Skip to main content

Ecological Significance of Alkaloids from Marine Invertebrates

  • Chapter
Alkaloids

Abstract

In the marine environment invertebrates constitute the richest source of natural products (Faulkner, 1993), in sharp contrast to the terrestrial habitat where plants yield the largest number of natural products (Luckner, 1990). Several thousand different natural products from marine invertebrates have been identified in the last 25 years (Faulkner, 1993) [the discovery of prostaglandins in the Caribbean gorgonian Plexaura homomalla by Weinheimer and Spraggins (1969) is usually considered as a starting point of marine natural product chemistry]. The frequent occurrence (and in many cases high yields) of natural products in sessile or slow-moving invertebrates such as sponges, bryozoans, or holothurians that often live exposed to potential predators but lack effective morphological defense mechanisms is considered to reflect the evolution of chemically mediated defense mechanisms that protect these soft-bodied organisms from environmental dangers such as predation (Paul, 1992; Proksch, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Reviews

  • Bailey, J. A., and Mansfield, J. W., (eds.), 1982, Phytoalexins, Blackie, Glasgow.

    Google Scholar 

  • Bakus, G. J., 1981, Chemical defense mechanisms on the Great Barrier Reef, Australia, Science 211:497–499.

    Article  PubMed  CAS  Google Scholar 

  • Bakus, G. J., and Green, G., 1974, Toxicity in sponges and holothurians: A geographic pattern, Science 185:951–953.

    Article  PubMed  CAS  Google Scholar 

  • Bakus, G. J., Targett, N. M., and Schulte, B., 1986, Chemical ecology of marine organisms: An overview, J. Chem. Ecol. 12:951–987.

    Article  CAS  Google Scholar 

  • Bakus, G. J., Schulte, B., Wright, M., Green, G., and Gomez, P., 1990, Antibiosis and antifouling in marine sponges: Laboratory versus field studies, in: New Perspective in Sponge Biology (K. Rützler, ed.), Smithsonian Institution Press, Washington, DC, pp. 102–108.

    Google Scholar 

  • Davis, A. R., Targett, N. M., McConnell, O. J., and Young, C. M., 1989, Epibiosis of marine algae and benthic invertebrates: Natural products chemistry and other mechanisms inhibiting settlement and overgrowth, in: Bioorganic Marine Chemistry, Vol. 3 (P. J. Scheuer, ed.), Springer-Verlag, Berlin, pp. 85–114.

    Chapter  Google Scholar 

  • Faulkner, D. J., 1993, Marine natural products, Nat. Prod. Rep. 9:323–539. [Preceding reviews by same author]

    Article  Google Scholar 

  • Fenical, W., 1986, Marine alkaloids and related compounds, in: Alkaloids: Chemical and Biological Perspectives, 4 (S. W. Pelletier, ed.), Wiley, New York, pp. 275–330.

    Google Scholar 

  • Garson, M., 1994, The biosynthesis of sponge secondary metabolites: Why it is important. in: Sponges in Time and Space (R. W. M. van Soest, T. M. G. van Kempen, and J. C. Braekman, eds.), Balkema, Rotterdam, pp. 427–440.

    Google Scholar 

  • Harborne, J. B., 1993, Introduction to Ecological Biochemistry, 4th ed., Academic Press, San Diego.

    Google Scholar 

  • Jones, D. A., 1988, Cyanogenesis in animal-plant interactions, in: Cyanide Compounds in Biology (D. Evered and S. Harnett, eds.), Wiley, New York, pp. 151–170.

    Google Scholar 

  • Karuso, P., 1987, Chemical ecology of the nudibranchs, in: Bioorganic Marine Chemistry, Vol. 1, (P. J. Scheuer, ed.), Springer-Verlag, Berlin, pp. 32–60.

    Google Scholar 

  • Luckner, M., 1990, Secondary Metabolism in Microorganisms, Plants, and Animals, Springer-Verlag, Berlin.

    Google Scholar 

  • McKey, D., 1979, The distribution of secondary compounds within plants, in: Herbivores: Their Interactions with Secondary Plant Metabolites (G. A. Rosenthal and D. H. Janzen, eds.), Academic Press, New York, pp. 56–133.

    Google Scholar 

  • Paul, V. J., 1992, Chemical defenses of benthic marine invertebrates, in: Ecological Roles of Marine Natural Products (V. J. Paul, ed.), Cornell University Press (Comstock), Ithaca, NY, pp. 164–188.

    Google Scholar 

  • Pelletier, S. W., 1983, The nature and definition of an alkaloid, in: Alkaloids: Chemical and Biological Perspectives, 1 (S. W. Pelletier, ed.), Wiley, New York, pp. 1–32.

    Google Scholar 

  • Rhoades, D. F., 1979, Evolution of plant chemical defense against herbivores, in: Herbivores: Their Interactions with Secondary Plant Metabolites (G. A. Rosenthal and D. H. Janzen, eds.), Academic Press, New York, pp. 3–54.

    Google Scholar 

  • Rhoades, D. F., and Cates, R. G., 1976, Toward a general theory of plant antiherbivore chemistry, Recent Adv. Phytochem. 10:168–213.

    CAS  Google Scholar 

  • Rinehart, K. R., Shield, L. S., and Cohen-Parsons, M., 1993, Antiviral substances, in: Marine Biotechnology (D. H. Attaway and O. R. Zaborsky, eds.), Plenum Press, New York, pp. 309–342.

    Google Scholar 

  • Sale, P. F., (ed.), 1991, The Ecology of Fishes on Coral Reefs, Academic Press, San Diego.

    Google Scholar 

  • Schmitz, F. J., Bowden, B. F., and Toth, S. I., 1993, Antitumor and cytotoxic compounds from marine organisms, in: Marine Biotechnology (D. H. Attaway and O. R. Zaborsky, eds.), Plenum Press, New York, pp. 197–308.

    Google Scholar 

  • Scott, T. D., 1962, The Marine and Fresh Water Fishes of South Australia, W. L. Hames, Adelaide.

    Google Scholar 

  • Southon, I. W., and Buckingham, J., (eds.), 1989, Dictionary of Alkaloids, Chapman & Hall, London.

    Google Scholar 

  • Stahl, E., 1904, Die Schutzmittel der Flechten gegen Tierfraβ, in: Festschrift zum 70. Geburtstag von Ernst Haeckel, Fischer Verlag, Jena, pp. 357–375.

    Google Scholar 

Specific References

  • Braekman, J. C., and Daloze, D., 1986, Chemical defence in sponges, Pure Appl. Chem. 58:357–364.

    Article  CAS  Google Scholar 

  • Burreson, B. J., Clardy, J., Finer, J., and Scheuer, P. J., 1975, 9-Isocyanopupukeanane, a marine invertebrate allomone with a new sesquiterpene skeleton, J. Am. Chem. Soc. 97:4763–4764.

    Article  CAS  Google Scholar 

  • Carté, B., and Faulkner, D. J., 1986, Role of secondary metabolites in feeding associations between a predatory nudibranch, two grazing nudibranchs, and a bryozoan, J. Chem. Ecol. 12:795–804.

    Article  Google Scholar 

  • Clemens, W. A., and Wilby, G. V., 1946, The fishes of the Pacific coast of Canada, Bull. Fish. Res. Bd. Can. 68:1–368.

    Google Scholar 

  • Davis, A. R., 1991, Alkaloids and ascidian chemical defense: Evidence for the ecological role of natural products from Eudistoma olivaceum, Mar. Biol. 111:375–379.

    Article  Google Scholar 

  • Ehmke, A., Witte, L., Biller, A., and Hartmann, T., 1990, Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid moth Tyria jacobaeae L., Z. Naturforsch. 45c: 1185–1192.

    Google Scholar 

  • Feeny, P., 1976, Plant apparency and chemical defense, Recent Adv. Phytochem. 10:1–40.

    CAS  Google Scholar 

  • Fenical, W., Sleeper, H. L., Paul, V. J., Stallard, M. O., and Sun, H. H., 1979, Defensive chemistry of Navanax and related opisthobranch molluscs, Pure Appl. Chem. 51:1865–1874.

    Article  CAS  Google Scholar 

  • Green, G., 1977, Ecology of toxicity in marine sponges, Mar. Biol. 40:207–215.

    Article  Google Scholar 

  • Groweiss, A., Shmueli, U., and Kashman, Y., 1983, Marine toxins of Latrunculia magnifica, J. Org. Chem. 48:3512–3516.

    Article  CAS  Google Scholar 

  • Jackson, J. B. C., and Buss, L., 1975, Allelopathy and spatial competition among coral reef invertebrates, Proc. Natl. Acad. Sci. USA 72:5160–5163.

    Article  PubMed  CAS  Google Scholar 

  • Johannes, R. E., 1963, A poison-secreting nudibranch (Mollusca: Opisthobranchia), Veliger 5:104–105.

    Google Scholar 

  • Kashman, Y., Groweiss, A., and Shmueli, U., 1980, Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica, Tetrahedron Lett. 21:3629–3632.

    Article  CAS  Google Scholar 

  • Kernan, M. R., Molinski, T. F., and Faulkner, D. J., 1988, Macrocyclic antifungal metabolites from the Spanish dancer nudibranch Hexabranchus sanguineus and sponges of the genus Halichondria, J. Org. Chem. 53:5014–5020.

    Article  CAS  Google Scholar 

  • Kobayashi, J., and Ishibashi, M., 1993, Bioactive metabolites of symbiotic marine microorganisms, Chem. Rev. 93:1753–1769.

    Article  CAS  Google Scholar 

  • Krebs, H. C., 1986, Recent developments in the field of marine natural products with emphasis on biologically active compounds, Prog. Chem. Org. Nat. Prod. 49:151–363.

    Article  CAS  Google Scholar 

  • Kreuter, M. H., Robitzki, A., Chang, S., Steffen, R., Michaelis, M., Kljajic, Z., Bachmann, M., Schröder, H. C., and Müller, W. E. G., 1992, Production of the cytostatic agent aeroplysinin by the sponge Verongia aerophoba in in vitro culture, Comp. Biochem. Physiol. 101C:183–187.

    CAS  Google Scholar 

  • Lindquist, N., Hay, M. E., and Fenical, W., 1992, Defense of ascidians and their conspicuous larvae: Adult vs. larval chemical defenses, Ecol. Monogr. 62:547–568.

    Article  Google Scholar 

  • McKee, T. C., and Ireland, C. M., 1987, Cytotoxic and antimicrobial alkaloids from the Fijian sponge Xestospongia caycedoi, J. Nat. Prod. 50:754–756.

    Article  CAS  Google Scholar 

  • Mebs, D., 1985, Chemical defense of a dorid nudibranch, Glossodoris quadricolor, from the Red Sea, J. Chem. Ecol. 11:713–716.

    Article  CAS  Google Scholar 

  • Mebs, D., 1989, Gifte im Riff, Wissenschaftliche Verlagsgesellschaft, Stuttgart.

    Google Scholar 

  • Melton, T., and Bodnar, J. W., 1988, Molecular biology of marine microorganisms: Biotechnological approaches to naval problems, Nav. Res. Rev. 40:24–39.

    CAS  Google Scholar 

  • Neeman, I., Fishelson, L., and Kashman, Y., 1975, Isolation of a new toxin from the sponge Latrunculia magnifica in the Gulf of ’ Aqaba (Red Sea), Mar. Biol. 30:293–296.

    Article  Google Scholar 

  • Pawlik, J. R., 1993, Marine invertebrate chemical defenses, Chem. Rev. 93:1911–1922.

    Article  CAS  Google Scholar 

  • Pawlik, J. R., Kernan, M. R., Molinski, T. F., Harper, M. K., and Faulkner, D. J., 1988, Defensive chemicals of the Spanish dancer nudibranch Hexabranchus sanguineus and its egg ribbons: Macrolides derived from a sponge diet, J. Exp. Mar. Biol. Ecol. 119:99–109.

    Article  CAS  Google Scholar 

  • Porter, J. W., and Targett, N. M., 1988, Allelochemical interactions between sponges and corals, Biol. Bull. 175:230–239.

    Article  Google Scholar 

  • Proksch, P., 1994, Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs, Toxicon 32:639–655.

    Article  PubMed  CAS  Google Scholar 

  • Sleeper, H. L., Paul, V. J., and Fenical, W., 1980, Alarm pheromones from the marine opisthobranch Navanax inermis, J. Chem. Ecol. 6:57–70.

