectroscopy to the study of the incorporation of enantiomeric 2H-labelled cadaverines into quinolizidine alkaloids, J. Chem. Soc. Perkin Trans. I 105–109.CrossRefGoogle Scholar
  37. Frenzel, T., and Zenk, M. H., 1990, S-adenosyl-L-methionine:3′-hydroxy-N-methyl-(S)-coclaurine-4′-0-methyltransferase, a regio- and stereoselective enzyme of the (S)-reticuline pathway, Phytochemistry 29:3505–3511.CrossRefGoogle Scholar
  38. Fujiwara, H., Takeshita, N., Terano, Y., Fitchen, J. H., Tsujita, T., Katagiri, Y., Sato, F., and Yamada, Y., 1993, Expression of (S)-scoulerine 9-O-methyltransferase in Coptis japonica plants, Phytochemistry 34:949–954.CrossRefGoogle Scholar
  39. Furuya, T., Yoshikawa, T., and Taira, M., 1984, Biotransformation of codeinone to codeine by immobilised cells of Papaves somniferum, Phytochemistry 23:999–1001.CrossRefGoogle Scholar
  40. Galneder, E., Rueffer, M., Wanner, G., Tabata, M., and Zenk, M. H., 1988, Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures, Plant Cell Rep. 7:1–4.CrossRefGoogle Scholar
  41. Gebier, J. C., and Poulter, C. D., 1992, Purification and characterisation of dimethylallyltryptophan synthase from Claviceps purpurea, Arch. Biochem. Biophys. 296:308–313.CrossRefGoogle Scholar
  42. Gebier, J. C., Woodside, A. B., and Poulter, C. D., 1992, Dimethylallyltryptophan synthase. An enzyme catalysed electrophilic aromatic substitution, J. Am. Chem. Soc. 114:7354–7360.CrossRefGoogle Scholar
  43. Gerardy, R., and Zenk, M.H., 1992, Formation of salutaridine from (R)-reticuline by a membrane-bound cytochrome P-450 enzyme from Papaver somniferum, Phytochemistry 32:79–86.CrossRefGoogle Scholar
  44. Gerardy, R., and Zenk, M. H., 1993, Purification and characterization of salutaridine: NADPH-7-oxidoreductase, Phytochemistry 34:125–132.CrossRefGoogle Scholar
  45. Gerlach, M., Schwelle, N., Lerbs, W., and Luckner, M., 1985, Enzymic synthesis of cyclopentine intermediates in Penicillium cyclopium, Phytochemistry 24:1935–1939.CrossRefGoogle Scholar
  46. Golebiewski, W. M., and Spenser, I. D., 1984, 2H-NMR spectroscopy as a probe in the stereochemistry of biosynthetic reactions: The biosynthesis of lupanine and sparteine, J. Am. Chem. Soc. 106:7925–7927.CrossRefGoogle Scholar
  47. Goodbody, A. E., Endo, T., Vukovic, J., Kutney, J. P., Choi, L. S. L., and Misawa, M, 1988, Enzymic coupling of catharanthine and vindoline to form 3′,4′-anhydrovinblastine by horseradish peroxidase, Planta Med. 54:136–140.PubMedCrossRefGoogle Scholar
  48. Hampp, N., and Zenk, M. H., 1988, Homogeneous strictosidine synthase from cell suspension cultures of Rauvolvia serpentina, Phytochemistry 27:3811–3815.CrossRefGoogle Scholar
  49. Hartmann, T., Donges, D., and Steiner, M., 1972a, Biosynthese aliphatischer Monoamine in Mercuralis perennis durch Aminosaure-Aldehyd-Transaminierung,, Z. Plant Physiol. 67:104–117.Google Scholar
  50. Hartmann, T., Eilert, H. I., and Steiner, M., 1972b, Aldehydaminierung, der biosyntheseweg für primäre aliphatische Monoamine in Blütenpflanzen. Z. Plant. Physiol. 68:11–18.Google Scholar
  51. Hodges, C. C., and Rapoport, H., 1982, Enzymic conversion of reticuline to salutaridine by cell free systems from Papaver somniferum, Biochemistry 21:3729–3734.CrossRefGoogle Scholar
  52. Ikuta, A., 1988, Isoquinolines, in: Cell Culture and Somatic Cell Genetics of Plants, Vol. 5 (F. Constabel and I. K. Vasil, eds.), Academic Press, San Diego, pp. 289–312.Google Scholar
  53. Junghanns, K. T., Kneusel, R. E., Baumert, A., Maier, W., Gröger, D., and Matern, U., 1995, Molecular cloning and heterologous expression of acridone synthase from elicited Ruta graveolens L. cell suspension cultures, Plant Mol. Biol. 27:681–692.PubMedCrossRefGoogle Scholar
  54. Kammerer, L., De-Eknamkul, W., and Zenk, M. H., 1994, Enzymic 12-hydroxylation and 12-O-methylation of dihydrochelirubine in dihydromacarpine formation by Thalictrum bulgaricum, Phytochemistry 36:1409–1416.CrossRefGoogle Scholar
  55. Kim, I.-S., Kim, S.-U., and Anderson, J. A., 1981, Microsomal agroclavine hydroxylase of Claviceps species, Phytochemistry 20:2311–2314.CrossRefGoogle Scholar
  56. Kinghorn, A. D., and Balandrin, M. F., 1984, Quinolizidine alkaloids in the Leguminosae: Structural types, analysis, chemotaxonomy and biological activities, Alkaloids Chem. Biol. Perspect. 2:105–148.Google Scholar
  57. Kobayashi, M., and Floss, H. G., 1987, Biosynthesis of ergot alkaloids: Origin of the oxygen atoms in chanoclavine-I and elymoclavine, J. Org. Chem. 52:4350–4352.CrossRefGoogle Scholar
  58. Kozikowski, A. P., Chen, C., Wu, J.-P., Shibuya, M., Kim, C.-G., and Floss, H. G., 1993, Probing alkaloid biosynthesis: Intermediates in the formation of ring C., J. Am. Chem. Soc. 115:2482–2488.CrossRefGoogle Scholar
  59. Kutchan, T. M., 1989, Expression of enzymatically active cloned strictosidine synthase from the higher plant Rauvolfia serpentina in Escherichia coli, FEBS Lett. 257:127–130.CrossRefGoogle Scholar
  60. Kutchan, T. M., Dittrich, H., Bracher, D., and Zenk, M. H., 1991, Enzymology and molecular biology of alkaloid biosynthesis, Tetrahedron 47:5945–5954.CrossRefGoogle Scholar
  61. Kutney, J. P., 1987, Studies in plant tissue culture. The synthesis and biosynthesis of indole alkaloids, Heterocycles 25:617–640.CrossRefGoogle Scholar
  62. Leete, E., and Olson, J. O., 1972, Biosynthesis and metabolism of hemlock alkaloids, J. Am. Chem. Soc. 94:5472–5476.CrossRefGoogle Scholar
  63. Lenz, R., and Zenk, M. H., 1995a, Acetyl coenzyme A:salutaridinol-7–0-acetyltransferase from Papaver somniferum cell cultures, J. Biol. Chem. 270:31091–31096.PubMedCrossRefGoogle Scholar
  64. Lenz, R., and Zenk, M. H., 1995b, Purification and properties of codeinone reductase (NADPH) from Papaver somniferum plant cell cultures and differentiated plants, Eur. J. Biochem. 233:132–139.PubMedCrossRefGoogle Scholar
  65. Loeffler, S., and Zenk, M. H., 1990, The hydroxylation step in the biosynthetic pathway leading from norcoclaurine to reticuline, Phytochemistry 29:3499–3503.CrossRefGoogle Scholar
  66. Lotter, H., Gollsitzer, J., and Zenk, M. H., 1992, Revision of the configuration at C-7 of salutaridinol-I, the natural intermediate in morphine biosynthesis, Tetrahedron Lett. 33:2443–2446.CrossRefGoogle Scholar
  67. McKnight, T. D., Bergey, D. R., Burnett, R. J., and Nessler, C. L., 1991, Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants, Planta 185:148–152.CrossRefGoogle Scholar
  68. Madyastha, K. M., and Coscia, C. J., 1979, Enzymology of indole alkaloid biosynthesis, Recent Adv. Phytochem. 13:85–129.Google Scholar
  69. Madyastha, K. M., Guarnaccia, R. Baxter, C., and Coscia, C. J., 1973, S-adenosyl-L-methionine:loganic acid methytransferase: A carboxyl alkylating enzyme from Vinca rosea, J. Biol. Chem. 248:2497–2501.PubMedGoogle Scholar
  70. Madyastha, K. M., Meehan, T. D., and Coscia, C. J., 1976, Characterisation of cytochrome P-450 dependent monoterpene hydroxylase from the higher plant Vinca rosea, Biochemistry 15:1097–1102.CrossRefGoogle Scholar
  71. Maier, W. D., Baumert, A., and Gröger, D., 1995, Partial purification and characterisation of S-adenosyl-L-methinione:anthranilic acid N-methyltransferase, J. Plant Physiol. 145:1–6.CrossRefGoogle Scholar
  72. Maier, W., Schumann, B., and Gröger, D., 1988, Microsomal oxygenases involved in ergoline alkaloid biosynthesis of various Claviceps strains, J. Basic Microbiol. 28:83–93.CrossRefGoogle Scholar
  73. Martin, R. O., Warren, M. E., and Rapoport, H., 1978, Reticuline as the tetrahydrobenzylisoquinoline precursor of thebaine in biosynthesis with carbon-14 dioxide, J. Am. Chem. Soc. 86:4726–4727.CrossRefGoogle Scholar
  74. Meijer, A. H., De Wall, A., and Verpoorte, R., 1993, Purification of the cytochrome P-450 enzyme geraniol 10-hydroxylase from cell cultures of Catharanthus roseus, J. Chromatogr. 635:237–249.CrossRefGoogle Scholar
  75. Muemmler, S., Rueffer, M., Nagakura, N., and Zenk, M. H., 1985, S-adenosyl-L-methionine:(S)-scoulerine 9–0-methyltransferase, a highly stereo- and regio-specific enzyme in tetrahydroprotoberberine biosynthesis, Plant Cell Rep. 4:36–39.CrossRefGoogle Scholar
  76. Murakoshi, I., Ogawa, M., Toriisuki, K., Haginiwa, J., Ohmiya, S., and Otomasu, H., 1977a, The enzymic conversion of (-)-lupinine to (-)-(trans-4′-hydroxycinnamoyl)-lupinine by extracts of Lupinus seedlings, Chem. Pharm. Bull. 25:527–528.CrossRefGoogle Scholar
  77. Murakoshi, I., Sanda, A., Haginiwa, J., Suzuki, N., Ohmiya, S., and Otomasu, H., 1977b, An S-adenosyl-L-methioninexytisine methyltransferase in Thermopsis seedlings, Chem. Pharm. Bull. 25:1970–1973.CrossRefGoogle Scholar
  78. Nagakura, N., Rüffer, M., and Zenk, M. H., 1979, The biosynthesis of monoterpenoid indole alkaloids from strictosidine, J. Chem. Soc. Perkin Trans. I 2808–2312.Google Scholar
  79. Okada, N., Shinmyo, A., Okada, H., and Yamada, Y., 1988, Purification and characterisation of (S)-tetrahydroberberine oxidase from cultured Coptis japonica cells, Phytochemistry 27:979–982.CrossRefGoogle Scholar
  80. Otsuka, H., Quigley, F. R., Gröger, D., Anderson, J. A., and Floss, H. G., 1980, In vivo and in vitro evidence for N-methylation as the second pathway specific step in ergoline biosynthesisn, Planta Med. 40:109–119.CrossRefGoogle Scholar
  81. Pennings, E. J. M., Groen, B. W., Duine, J. A., and Verpoorte, R., 1989, Tryptophan decarboxylase from Catharanthus roseus is a pyridoxo-quinoprotein, FEBS Lett. 255:97–100.CrossRefGoogle Scholar
  82. Pfitzner, A., and Stöckigt, J., 1982, Partial purification and characterization of geissoschizine dehydrogenase from suspension cultures of Catharanthus roseus, Phytochemistry 21:1585–1588.Google Scholar
  83. Pfitzner, A., and Stöckigt, J., 1983, Characterisation of polyneuridine aldehyde esterase a key enzyme in the biosynthesis of sarpagine, Planta Med. 48:221–227.PubMedCrossRefGoogle Scholar
  84. Pfitzner, A., Polz, L., and Stöckigt, J., 1986, Properties of vinorine synthase—The Rauwolfia enzyme involved in the formation of the ajmaline skeleton, Z. Naturforsch. 41c: 103–114.Google Scholar
  85. Pfitzner, U. M., and Zenk, M. H., 1989, Homogeneous strictosidine synthase isoenzymes from cell suspension cultures of Catharanthus roseus, Planta Med. 55:525–530.PubMedCrossRefGoogle Scholar
  86. A Plato, 387 b.c., Phaedo, translation by R. Hackforth, Cambridge University Press, London, 1955.Google Scholar
  87. Polz, L., Schübel, H., and Stöckigt, J., 1986, Characterisation of 2β(R)-17–0-acetylajmalan:acetylesterase a specific enzyme involved in the biosynthesis of the Rauwolfia alkaloid ajmalicine, Z. Naturforsch. 42c:333–342.Google Scholar
  88. Roberts, M. F., 1971, The formation of γ-coniceine from 5-ketooctanal by a transaminase of Conium maculatum, Phytochemistry 10:3057–3060.CrossRefGoogle Scholar
  89. Roberts, M. F., 1974, An S-adenosyl-L-methionine:coniine methytransferase from Conium maculatum L., Phytochemistry 13:1847–1851.CrossRefGoogle Scholar
  90. Roberts, M. F., 1975, γ-Coniceine reductase in Conium maculatum L., Phytochemistry 14:2393–2397.CrossRefGoogle Scholar
  91. Roberts, M. F., 1978, Separation of the formation of γ-coniceine and aliphatic amines from GOT activity in Conium maculatum, Phytochemistry 17:107–112.CrossRefGoogle Scholar
  92. Roberts, M. F., 1981, Enzymic synthesis of γ-coniceine in Conium maculatum chloroplasts and mitochondria, Plant Cell Rep. 1:10–13.CrossRefGoogle Scholar
  93. Roberts, M. F., 1985, Alkaloid production in Conium fruit, J. Pharm. Pharmacol. 37:141P.CrossRefGoogle Scholar
  94. Roos, W., 1990, Benzodiazepine alkaloids, in: The Alkaloids (A. Brossi, ed.), Academic Press, San Diego, pp. 63–97.Google Scholar
  95. Rueffer, M., and Zenk, M. H., 1985, Berberine synthase, the methylenedioxy group forming enzyme in berberine synthase, Tetrahedron Lett. 26:201–202.CrossRefGoogle Scholar
  96. Rueffer, M., and Zenk, M. H., 1987a, Distant precursors of benzylisoquinoline alkaloids and their enzymatic formation, Z. Naturforsch. 42c:319–332.Google Scholar
  97. Rueffer, M., and Zenk, M. H., 1987b, Enzymatic formation of protopines by a microsomal cytochrome P-450 system of Cordyalis vaginans, Tetrahedron Lett. 28:5307–5310.CrossRefGoogle Scholar
  98. Rueffer, M., and Zenk, M. H., 1994, Canadine synthase from Thalictrum tuberosum cell cultures catalyses the formation of the methylenedioxy bridge in berberine synthesis, Phytochemistry 36:1219–1223.CrossRefGoogle Scholar
  99. Rueffer, M., Zumstein, G., and Zenk, M. H., 1990, Partial purification and properties of S-adenosyl-L-methionine:(S)-tetrahydroprotoberberine-cis-N-methyltransferase from suspension-cultured cells of Eschscholtzia and Corydalis, Phytochemistry 29:3727–3733.CrossRefGoogle Scholar
  100. Saito, K., Suzuki, H., Takamatsu, S., and Murakoshi, I., 1993, Acyltransferases for lupin alkaloids in Lupinus hirsutus, Phytochemistry 32:87–91.CrossRefGoogle Scholar
  101. Schiel, O., Witte, L., and Berlin, J., 1987, Geraniol-10-hydroxylase activity and its relation to monoterpene indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus, Z. Naturforsch. 42c: 1075–1081.Google Scholar
  102. Schmidt, D., and Stöckigt, J., 1995, Enzymic formation of the sarpagan—bridge: A key step in the biosynthesis of sarpagine-ajmalicine-type alkaloids, Planta Med. 61:254–258.PubMedCrossRefGoogle Scholar
  103. Schiibel, H., Stöckigt, J., Feicht, R., and Simon H., 1986, Partial purification and characterisation of raucaffncine β-D-glucosidase from plant cell suspension cultures of Rauwolfia serpentina Benth., Helv. Chim. Acta 69:538–547.CrossRefGoogle Scholar
  104. Schumacher, H.-M., and Zenk, M. H., 1988, Partial purification and characterization of dihydrobenzophenanthridine oxidase from Eschscholtzia californica cell suspension cultures, Plant Cell Rep. 7:43–46.CrossRefGoogle Scholar
  105. Shibuya, M., Chou, H.-M., Fountoulakis, M., Hassam, S., Kim, S.-U., Kobayashi, K., Otsuka, H., Rogalska, E., Cassady, J. M, and Floss, H. G., 1990, Stereochemistry of the isoprenylation of tryptophan catalysed by 4-(γ,γ-dimethylallyl)tryptophan synthase from Claviceps, the first pathway specific enzyme in ergot alkaloid biosynthesis, J. Am. Chem. Soc. 112:297–304.CrossRefGoogle Scholar
  106. Spenser, I. D., 1985, Stereochemical aspects of the biosynthesis of the pyrrolizidine and the quinolizidine alkaloids, Pure Appl. Chem. 57:453–470.CrossRefGoogle Scholar
  107. Stadler, R., and Zenk, M. H., 1990, A revision of the generally accepted pathway for the biosynthesis of the benzyltetrahydroisoquinoline alkaloid reticuline, Liebigs Ann. Chem. 6:555–562.CrossRefGoogle Scholar
  108. Spitsberg, V., Coscia, C. J., and Krueger, R. J., 1981, Characterisation of a monoterpene hydroxylase from cell suspension cultures of Catharanthus roseus (L.) G. Don, Plant Cell Reports 1:43–47.CrossRefGoogle Scholar
  109. Stadler, R., and Zenk, M. H., 1993, The purification and characterization of a unique cytochrome P450 enzyme from Berberis stolonifera plant cell cultures, J. Biol. Chem. 268:823–831.PubMedGoogle Scholar
  110. Stadler, R., Kutchan, T. M., and Zenk, M. H., 1989, (S)-norcoclaurine is the central intermediate in benzylisoquinoline alkaloid biosynthesis, Phytochemistry 28:1083–1086.CrossRefGoogle Scholar
  111. Steffens, P., Nagakura, N., and Zenk, M. H., 1984, The berberine bridge forming enzyme in tetrahydroprotoberberine biosynthesis, Tetrahedron Lett. 25:951–952.CrossRefGoogle Scholar
  112. Steffens, P., Nagakura, N., and Zenk, M. H., 1985, Purification and characterization of the berberine bridge enzyme from Berberis beaniana cell cultures, Phytochemistry 24:2577–2583.CrossRefGoogle Scholar
  113. Stöckigt, J., and Zenk, M. H., 1977, Isovincoside (strictosidine), the key intermediate in the enzymatic formation of indole alkaloids, FEBS Lett. 79:233–237.CrossRefGoogle Scholar
  114. Stöckigt, J., Hemschmidt, T., Hofle, G., Heinstein, P., and Formacek, V., 1983, Steric course of hydrogen transfer during enzymic formation of 3-α-heteroyohimbine, Biochemistry 22:3448–3452.CrossRefGoogle Scholar
  115. Takamura, Y., Matsushita, Y., Nagareya, N., Abe, M., Takaya, J., Juichi, M., Hashimoto, T., Kan, Y., Takoaka, S., Asakawa, Y., Omura, M., Ito, C., and Furukawa, H., 1995, Citbismine-A, citbismine-B and citbismine-C, new binary acridone alkaloids from Citrus plants, Chem. Pharm. Bull. 43:1340–1345.CrossRefGoogle Scholar
  116. Takao, N., Kamigauchi, M., and Okada, M., 1983, Biosynthesis of benzophenanthridine alkaloids, sanguinarine, chelerubine and macarpine, Helv. Chim. Acta. 66:473–484.CrossRefGoogle Scholar
  117. Tanahashi, T., and Zenk, M. H., 1990, Elicitor induction and characterization of microsomal protopine-6-hydroxylase, the central enzyme in benzophenanthridine alkaloid biosynthesis, Phytochemistry 29:1113–1122.CrossRefGoogle Scholar
  118. Treimer, J. F., and Zenk, M. H., 1978, Enzymic synthesis of corynanthe type alkaloids in cell cultures of Catharanthus roseus. Quantitation by radioimmunoassay, Phytochemistry 17:227–231.CrossRefGoogle Scholar
  119. Treimer, J. F., and Zenk, M. H., 1979, Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation, Eur. J. Biochem. 101:225–233.PubMedCrossRefGoogle Scholar
  120. Uesato, S., Kanomi, S., Iida, A., Inouye, H., and Zenk, M. H., 1986a, Mechanism for iridane skeleton formation in the biosynthesis of secologanin and indole alkaloids in Lonicera tartarica, Catharanthus roseus and suspension cultures of Rauwolfia serpentina, Phytochemistry 25:839–842.CrossRefGoogle Scholar
  121. Uesato, S., Kanomi, S., Iida, A., Inouye, H., and Zenk, M. H., 1986b, Synthesis of iridoidal by cell free extracts from Rauwolfia serpentina cell suspension cultures, Tetrahedron Lett. 27:2893–2896.CrossRefGoogle Scholar
  122. Wink, C., and Hartmann, T., 1981a, Properties of subcellular localisation of L-alanine: aldehyde aminotransferase. Concept of an ubiquitous plant enzyme involved in secondary metabolism, Z. Naturforsch. 36:625–632.Google Scholar
  123. Wink, M., 1984, N-methylation of quinolizidine alkaloids: An S-adenosyl-L-methionine: cytisine N-methyltransferase from Laburnum anagyroides plant and cell cultures of L. alpinum and Cytisus canariensis, Planta 161:339–344.CrossRefGoogle Scholar
  124. Wink, M., 1986, Cell-free synthesis of the alkaloids ammodendrine and smipine, Z. Naturforsch. 41c:375–380.Google Scholar
  125. Wink, M., 1987, Quinolizidine alkaloids: Biochemistry, metabolism, and function in plants and cell suspension cultures, Planta Med. 53:509–514.PubMedCrossRefGoogle Scholar
  126. Wink, M., and Hartmann, T., 1981b, Sites of enzymic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllusZ. Pflanzenphysiol. 102:337–344.Google Scholar
  127. Wink, M., and Hartmann, T., 1982, Localisation of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus, Plant Physiol. 70:74–77.PubMedCrossRefGoogle Scholar
  128. Wink, M., Hartmann, T., and Witte, L., 1980, Biotransformation of cadaverine and potential biogenetic intermediates of lupanine biosynthesis by plant cell suspension cultures, Planta Med. 40:31–39CrossRefGoogle Scholar
  129. Zendem, Z., Khalil, S., and Luckner, M., 1982, P-factor, a developmental hormone of Penicillium cyclopiumPhytochemistry 21:839–842.CrossRefGoogle Scholar
  130. Zenk, M. H., 1980, Enzymic synthesis of ajmalicine and related indole alkaloids, J. Nat. Prod. 43:438–451.CrossRefGoogle Scholar
  131. Zenk, M. H., Rueffer, M., Amann, M., and Deus-Neumann, B., 1985, Benzylisoquinoline biosynthesis by cultivated plant cells and isolated enzymes, J. Nat. Prod. 48:725–735CrossRefGoogle Scholar
  132. Zenk, M. H., Gerardy, R., and Stadler, R., 1995, Phenol oxidative coupling of benzylisoquinoline alkaloids is catalyzed by regio- and stereo-selective cytochrome P-450 linked plant enzymes: Salutaridine and berbamunine, J. Chem. Soc. Chem. Comun. 1725–1727.Google Scholar
  133. Zenk, M. H., Gerardy, R., and Stadler, R., 1995, Phenol oxidative coupling of benzylisoquinoline alkaloids is catalyzed by regio- and stereo-selective cytochrome P-450 linked plant enzymes: Salutaridine and berbamunine, J. Chem. Soc. Chem. Comun. 1725–1727.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Margaret F. Roberts
    • 1
  1. 1.The Centre for Pharmacognosy, School of PharmacyUniversity of LondonLondonEngland

Personalised recommendations