Alkaloids pp 265-300 | Cite as

Chemical Ecology of Alkaloids

  • Michael Wink


In previous chapters the authors considered the distribution of alkaloids within the plant kingdom and how the plants synthesize, transport, and store them. In this chapter I shall concentrate on the question of the role and function of alkaloids, to what purpose they are produced.


Alkaloid Content Chemical Ecology Pyrrolizidine Alkaloid Defense Compound Quinolizidine Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Major Reviews

  1. Bernays, E., 1982, The insect on a plant—A closer look, in: Insect-Plant Relationships (J. H. Visser and A. K. Minks, eds.), Wageningen, pp. 3–17.Google Scholar
  2. Bernays, E. A., and Chapman, R. F. 1994, Host-Plant Selection by Phytophagous Insects, Chapman & Hall, London.Google Scholar
  3. Blum, M. S., 1981, Chemical Defenses of Arthropods, Academic Press, New York.Google Scholar
  4. Boppré, M., 1990, Lepidoptera and pyrrolidine alkaloids, J. Chem. Ecol. 16:165–186.CrossRefGoogle Scholar
  5. Brattsten, L. B., and Ahmad, S., 1986, Molecular Aspects of Insect-Plant Associations, Plenum Press, New York.Google Scholar
  6. Brown, K. S., and Trigo, J. L., 1995, The ecological activity of alkaloids, in: The Alkaloids, Vol. 47 (G. Cordell, ed.), Academic Press, San Diego, pp. 227–354.Google Scholar
  7. Clay, K., 1990, Fungal endophytes of grasses, Annu. Rev. Ecol. Syst. 21:275–297.CrossRefGoogle Scholar
  8. Duffey, J., 1980, Sequestration of plant natural products by insects, Annu. Rev. Entomol. 25:447–477.CrossRefGoogle Scholar
  9. Edmunds, M., 1974, Defense in Animals, Longman, Harlow.Google Scholar
  10. Fritz, R. S., and Simms, E. L., (eds.), 1992, Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics, University of Chicago Press, Chicago.Google Scholar
  11. Harborne, J. B., 1993, Introduction to Ecological Biochemistry, 4th ed., Academic Press, San Diego.Google Scholar
  12. Hartmann, T., and Witte, L., 1995, Chemistry, biology and chemoecology of the pyrrolizidine alkaloids, in: Alkaloids: Chemical and Biological Perspectives (S. W. Pelletier, ed.), Vol. 9, Pergamon Press, Oxford, 155–233.Google Scholar
  13. Inderjit, Dakshini, K. M. M., and Einhellig, F. A., 1995, Allelopathy: Organisms, processes and applications, ACS Symp. Ser. 582, pp. 117–126.Google Scholar
  14. Johns, T., 1990, With Bitter Herbs They Shall Eat It, University of Arizona Press, Tucson.Google Scholar
  15. Kinghorn, A. D., and Balandrin, M. F., 1984, Quinolizidine alkaloids of the Leguminosae: Structural types, analysis, chemotaxonomy, and biological activities, in: Alkaloids: Chemical and Biological Perspectives (S. W. Pelletier, ed.), Vol, 2, Wiley, New York, pp. 105–148.Google Scholar
  16. Levin, D. A., 1976, The chemical defenses of plants to pathogens and herbivores, Annu. Rev. Ecol. Syst. 7:121–159.CrossRefGoogle Scholar
  17. Mothes, K., Schütte, H. R., and Luckner, M., 1985, Biochemistry of Alkaloids, Verlag Chemie, Weinheim.Google Scholar
  18. Rice, E. L., 1984, Allelopathy, Academic Press, San Diego.Google Scholar