    Article  CAS  Google Scholar 

  • Starck, W. A., 1968, A list of fishes of Alligator Reef, Florida with comments on the nature of the Florida reef fish fauna, Undersea Biol 1:1–40.

    Google Scholar 

  • Sullivan, B., Djura, P., McIntyre, D. E., and Faulkner, D. J., 1981, Antimicrobial constituents of the sponge Siphonodictyon coralliphagum, Tetrahedron 37:979–982.

    Article  CAS  Google Scholar 

  • Sullivan, B., Faulkner, D. J., and Webb, L., 1983, Siphonodictidine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth, Science 221:1175–1176.

    Article  PubMed  CAS  Google Scholar 

  • Szentesi, A., and Wink, M., 1991, Fate of quinolizidine alkaloids through three trophic levels: Laburnum anagyroides (Leguminosae) and associated organisms, J. Chem. Ecol. 17:1557–1574.

    Article  CAS  Google Scholar 

  • Teeyapant, R., 1994, Brominated secondary metabolites of the marine sponge Verongia aerophoba Schmidt and the sponge feeding gastropod Tylodina perversa Gmelin: Identification, biological activities and biotransformation, Ph.D. thesis, Würzburg.

    Google Scholar 

  • Teeyapant, R., and Proksch, P., 1993, Biotransformation of brominated compounds in the marine sponge Verongia aerophoba: Evidence for an induced chemical defense?, Naturwissenschaften 80:369–370.

    Article  CAS  Google Scholar 

  • Teeyapant, R., Kreis, P., Wray, V., Witte, L., and Proksch, R, 1993a, Brominated secondary compounds from the marine sponge Verongia aerophoba and the sponge feeding gastropod Tylodina perversa, Z. Naturforsch. 48c:640–644.

    Google Scholar 

  • Teeyapant, R., Woerdenbag, H. J., Kreis, P., Hacker, J., Wray, V., Witte, L., and Proksch, P., 1993b, Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba, Z. Naturforsch. 48c:939–945.

    Google Scholar 

  • Thompson, J. E., Walker, R. P., and Faulkner, D. J., 1985, Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA, Mar. Biol. 88:11–21.

    Article  CAS  Google Scholar 

  • Unson, M. D., and Faulkner, D. J., 1993, Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera), Experientia 49:349–353.

    Article  CAS  Google Scholar 

  • Vacelet, J., 1975, E’tude en microscopie electronique de l’association entre bacteries et spongiaires du genre Verongia (Dictyoceratida), J. Micr. Biol. Cell. 23:271–288.

    Google Scholar 

  • Walker, R. P., Thompson, J. E., and Faulkner, D. J., 1985, Exudation of biologically-active metabolites in the sponge Aplysina fistularis. II. Chemical evidence, Mar. Biol. 88:27–32.

    Article  CAS  Google Scholar 

  • Walls, J. T., Blackman, A. J., and Ritz, D. A., 1991, Distribution of amathamide alkaloids within single colonies of the bryozoan Amathia wilsoni, J. Chem. Ecol. 17:1871–1881.

    Article  CAS  Google Scholar 

  • Walls, J. T., Ritz, D. A., and Blackman, A. J., 1993, Fouling, surface bacteria and antibacterial agents for bryozoan species found in Tasmania, Australia, J. Exp. Mar. Biol. Ecol. 169:1–13.

    Article  CAS  Google Scholar 

  • Weinheimer, A. J., and Spraggins, R. L., 1969, The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla. Chemistry of coelenterates. XV, Tetrahedron Lett.15:5185–5188.

    Article  Google Scholar 

  • Young, C. M., and Bingham, B. L., 1987, Chemical defense and aposematic coloration in larvae of the ascidian Ecteinascidia turbinata, Mar. Biol. 96:539–544.

    Article  CAS  Google Scholar 

  • Zukal, H., 1895, Morphologische und biologische Untersuchungen über die Flechten, Ber. K. Böhm. Ges. Wiss. Math.-Nat. Kl. 104:1303–1395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Proksch, P., Ebel, R. (1998). Ecological Significance of Alkaloids from Marine Invertebrates. In: Roberts, M.F., Wink, M. (eds) Alkaloids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2905-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2905-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3263-1

  • Online ISBN: 978-1-4757-2905-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics