Alkaloids pp 327-336 | Cite as

Plant Parasites

  • F. R. Stermitz

Abstract

Alkaloids can be transferred from alkaloid-containing host plants to a variety of normally alkaloid-free parasitic plants. Sporadic and relatively incomplete reports of such alkaloid assimilation by parasitic plants appeared over the course of several decades before 1980. Access to these reports can be obtained from a review (Stermitz, 1990) and in typical papers of the 1980s (Wink et al., 1981; Czygan et al, 1988; Cordero et al., 1989). The focus of this review will be on the more detailed recent studies where some attempt has been made to put data into a broader biological or ecological context, rather than simply document occurrence of the phenomenon.

Keywords

Parasitic Plant Alkaloid Content Iridoid Glycoside Pyrrolizidine Alkaloid Lupinus Angustifolius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General References

  1. Atsatt, P. R., 1983, Host-parasite interactions in higher plants, in: Encyclopedia of Plant Physiology, Vol. 12C (O. L. Lange, C. B. Nobel, C. B. Osmond, and H. Ziegler, eds.), Springer-Verlag, Berlin, pp. 519–536.Google Scholar
  2. Bäumel, P., Witte, L., Abou-Mandour, A., Proksch, P., and Czygan, F.-C., 1993, Alkaloid uptake and metabolism by Cuscuta reflexa grown in vitro, Planta Med. 59:A643.CrossRefGoogle Scholar
  3. Dörr, I., 1975, Development of transfer cells in higher parasitic plants, in: Phloem Transport (S. Aronoff, J. Dainty, P. R. Gorham, L. M. Srivastava, and C. A. Swanson, eds.), Plenum Press, New York, pp. 177–186.Google Scholar
  4. Kuijt, J., 1969, The Biology of Parasitic Flowering Plants, University of California Press, Berkeley.Google Scholar
  5. Lynn, D. G., and Chang, M., 1990, Phenolic signals in cohabitation; implications for plant development, Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:497–526.CrossRefGoogle Scholar
  6. Moore, M., 1979, Medicinal Plants of the Mountain West, Museum of New Mexico Press, Santa Fe, pp. 34–36.Google Scholar
  7. Stermitz, F. R., Schneider, M. J., Schell, L. D., and McGregor, S., 1992, Toxic pyrrolizidine, quinolizidine, and piperidine alkaloids of root parasitic plants used in folk medicine, in: Poisonous Plants, Proceedings of the 3rd International Symposium (L. F. James and R. F. Keeler, eds.), Iowa State University Press, pp. 204–207.Google Scholar
  8. Stewart, G. R., and Press, M. C., 1990, The physiology and biochemistry of parasitic angiosperms, Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:127–151.CrossRefGoogle Scholar

Specific References

  1. Arslanian, R. L., Harris, G. H., and Stermitz, F. R., 1990, New quinolizidine alkaloids from Lupinus argenteus and its hosted root parasite Castilleja sulphurea: Stereochemistry and conformation of some naturallyoccurring cyclic carbinolamides, J. Org. Chem. 55:1204–1210.CrossRefGoogle Scholar
  2. Atsatt, P. R., 1977, The insect herbivore as a predictive model in parasitic seed plant biology, Am. Nat. 111:579–586.CrossRefGoogle Scholar
  3. Bäumel, P., Lurz-Gresser, G., Veen, G., Witte, L., Proksch, P., and Czygan, F.-C., 1991, Uptake of host-plant alkaloids by parasitic Cuscuta species, Planta Med. Suppl. 57:A95–A96.CrossRefGoogle Scholar
  4. Bäumel, P., Witte, L., Proksch, P., and Czygan, F.-C., 1992, Uptake and metabolism of host plant alkaloids by parasitizing Cuscuta species, Planta Med. Suppl. 58:A671.CrossRefGoogle Scholar
  5. Bäumel, P., Jeschke, W. D., Witte, L., Czygan, F.-C., and Proksch, P., 1993a, Uptake and transport of quinolizidine alkaloids in Cuscuta reflexa parasitizing on Lupinus angustifolius, Z. Naturforsch. 48c:436–443.Google Scholar
  6. Bäumel, P., Witte, L., Czygan, F.-C., and Proksch, P., 1994, Transfer of quinolizidine alkaloids from various host plants of the Fabaceae to parasitizing Cuscuta species, Biochem. Syst. Ecol. 22:647–656.CrossRefGoogle Scholar
  7. Boros, C. A., Marshall, D. R., Caterino, C.R., and Stermitz, F. R., 1991, Iridoid and phenylpropanoid glycosides from further Orthocarpus species. Alkaloid content as a consequence of parasitism on Lupinus, J. Nat. Prod. 54:506–513.CrossRefGoogle Scholar
  8. Cordero, C. M., Ayuso, M. J., Richomme, P., and Bruneton, J., 1989, Quinolizidine alkaloids from Viscum cruciatum, hemiparasitic shrub of Lygos sphaerocarpa, Planta Med. 55:196.CrossRefGoogle Scholar
  9. Cordero, C. M., Serrano, A. M. G., and Gonzalez, M. J. A., 1993, Transfer of bipiperidyl and quinolizidine alkaloids to Viscum cruciatum Sieber (Loranthaceae) hemiparasitic on Retama sphaerocarpa Boissier (Leguminosae), J. Chem. Ecol. 19:2389–2393.CrossRefGoogle Scholar
  10. Czygan, F.-C., Wessinger, B., and Warmuth, K., 1988, Cuscuta und ihre Fähigkeit zur aufnahme und speicherung von Alkaloiden der Wirtspflanzen, Biochem. Physiol. Pflanz. 183:495–501.Google Scholar
  11. Dawson, R. F., 1942, Accumulation of nicotine in reciprocal grafts of tomato and tobacco, Am. J. Bot. 29:66–71.CrossRefGoogle Scholar
  12. Dörr, I., 1972, Der Anschluss der Cuscuta-Hyphen an de Siebröhren ihrer Wirstspflanzen, Protoplasma 75:167–184.CrossRefGoogle Scholar
  13. Gabius, H.-J., Gabius, S., Joshi, S. S., Koch, B., Schroeder, M., Manzke, W. M., and Westerhausen, M., 1994, From ill-defined extracts to the immunomodulatory lectin: Will there be a reason for oncological application of mistletoe? Planta Med. 60:2–7.PubMedCrossRefGoogle Scholar
  14. Gibson, C. C., and Watkinson, A. R., 1989, The host range and selectivity of a parasitic plant: Rhinanthus minor L., Oecologia 78:401–406.CrossRefGoogle Scholar
  15. Hawksworth, F. G., 1978, Biological factors of dwarf mistletoe in relation to control, in: Proceedings of the Symposium on Dwarf Mistletoe Control through Forest Management (R. F. Scharpf and J. R. Parmeter, eds.), University of California Press, Berkeley.Google Scholar
  16. Heckard, L., 1962, Root parasitism in Castilleja, Bot. Gaz. September, pp. 21–29.Google Scholar
  17. Kelly, C. K., Venable, D. L., and Zimmerer, K., 1988, Host specialization in Cuscuta costaricensis: An assessment of host use relative to host availability, Oikos 53:315–320.CrossRefGoogle Scholar
  18. Mead, E. W., 1992, Chemical investigation of a multispecies plant-insect biosystem, Ph.D. dissertation, Colorado State University.Google Scholar