  19. Robinson, T., 1974, Metabolism and function of alkaloids in plants, Science 184:430–435.PubMedCrossRefGoogle Scholar
  20. Rosenthal, J., and Berenbaum, M. R., 1991, Herbivores: Their Interaction with Secondary Plant Metabolites, 2nd ed., Academic Press, San Diego.Google Scholar
  21. Rosenthal, J., and Janzen, D., 1979, Herbivores: Their Interactions with Plant Secondary Metabolites, Academic Press, San Diego.Google Scholar
  22. Schlee, D., 1992, Ökologische Biochemie, 2nd ed., Fischer Verlag, Stuttgart.Google Scholar
  23. Schneider, D., 1987, The strange fate of pyrrolizidine alkaloids, in: Perspectives in Chemoreception Behaviour (R. F. Chapman, E. A. Bernays, and J. G. Stoffolano, eds.), Springer, Berlin, pp. 123–142.CrossRefGoogle Scholar
  24. Schoonhoven, L. M., 1972, Secondary plant substances and insects, in: Structural and Functional Aspects of Phytochemistry (C. V. Runekless and T. C. Tso, eds.), Recent Adv. Phytochem. 5:197–224.Google Scholar
  25. Swain, T., 1977, Secondary compounds as protective agents, Annu. Rev. Plant Physiol. 28:479–501.CrossRefGoogle Scholar
  26. Tallamy, D. W., and Raupp, M. J., (eds.), 1991, Phytochemical Induction by herbivores, Wiley, New York.Google Scholar
  27. Urich, K., 1990, Vergleichende Biochemie der Tiere, Fischer Verlag, Stuttgart.Google Scholar
  28. Waller, G. R., 1987, Allelochemicals. Role in Agriculture and Forestry, ACS Symp. Ser., 330, American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  29. Waller, G. R., and Nowacki, E., 1978, Alkaloid Biology and Metabolism in Plants, Plenum Press, New York.CrossRefGoogle Scholar
  30. Wink, M., 1987a, Physiology of the accumulation of secondary metabolites with special reference to alkaloids, in: Cell Culture and Somatic Cell Genetics of Plants, Vol. 4 (F. Constabel and I. Vasil, eds.), Academic Press, San Diego, pp. 17–41.Google Scholar
  31. Wink, M., 1988, Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores, Theor. Appl. Genet. 75:225–233.CrossRefGoogle Scholar
  32. Wink, M., 1990, Physiology of secondary product formation in plants, in: Secondary Products from Plant Tissue Culture (B. V. Charlwood and M. J. C. Rhodes, eds.), Clarendon Press, Oxford, pp. 23–41.Google Scholar
  33. Wink, M., 1992, The role of quinolizidine alkaloids in plant-insect interactions, in: Insect-Plant Interactions (E. A. Bernays, ed.), Vol. IV, CRC Press, Boca Raton, pp. 133–169.Google Scholar
  34. Wink, M., 1993a, Quinolizidine alkaloids, in: Methods in Plant Biochemistry, Vol. 8 (P. Waterman, ed.), Academic Press, San Diego, pp. 197–239.Google Scholar
  35. Wink, M., 1993b, Allelochemical properties and the raison d’être of alkaloids, in: The Alkaloids, Vol. 43 (G. Cordeil, ed.), Academic Press, San Diego, pp. 1–118.Google Scholar
  36. Wink, M., 1993c, The plant vacuole: A multifunctional compartment, J. Exp. Bot. 44(Suppl.):231–246.Google Scholar
  37. Wink, M., 1993d, Production and application of phytochemicals from an agricultural perspective, in: Phytochemistry and Agriculture, Proc. Phytochem. Soc. Eur. Vol. 34 (T. A. van Beek and H. Breteler, eds.), Oxford University Press, London, pp. 171–213.Google Scholar

Key References

  1. Ahmad, S., 1983, Mixed-function oxidase activity in a generalist herbivore in relation to its biology, food plants and feeding history, Ecology 64:235–243.CrossRefGoogle Scholar
  2. Baldwin, I. T., 1989, Mechanism of damage-induced alkaloid production in wild tobacco, J. Chem. Ecol. 15:1661–1680.CrossRefGoogle Scholar
  3. Bernays, C. B., and Montllor, J., 1989, Aposematism of Uresiphita reversalis larvae (Pyralidae), J. Lepid. Soc. 43:261–273.Google Scholar
  4. Brattsten, L. B., 1988, Enzymatic adaptations in leaf-feeding insects to host-plant allelochemicals, J. Chem. Ecol 14:1919–1939.CrossRefGoogle Scholar
  5. Conner, W. E., Eisner, T., van der Meer, R. K., Guerrero, A., and Meinwald, J., 1981, Precopulatory sexual interactions in an arctiid moth (Utetheisa ornatrix): Role of a pheromone derived from dietary alkaloids, Behav. Ecol. Sociobiol. 9:227–235.CrossRefGoogle Scholar
  6. Detzel, A., and Wink, M., 1993, Attraction, deterrence or intoxication of bees (Apis melliferd) by plant allelochemicals, Chemoecology 4:8–18.CrossRefGoogle Scholar
  7. Dowd, P. F., 1992, Insect fungal symbionts: A promising source of detoxifying enzymes, J Ind. Microbiol. 9:149–161.CrossRefGoogle Scholar
  8. Dreyer, D., Jones, K. C., and Molyneux, R. J., 1985, Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of the indolizidine alkaloid swainsonine, J. Chem. Ecol. 11:1045–1051.CrossRefGoogle Scholar
  9. Dussourd, D. E., Ubik, K., Harvis, C., Resch, J., Meinwald, J., and Eisner, T., 1988, Biparental endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix, Proc. Natl. Acad. Sci. USA 85:5992–5996.CrossRefGoogle Scholar
  10. Ehrlich, P. R., and Raven, P. H., 1964, Butterflies and plants: A study of coevolution, Evolution 18:586–608.CrossRefGoogle Scholar
  11. Fraenkel, G., 1959, The raison d’être of secondary substances, Science 129:1466–1470.PubMedCrossRefGoogle Scholar
  12. Hauser, M.-T., and Wink, M., 1990, Uptake of alkaloids by latex vesicles and isolated mesophyll vacuoles of Chelidonium majus (Papaveraceae)., Z. Naturforsch. 45c:949–957.Google Scholar
  13. Holzinger, F., and Wink, M., 1996, Mediation of cardiac glycoside insensitivity in the monarch (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+, K+-ATPase. J. Chem. Ecol. 22, 1921–1937.CrossRefGoogle Scholar
  14. Holzinger, F., Frick, C., and Wink, M., 1992, Molecular base for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides, FEBS Lett. 314:477–480.PubMedCrossRefGoogle Scholar
  15. Montllor, C. B., Bernays, E. A., and Barbehenn, R. V, 1990, Importance of quinolizidine alkaloids in the relationship between larvae of Uresiphita reversalis (Lepidoptera: Pyralidae) and a host plant, Genista monspessulana, J. Chem. Ecol. 16:1853–1865.CrossRefGoogle Scholar
  16. Montllor, C. B., Bernays, E. A., and Cornelius, M. L., 1991, Responses of two hymenopteran predators to surface chemistry of their prey: Significance for an alkaloid-sequestering caterpillar, J. Chem. Ecol. 17:391.CrossRefGoogle Scholar
  17. Nickisch-Rosenegk, E. von, and Wink, M., 1993, Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera: Arctiidae), J. Chem. Ecol. 19:1889–1903.CrossRefGoogle Scholar
  18. Nickisch-Rosenegk, E. von, Schneider, D., and Wink, M., 1990, Time-course of pyrrolizidine alkaloid processing in the alkaloid exploiting arctiid moth, Creatonotos transiens, Z. Naturforsch. 45c:881–894.Google Scholar
  19. Roberts, M. F., 1981, Enzymic synthesis of γ-coniceine in Conium maculatum chloroplasts and mitochondria, Plant Cell Rep. 1:10–13.CrossRefGoogle Scholar
  20. Schmeller, T., El-Shazly, A. and Wink, M., 1997, Allelochemical activities of pyrrolizidine alkaloids: Interactions with neuroreceptors and acetylcholine related enzymes. J. Chem. Ecol. 23:399–416.CrossRefGoogle Scholar
  21. Schneider, D., 1993, Danaine butterflies a didactic story about chemical ecology. Nat. Hist. Mus. Los Angeles Cry. Contrib. Sci. Ser., 19–28.Google Scholar
  22. Schneider, D., Boppre, M., Zweig, I., Horsley, S. B., Bell, T. W., Meinwald, J., Hansen, K., and Diehl, E. W., 1982, Scent organ development in Creatonotos moths: Regulation by pyrrolizidine alkaloids, Science 215:1264–1265.PubMedCrossRefGoogle Scholar
  23. Schulz, S., Francke, W., Boppre, M., Eisner, T., and Meinwald, J., 1993, Insect pheromone biosynthesis: Sterochemical pathways of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctii.), Proc. Natl. Acad. Sci. USA, 90:6834–6838.PubMedCrossRefGoogle Scholar
  24. Sporer, F., Sauerwein, M., and Wink, M., 1993, Diurnal and developmental variation of alkaloid accumulation in Atropa belladonna, Acta Hortic. 331:381–386.Google Scholar
  25. Stahl, E., 1888, Pflanzen und Schnecken. Jenaer, Z. Naturweis. 22:557.Google Scholar
  26. Szentesi, A., and Wink, M., 1991, Fate of quinolizdine alkaloids through three trophic levels: Laburnum anagyroides (Leguminosae) and associated organisms, J. Chem. Ecol. 17:1557–1573.CrossRefGoogle Scholar
  27. Vrieling, K., Smit, W., and Meijden, E. van der, 1991, Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L. and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration, Oecologia 86:177–182.CrossRefGoogle Scholar
  28. Wink, M., 1983a, Inhibition of seed germination by quinolizidine alkaloids. Aspects of allelopathy in Lupinus albus L, Planta 158:365–368.CrossRefGoogle Scholar
  29. Wink, M., 1983b, Wounding-induced increase of quinolizidine alkaloid accumulation in lupin leaves, Z. Naturforsch. 38c:905–909.Google Scholar
  30. Wink, M., 1985, Chemische Verteidigung der Lupinen: Zur biologischen Bedeutung der Chinolizidinalkaloide, Plant Syst. Evol. 150:65–81.CrossRefGoogle Scholar
  31. Wink, M., 1987b, Chemical ecology of quinolizidine alkaloids in: Allelochemicals. Role in Agriculture and Forestry, ACS Symp. Ser. 330 (G. R. Waller, ed.), American Chemical Society, Washington, DC, pp. 524–533.CrossRefGoogle Scholar
  32. Wink, M., and Hartmann, T., 1982, Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus, Plant Physiol. 70:74–77.PubMedCrossRefGoogle Scholar
  33. Wink, M., and Römer, P., 1986, Acquired toxicity—The advantages of specializing on alkaloid-rich lupins to Macrosiphum albifrons (Aphidae), Naturwissenschaften 73:210–212.CrossRefGoogle Scholar
  34. Wink, M., and Schneider, D., 1988, Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting moth, Creatonotos, Naturwissenschaften 75:524–525.CrossRefGoogle Scholar
  35. Wink, M., and Witte, L., 1984, Turnover and transport of quinolizidine alkaloids: Diurnal variation of lupanine in the phloem sap, leaves and fruits of Lupinus albus L., Planta 161:519–524.CrossRefGoogle Scholar
  36. Wink, M., and Witte, L., 1985, Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell suspension cultures, Z. Naturforsch. 40c:767–775.Google Scholar
  37. Wink, M., and Witte, L., 1991, Storage of quinolizidine alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera: Aphididae), Entomol. Gener. 15:237–254.Google Scholar
  38. Wink, M., Heinen, H. J., Vogt, H., and Schiebel, H. M., 1984, Cellular localization of quinolizidine alkaloids by laser desorption mass spectrometry (LAMMA 1000), Plant Cell Rep. 3:230–233.CrossRefGoogle Scholar
  39. Wink, M., Schneider, D., and Witte, L., 1988, Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth, Creatonotos transiens: Stereochemical conversion of heliotrine, Z. Naturforsch. 43c:737–741.Google Scholar
  40. Wink, M., Nickisch-Rosenegk, E. von, and Schneider, D., 1990, Processing of pyrrolizidine alkaloids and cardenolides in three moths, Syntomis mogadorensis, Syntomeida epilais and Creatonotos transiens, Symp. Biol. Hung. 39:53–61.Google Scholar
  41. Wink, M., Montplor, C., Bernays, E. A., and Witte, L., 1991, Uresiphita reversalis (Lepidoptera: Pyralidae): Carrier-mediated uptake and sequestration of quinolizidine alkaloids obtained from the host plant Teline monspessulana, Z. Naturforsch. 46c: 1080–1088.Google Scholar
  42. Wink, M., Hofer, A., Bilfinger, M., Englert, E., Martin, M., and Schneider, D., 1993, Geese and plant dietary allelochemicals—Food palatability and geophagy, Chemoecology 4:93–107.CrossRefGoogle Scholar
  43. Zippin, J., Mahaney, W. C., Milner, M. W., Sanmugadas, K., Hancock, R. G. V., Aufreiter, S., Campbell, S., Huffman, M. A., and Wink, M., Geochemistry and mineralogy of termite mound soil eaten by the chimpanzees of the Mahale mountains, Tanzania (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Michael Wink
    • 1
  1. 1.Institute for Pharmaceutical BiologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations