Alkaloids pp 379-394 | Cite as

Ecological Significance of Alkaloids from Marine Invertebrates

  • Peter Proksch
  • Rainer Ebel


In the marine environment invertebrates constitute the richest source of natural products (Faulkner, 1993), in sharp contrast to the terrestrial habitat where plants yield the largest number of natural products (Luckner, 1990). Several thousand different natural products from marine invertebrates have been identified in the last 25 years (Faulkner, 1993) [the discovery of prostaglandins in the Caribbean gorgonian Plexaura homomalla by Weinheimer and Spraggins (1969) is usually considered as a starting point of marine natural product chemistry]. The frequent occurrence (and in many cases high yields) of natural products in sessile or slow-moving invertebrates such as sponges, bryozoans, or holothurians that often live exposed to potential predators but lack effective morphological defense mechanisms is considered to reflect the evolution of chemically mediated defense mechanisms that protect these soft-bodied organisms from environmental dangers such as predation (Paul, 1992; Proksch, 1994).


Great Barrier Reef Chemical Defense Marine Invertebrate Marine Sponge Alarm Pheromone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Reviews

  1. Bailey, J. A., and Mansfield, J. W., (eds.), 1982, Phytoalexins, Blackie, Glasgow.Google Scholar
  2. Bakus, G. J., 1981, Chemical defense mechanisms on the Great Barrier Reef, Australia, Science 211:497–499.PubMedCrossRefGoogle Scholar
  3. Bakus, G. J., and Green, G., 1974, Toxicity in sponges and holothurians: A geographic pattern, Science 185:951–953.PubMedCrossRefGoogle Scholar
  4. Bakus, G. J., Targett, N. M., and Schulte, B., 1986, Chemical ecology of marine organisms: An overview, J. Chem. Ecol. 12:951–987.CrossRefGoogle Scholar
  5. Bakus, G. J., Schulte, B., Wright, M., Green, G., and Gomez, P., 1990, Antibiosis and antifouling in marine sponges: Laboratory versus field studies, in: New Perspective in Sponge Biology (K. Rützler, ed.), Smithsonian Institution Press, Washington, DC, pp. 102–108.Google Scholar
  6. Davis, A. R., Targett, N. M., McConnell, O. J., and Young, C. M., 1989, Epibiosis of marine algae and benthic invertebrates: Natural products chemistry and other mechanisms inhibiting settlement and overgrowth, in: Bioorganic Marine Chemistry, Vol. 3 (P. J. Scheuer, ed.), Springer-Verlag, Berlin, pp. 85–114.CrossRefGoogle Scholar
  7. Faulkner, D. J., 1993, Marine natural products, Nat. Prod. Rep. 9:323–539. [Preceding reviews by same author]CrossRefGoogle Scholar
  8. Fenical, W., 1986, Marine alkaloids and related compounds, in: Alkaloids: Chemical and Biological Perspectives, 4 (S. W. Pelletier, ed.), Wiley, New York, pp. 275–330.Google Scholar
  9. Garson, M., 1994, The biosynthesis of sponge secondary metabolites: Why it is important. in: Sponges in Time and Space (R. W. M. van Soest, T. M. G. van Kempen, and J. C. Braekman, eds.), Balkema, Rotterdam, pp. 427–440.Google Scholar
  10. Harborne, J. B., 1993, Introduction to Ecological Biochemistry, 4th ed., Academic Press, San Diego.Google Scholar
  11. Jones, D. A., 1988, Cyanogenesis in animal-plant interactions, in: Cyanide Compounds in Biology (D. Evered and S. Harnett, eds.), Wiley, New York, pp. 151–170.Google Scholar
  12. Karuso, P., 1987, Chemical ecology of the nudibranchs, in: Bioorganic Marine Chemistry, Vol. 1, (P. J. Scheuer, ed.), Springer-Verlag, Berlin, pp. 32–60.Google Scholar
  13. Luckner, M., 1990, Secondary Metabolism in Microorganisms, Plants, and Animals, Springer-Verlag, Berlin.Google Scholar
  14. McKey, D., 1979, The distribution of secondary compounds within plants, in: Herbivores: Their Interactions with Secondary Plant Metabolites (G. A. Rosenthal and D. H. Janzen, eds.), Academic Press, New York, pp. 56–133.Google Scholar
  15. Paul, V. J., 1992, Chemical defenses of benthic marine invertebrates, in: Ecological Roles of Marine Natural Products (V. J. Paul, ed.), Cornell University Press (Comstock), Ithaca, NY, pp. 164–188.Google Scholar
  16. Pelletier, S. W., 1983, The nature and definition of an alkaloid, in: Alkaloids: Chemical and Biological Perspectives, 1 (S. W. Pelletier, ed.), Wiley, New York, pp. 1–32.Google Scholar
  17. Rhoades, D. F., 1979, Evolution of plant chemical defense against herbivores, in: Herbivores: Their Interactions with Secondary Plant Metabolites (G. A. Rosenthal and D. H. Janzen, eds.), Academic Press, New York, pp. 3–54.Google Scholar
  18. Rhoades, D. F., and Cates, R. G., 1976, Toward a general theory of plant antiherbivore chemistry, Recent Adv. Phytochem. 10:168–213.Google Scholar
  19. Rinehart, K. R., Shield, L. S., and Cohen-Parsons, M., 1993, Antiviral substances, in: Marine Biotechnology (D. H. Attaway and O. R. Zaborsky, eds.), Plenum Press, New York, pp. 309–342.Google Scholar
  20. Sale, P. F., (ed.), 1991, The Ecology of Fishes on Coral Reefs, Academic Press, San Diego.Google Scholar
  21. Schmitz, F. J., Bowden, B. F., and Toth, S. I., 1993, Antitumor and cytotoxic compounds from marine organisms, in: Marine Biotechnology (D. H. Attaway and O. R. Zaborsky, eds.), Plenum Press, New York, pp. 197–308.Google Scholar
  22. Scott, T. D., 1962, The Marine and Fresh Water Fishes of South Australia, W. L. Hames, Adelaide.Google Scholar
  23. Southon, I. W., and Buckingham, J., (eds.), 1989, Dictionary of Alkaloids, Chapman & Hall, London.Google Scholar
  24. Stahl, E., 1904, Die Schutzmittel der Flechten gegen Tierfraβ, in: Festschrift zum 70. Geburtstag von Ernst Haeckel, Fischer Verlag, Jena, pp. 357–375.Google Scholar

Specific References

  1. Braekman, J. C., and Daloze, D., 1986, Chemical defence in sponges, Pure Appl. Chem. 58:357–364.CrossRefGoogle Scholar
  2. Burreson, B. J., Clardy, J., Finer, J., and Scheuer, P. J., 1975, 9-Isocyanopupukeanane, a marine invertebrate allomone with a new sesquiterpene skeleton, J. Am. Chem. Soc. 97:4763–4764.CrossRefGoogle Scholar
  3. Carté, B., and Faulkner, D. J., 1986, Role of secondary metabolites in feeding associations between a predatory nudibranch, two grazing nudibranchs, and a bryozoan, J. Chem. Ecol. 12:795–804.CrossRefGoogle Scholar
  4. Clemens, W. A., and Wilby, G. V., 1946, The fishes of the Pacific coast of Canada, Bull. Fish. Res. Bd. Can. 68:1–368.Google Scholar
  5. Davis, A. R., 1991, Alkaloids and ascidian chemical defense: Evidence for the ecological role of natural products from Eudistoma olivaceum, Mar. Biol. 111:375–379.CrossRefGoogle Scholar
  6. Ehmke, A., Witte, L., Biller, A., and Hartmann, T., 1990, Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid moth Tyria jacobaeae L., Z. Naturforsch. 45c: 1185–1192.Google Scholar
  7. Feeny, P., 1976, Plant apparency and chemical defense, Recent Adv. Phytochem. 10:1–40.Google Scholar
  8. Fenical, W., Sleeper, H. L., Paul, V. J., Stallard, M. O., and Sun, H. H., 1979, Defensive chemistry of Navanax and related opisthobranch molluscs, Pure Appl. Chem. 51:1865–1874.CrossRefGoogle Scholar
  9. Green, G., 1977, Ecology of toxicity in marine sponges, Mar. Biol. 40:207–215.CrossRefGoogle Scholar
  10. Groweiss, A., Shmueli, U., and Kashman, Y., 1983, Marine toxins of Latrunculia magnifica, J. Org. Chem. 48:3512–3516.CrossRefGoogle Scholar
  11. Jackson, J. B. C., and Buss, L., 1975, Allelopathy and spatial competition among coral reef invertebrates, Proc. Natl. Acad. Sci. USA 72:5160–5163.PubMedCrossRefGoogle Scholar
  12. Johannes, R. E., 1963, A poison-secreting nudibranch (Mollusca: Opisthobranchia), Veliger 5:104–105.Google Scholar
  13. Kashman, Y., Groweiss, A., and Shmueli, U., 1980, Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica, Tetrahedron Lett. 21:3629–3632.CrossRefGoogle Scholar
  14. Kernan, M. R., Molinski, T. F., and Faulkner, D. J., 1988, Macrocyclic antifungal metabolites from the Spanish dancer nudibranch Hexabranchus sanguineus and sponges of the genus Halichondria, J. Org. Chem. 53:5014–5020.CrossRefGoogle Scholar
  15. Kobayashi, J., and Ishibashi, M., 1993, Bioactive metabolites of symbiotic marine microorganisms, Chem. Rev. 93:1753–1769.CrossRefGoogle Scholar
  16. Krebs, H. C., 1986, Recent developments in the field of marine natural products with emphasis on biologically active compounds, Prog. Chem. Org. Nat. Prod. 49:151–363.CrossRefGoogle Scholar
  17. Kreuter, M. H., Robitzki, A., Chang, S., Steffen, R., Michaelis, M., Kljajic, Z., Bachmann, M., Schröder, H. C., and Müller, W. E. G., 1992, Production of the cytostatic agent aeroplysinin by the sponge Verongia aerophoba in in vitro culture, Comp. Biochem. Physiol. 101C:183–187.Google Scholar
  18. Lindquist, N., Hay, M. E., and Fenical, W., 1992, Defense of ascidians and their conspicuous larvae: Adult vs. larval chemical defenses, Ecol. Monogr. 62:547–568.CrossRefGoogle Scholar
  19. McKee, T. C., and Ireland, C. M., 1987, Cytotoxic and antimicrobial alkaloids from the Fijian sponge Xestospongia caycedoi, J. Nat. Prod. 50:754–756.CrossRefGoogle Scholar
  20. Mebs, D., 1985, Chemical defense of a dorid nudibranch, Glossodoris quadricolor, from the Red Sea, J. Chem. Ecol. 11:713–716.CrossRefGoogle Scholar
  21. Mebs, D., 1989, Gifte im Riff, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  22. Melton, T., and Bodnar, J. W., 1988, Molecular biology of marine microorganisms: Biotechnological approaches to naval problems, Nav. Res. Rev. 40:24–39.Google Scholar
  23. Neeman, I., Fishelson, L., and Kashman, Y., 1975, Isolation of a new toxin from the sponge Latrunculia magnifica in the Gulf of ’ Aqaba (Red Sea), Mar. Biol. 30:293–296.CrossRefGoogle Scholar
  24. Pawlik, J. R., 1993, Marine invertebrate chemical defenses, Chem. Rev. 93:1911–1922.CrossRefGoogle Scholar
  25. Pawlik, J. R., Kernan, M. R., Molinski, T. F., Harper, M. K., and Faulkner, D. J., 1988, Defensive chemicals of the Spanish dancer nudibranch Hexabranchus sanguineus and its egg ribbons: Macrolides derived from a sponge diet, J. Exp. Mar. Biol. Ecol. 119:99–109.CrossRefGoogle Scholar
  26. Porter, J. W., and Targett, N. M., 1988, Allelochemical interactions between sponges and corals, Biol. Bull. 175:230–239.CrossRefGoogle Scholar
  27. Proksch, P., 1994, Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs, Toxicon 32:639–655.PubMedCrossRefGoogle Scholar
  28. Sleeper, H. L., Paul, V. J., and Fenical, W., 1980, Alarm pheromones from the marine opisthobranch Navanax inermis, J. Chem. Ecol. 6:57–70.CrossRefGoogle Scholar
  29. Starck, W. A., 1968, A list of fishes of Alligator Reef, Florida with comments on the nature of the Florida reef fish fauna, Undersea Biol 1:1–40.Google Scholar
  30. Sullivan, B., Djura, P., McIntyre, D. E., and Faulkner, D. J., 1981, Antimicrobial constituents of the sponge Siphonodictyon coralliphagum, Tetrahedron 37:979–982.CrossRefGoogle Scholar
  31. Sullivan, B., Faulkner, D. J., and Webb, L., 1983, Siphonodictidine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth, Science 221:1175–1176.PubMedCrossRefGoogle Scholar
  32. Szentesi, A., and Wink, M., 1991, Fate of quinolizidine alkaloids through three trophic levels: Laburnum anagyroides (Leguminosae) and associated organisms, J. Chem. Ecol. 17:1557–1574.CrossRefGoogle Scholar
  33. Teeyapant, R., 1994, Brominated secondary metabolites of the marine sponge Verongia aerophoba Schmidt and the sponge feeding gastropod Tylodina perversa Gmelin: Identification, biological activities and biotransformation, Ph.D. thesis, Würzburg.Google Scholar
  34. Teeyapant, R., and Proksch, P., 1993, Biotransformation of brominated compounds in the marine sponge Verongia aerophoba: Evidence for an induced chemical defense?, Naturwissenschaften 80:369–370.CrossRefGoogle Scholar
  35. Teeyapant, R., Kreis, P., Wray, V., Witte, L., and Proksch, R, 1993a, Brominated secondary compounds from the marine sponge Verongia aerophoba and the sponge feeding gastropod Tylodina perversa, Z. Naturforsch. 48c:640–644.Google Scholar
  36. Teeyapant, R., Woerdenbag, H. J., Kreis, P., Hacker, J., Wray, V., Witte, L., and Proksch, P., 1993b, Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba, Z. Naturforsch. 48c:939–945.Google Scholar
  37. Thompson, J. E., Walker, R. P., and Faulkner, D. J., 1985, Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA, Mar. Biol. 88:11–21.CrossRefGoogle Scholar
  38. Unson, M. D., and Faulkner, D. J., 1993, Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera), Experientia 49:349–353.CrossRefGoogle Scholar
  39. Vacelet, J., 1975, E’tude en microscopie electronique de l’association entre bacteries et spongiaires du genre Verongia (Dictyoceratida), J. Micr. Biol. Cell. 23:271–288.Google Scholar
  40. Walker, R. P., Thompson, J. E., and Faulkner, D. J., 1985, Exudation of biologically-active metabolites in the sponge Aplysina fistularis. II. Chemical evidence, Mar. Biol. 88:27–32.CrossRefGoogle Scholar
  41. Walls, J. T., Blackman, A. J., and Ritz, D. A., 1991, Distribution of amathamide alkaloids within single colonies of the bryozoan Amathia wilsoni, J. Chem. Ecol. 17:1871–1881.CrossRefGoogle Scholar
  42. Walls, J. T., Ritz, D. A., and Blackman, A. J., 1993, Fouling, surface bacteria and antibacterial agents for bryozoan species found in Tasmania, Australia, J. Exp. Mar. Biol. Ecol. 169:1–13.CrossRefGoogle Scholar
  43. Weinheimer, A. J., and Spraggins, R. L., 1969, The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla. Chemistry of coelenterates. XV, Tetrahedron Lett.15:5185–5188.CrossRefGoogle Scholar
  44. Young, C. M., and Bingham, B. L., 1987, Chemical defense and aposematic coloration in larvae of the ascidian Ecteinascidia turbinata, Mar. Biol. 96:539–544.CrossRefGoogle Scholar
  45. Zukal, H., 1895, Morphologische und biologische Untersuchungen über die Flechten, Ber. K. Böhm. Ges. Wiss. Math.-Nat. Kl. 104:1303–1395.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Peter Proksch
    • 1
  • Rainer Ebel
    • 1
  1. 1.Julius von Sachs Institute for Biological Sciences, Department of Pharmaceutical BiologyUniversity of WürzburgWürzburgGermany

Personalised recommendations