  19. Mead, E. W., Looker, M., Gardner, D. R., and Stermitz, F. R., 1992, Pyrrolizidine alkaloids of Liatris punctata (Asteraceae) and its root parasite Castilleja integra (Scrophulariaceae), Phytochemistry 31:3255–3257.CrossRefGoogle Scholar
  20. Mende, P., and Wink, M., 1987, Uptake of the quinolizidine alkaloid lupanine by protoplasts and isolated vacuoles of suspension-cultured Lupinus polyphyllus cells. Diffusion or carrier-mediated transport? J. Plant Physiol. 129:229–242.CrossRefGoogle Scholar
  21. Okuda, T., Yoshida, T., Chen, X.-M., Xie, J.-X., and Fukushima, M., 1987, Corianin from Coriaria japonica and sesquiterpene lactones from Loranthus parasiticus. Used for treatment of schizophrenia, Chem. Pharm. Bull. 35:182–187.PubMedCrossRefGoogle Scholar
  22. Pate, J. S., True, K. C., and Rasins, E., 1991, Xylem transport and storage of amino acids by S.W. Australian mistletoes and their hosts, J. Exp. Bot. 42:441–451.CrossRefGoogle Scholar
  23. Schneider, M. J., and Stermitz, F. R., 1990, Uptake of host plant alkaloids by root parasitic Pedicularis (Scrophulariaceae) species, Phytochemistry 29:181 –1814.CrossRefGoogle Scholar
  24. Schneider, M. J., Montali, J. A., Hazen, D., and Stanton, C. E., 1991, Alkaloids of Picea, J. Nat. Prod. 54:905–909.CrossRefGoogle Scholar
  25. Smith, C. E., Dudley, M. W., and Lynn, D. G., 1990, Vegetative/parasitic transition: Control and plasticity in Striga development, Plant Physiol. 93:208–215.PubMedCrossRefGoogle Scholar
  26. Stermitz, F. R., 1990, Discovery of new alkaloids by analysis of parasitic Scrophulariaceae, Rev. Latinoam. Quim. 21:83–85.Google Scholar
  27. Stermitz, F. R., and Harris, G. H., 1987, Transfer of pyrrolizidine and quinolizidine alkaloids to Castilleja (Scrophulariaceae) hemiparasites from composite and legume host plants, J. Chem. Ecol. 13:1917–1925.CrossRefGoogle Scholar
  28. Stermitz, F. R., Belofsky, G. N., Ng, D., and Singer, M. C., 1989, Quinolizidine alkaloids obtained by Pedicularis semibarbata (Scrophulariaceae) from Lupinus fulcratus (Leguminosae) fail to influence the specialist herbivore Euphydryas editha (Lepidoptera), J. Chem. Ecol. 15:2521–2530.CrossRefGoogle Scholar
  29. Stermitz, F. R., Foderaro, T., and Li, Y.-X., 1993, Iridoid glycoside uptake by Castilleja integra via root parasitism on Penstemon teucrioides, Phytochemistry 32:1151–1153.CrossRefGoogle Scholar
  30. Visser, J. H., Dörr, I., and Kollmann, R., 1990, Compatibility of Alectra vogelii with different leguminous host species, J. Plant Physiol. 135:737–745.CrossRefGoogle Scholar
  31. Walzel, G., 1952, Cuscuta auf Nicotiana nikotin-frei, Phyton 4:121–123.Google Scholar
  32. Wink, M., and Mende, P., 1987, Uptake of lupanine by alkaloid-storing epidermal cells of Lupinus polyphyllus, Planta Med. 53:465–469.PubMedCrossRefGoogle Scholar
  33. Wink, M., and Witte, L., 1993, Quinolizidine alkaloids in Genista acanthoclada and its holoparasite, Cuscuta palaestina, J. Chem. Ecol. 19:441–448.CrossRefGoogle Scholar
  34. Wink, M., Witte, L., and Hartmann, T., 1981, Quinolizidine alkaloid composition of plants and of photomix-otrophic cell suspension cultures of Sarothamnus scoparius and Orobanche rapum-genistae, Planta Med. 43:342–352.PubMedCrossRefGoogle Scholar
  35. Yahara, S., Domoto, H., Sugimura, C., Nohara, T., Niiho, Y., Nakajima, Y., and Ito, H., 1994, An alkaloid and two lignans from Cuscuta chinensis, Phytochemistry 37:1755–1757.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • F. R. Stermitz
    • 1
  1. 1.Department of ChemistryColorado State UniversityFort CollinsUSA

Personalised recommendations