Alkaloids pp 435-459 | Cite as

Utilization of Alkaloids in Modern Medicine

  • T. Schmeller
  • M. Wink


As outlined in Part III, alkaloids have evolved as a chemical defense against herbivores, microorganisms, and viruses or against other plants (Chapters 11, 14, 15, and 16). Assuming an evolutionary molecular modeling, the structures of many alkaloids have been shaped through natural selection so that they can interfere with a wide variety of molecular or physiological targets of animals and microorganisms (Chapter 12).


Traditional Medicine Modern Medicine Ergot Alkaloid Alkaloid Content Papaver Somniferum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Major Reviews

  1. Budavari, S., (ed.), 1989, The Merck Index, 11th ed. Merck, Rahway, NJ.Google Scholar
  2. Gilman, A. G., 1991, Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 8th ed., Pergamon Press, New York.Google Scholar
  3. Harborne, J. B., and Baxter, H., 1993, Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants, Taylor & Francis, London.Google Scholar
  4. Reynolds, J. E. F., (ed.), 1993, Martindale—The Extra Pharmacopoeia, The Pharmaceutical Press, London.Google Scholar
  5. Roth, L., Daunderer, M., and Kormann, K., 1994, Giftpflanzen Pflanzengifte, Ecomed, Landsberg/Lech.Google Scholar
  6. Teuscher, E., and Lindequist, U., 1994, Biogene Gifte, Fischer Verlag, Stuttgart.Google Scholar
  7. Wink, M., 1993, Allelochemical properties or the raison d’être of alkaloids, in: The Alkaloids, Vol. 43 (G. A. Cordell, ed.), Academic Press, San Diego, pp. 1–118.Google Scholar

Key References

  1. Besch, H. Jr., Watanabe, A. M., 1977, Binding and effect of tritiated quinidine on cardiac subcellular enzyme systems: Sarcoplasmic reticulum vesicles, mitochondria and Na+, K+-adenosine triphosphatase. J. Pharmacol. Exp. Ther. 202, 354–364.PubMedGoogle Scholar
  2. Capraro, H.-G., and Brossi, A., 1984, Troplonic Colchicum alkaloids, in: The Alkaloids, Vol. 23 (A. Brossi, ed.), Academic Press, San Diego, pp. 1–70.Google Scholar
  3. Fujii, T., and Ohaba, M., 1983, Ipecac alkaloids and β-carboline congeners, in: The Alkaloids, Vol. 22 (A. Brossi, ed.), Academic Press, San Diego, pp. 1–50.Google Scholar
  4. Rodriguez, E., Aregullin, M., Nishida, T., Uehara, S., Wrangham, R. W., Abramowski, Z., Finlayson, A., and Towers, G. H. N., 1985, Thiarubrin A, a bioactive constituent of Aspilia (Asteraceae) consumed by wild chimpanzees. Experientia 41:419–420.PubMedCrossRefGoogle Scholar
  5. Rodriguez, E., and Wrangham, R. W. 1993, Zoopharmacognosy: The use of medicinal plants by animals: in Phytochemical Potentials of Tropical Plants (K. R. Downum, J. T. Romeo, and H. A. Stafford, eds.), Plenum Press, New York, pp. 89–105.Google Scholar
  6. Schmeller, T., Sauerwein, M., Sporer, F., Wink, M., and Müller, W. E., 1994, Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors, J. Nat. Prod. 57:1316–1319.PubMedCrossRefGoogle Scholar
  7. Simeon, S., Rios, J. L., and Villar, A., 1989, Pharmacological activities of benzophenanthridine and phenanthrene alkaloids, Pharmazie 44:593–597.PubMedGoogle Scholar
  8. Zetler, G., 1988, Neuroleptic-like, anticonvulsant, and antinociceptive effects of aporphine alkaloids: Bulbocapnine, corytuberine, boldine, glaucine, Arch. Int. Pharmacodyn. Then 296:255–281.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • T. Schmeller
    • 1
  • M. Wink
    • 1
  1. 1.Institute for Pharmaceutical BiologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations