Integrated Smart Sensor Concept

  • Gert van der Horn
  • Johan L. Huijsing
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 419)


In this chapter we will present a concept for implementing smart sensor interfaces [1]. Within the scope of this work we cannot discuss many types of sensors or sensor interfaces, hence we limit ourselves to two common sensor types, for measuring temperature, and for measuring pressure. This limitation does not mean that the presented matter cannot be extended to other types of sensors.


Smart Sensor Silicon Sensor Bandgap Reference Digital Calibration Output Voltage Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.H. Huijsing, F.R. Riedijk, and G. v.d. Horn, “Developments in integrated smart sensors”, Sensors and Actuators A, Vol. 43, 1994, pp. 276–288.CrossRefGoogle Scholar
  2. [2]
    G.C.M. Meijer, “Thermal sensors based on transistors”, Sensors and Actuators, Vol.10, 1986, pp. 103–125.Google Scholar
  3. [3]
    G.C.M. Meijer and A.W. van Herwaarden, Thermal Sensors, Institute of Physics Publishing, Bristol/Philadelphia, 1994.Google Scholar
  4. [4]
    S. Middelhoek and S.A. Audet, Silicon Sensors, Academic Press, London, 1989.Google Scholar
  5. [5]
    R.F. Wolffenbuttel, “Fabrication compatibility of integrated silicon smart physical sensors, Sensors and Actuators A, Vol. 41–42, 1994, pp. 1–28.Google Scholar
  6. [6]
    K.D. Wise and N. Najafi, “The coming opportunities in microsensor systems”, Proceedings Transducers 1991,San Fransisco, USA, PP.1–7.Google Scholar
  7. [7]
    J. Bryzek, K. Petersen, J.R. Mallon, L. Christel, F. Pourahmadi, Silicon Sensors and Microstructures, NovaSensor, Fremont, USA, 1990.Google Scholar
  8. [8]
    J.H. Huijsing, “Signal conditioning on the sensor chip”, Sensors and Actuators, Vol. 10, 1986, pp. 219–237.CrossRefGoogle Scholar
  9. [9]
    R. Frank, “Pressure sensors merge micromachining and microelectronics”, Sensors and Actuators A, Vol. 28, 1991, pp. 93–103.CrossRefGoogle Scholar
  10. [10]
    L.K. Nanver, E.J.G. Goudena, and H.W. van Zeijl, “Dimes-01, A base-line bifet process for smart sensor experiments”, Sensors and Actuators A, Vol. 36, 1993, pp. 139–147.CrossRefGoogle Scholar
  11. [11]
    R.P. van Kampen, Bulk-Micromachined Capacitive Servoccelerometer, PhD Thesis, Delft University Press, Delft, 1995.Google Scholar
  12. [12]
    F. Schnatz et al., “Smart CMOS capacitive pressure transducer with on-chip calibration capability”, Sensors and Actuators A, Vol. 34, 1992, pp. 77–83.CrossRefGoogle Scholar
  13. [13]
    C. Sander, J.W. Knutti, and J. Meindl, “A monolithic capacitive pressure transducer with pulse-period output”, IEEE Trans. Electron Devices, Vol. ED-29, 1980, pp. 42–48.Google Scholar
  14. [14]
    L.S. Lee and K.D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity”, IEEE Trans. Electron Devices, Vol. ED-29, 1982, pp. 42–48.Google Scholar
  15. [15]
    T. Rogers and J. Kowal, “Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitive sensors”, Sensors and Actuators A, Vol. 46–47, 1995, pp. 113–120.Google Scholar
  16. [16]
    S. Ansermet, D. Otter, R.W. Craddock and J.L. Dancester, “Cooperative development of a piezoresistive pressure sensor with integrated signal conditioning for automotive and industrial applications”, Sensors and Actuators A, Vol. 21–23, 1990, pp. 79–83.Google Scholar
  17. [17]
    D. Tandeske, Pressure Sensors: selection and application, Marcel Dekker Inc., New York, 1991.Google Scholar
  18. [18]
    Y. Kanda, “piezoresistance effect of silicon”, Sensors and Actuators A, Vol. 28, 1991, pp. 83–91.CrossRefGoogle Scholar
  19. [19]
    S. Kim and K.D. Wise, “Temperature sensitivity in silicon piezoresistive pressure transducers”, IEEE Trans. Electron Devices, Vol. ED-38, 1983, pp. 802–810.Google Scholar
  20. [20]
    M. Gunawan, G.C.M. Meijer, J. Fonderie, and J.H. Huijsing, “A curvature-corrected low-voltage bandgap reference”, IEEE Journal of Solid-State Circuits, Vol. 28, No. 6, 1993, pp. 667–670.CrossRefGoogle Scholar
  21. [21]
    L.G. Fasoli, F.R. Riedijk, and J.H. Huijsing, “A general circuit for resistive bridge sensors with bus compatible output”, Proceedings IMTC’96, June 1996, pp. 1205–1210.Google Scholar
  22. [22]
    R. v.d. Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters, Kluwer Academic Publishers, Boston/Dordrecht/ London, 1994.CrossRefGoogle Scholar
  23. [23]
    P.R. Gray, B.A. Wooley, and R.W. Brodersen, edits., Analog MOS Integrated Circuits II, IEEE press, 1988.Google Scholar
  24. [24]
    J.C. Candy and G.C. Temes, Oversampled Delta-Sigma Data Converters, IEEE Press, New York, 1992.Google Scholar
  25. [25]
    F.R. Riedijk, Integrated Smart Sensors with Digital Bus Interface, PhD Thesis, Delft University Press, Delft, 1993.Google Scholar
  26. [26]
    B.E. Boser, Design and implementation of oversampled analog-todigital converters, PhD Thesis, Stanford University, 1989.Google Scholar
  27. [27]
    P.J.A. Naus and E.C. Dijkmans, “Low signal-level distortion in sigma-delta modulators”Google Scholar
  28. [28]
    O. Feely and L.O. Chua, “The effect of integrator leak in sigma-delta Modulation”, IEEE Trans. Circuits and Systems, Vol. 38, No. 11, November 1991, pp. 1293–1306.CrossRefzbMATHGoogle Scholar
  29. [29]
    R.W. Adams, “Design and implementation of an audio 18-bit analog-to-digital converter using oversampling techniques”, J. Audio Eng. Soc., Vol. 34, No. 3, March 1986, pp. 153–166.Google Scholar
  30. [30]
    A.W. van Herwaarden and R.F. Wolffenbuttel, “Introduction to sensors compatible with microprocessors”, Microprocessors and Microsystems, Vol. 14, No. 2, 1990, pp. 72–82.Google Scholar
  31. [31]
    E.J. Hogenbirk, H.J. Verhoeven, F.R. Riedijk, and J.H. Huijsing, “an integrated smart sensor for flow and temperature with i2c bus interface based on thermal sigma-delta modulation”, Proceedings Transducers 1993,Yokohama, Japan, pp.792–795.Google Scholar
  32. [32]
    J.H. Huijsing, R.F. Tuk, F.R. Riedijk, M. Bredius, and G. v.d. Horn, Mixed Analog/Digital Two-Line Bus System, Dutch Patent Application, Nr.93201595–1, June 1993.Google Scholar
  33. [33]
    F.R. Riedijk R.F. Tuk, M. Bredius, and J.H. Huijsing, “A bus-controlled interface environment for an accurate read-out and flexible interconnection of integrated smart sensors in local systems”, Proceedings Transducers 1993,Yokohama, Japan, pp.327–330.Google Scholar
  34. [34]
    M. Bredius, F.R. Riedijk, G. v.d. Horn, and J.H. Huijsing, “The Integrated Smart Sensor (IS2) bus”, Proceedings Sensor Expo West, Philadelphia, USA, 1993, pp. 243–247.Google Scholar
  35. [35]
    F.R. Riedijk and J.H. Huijsing, “Sensor interface environment based on sigma-delta conversion and serial bus interface”, SENSORS, journal of applied sensing technology, Sensors Expo issue, April 1996.Google Scholar
  36. [36]
    F.M.L. van der Goes and G.C.M. Meijer, “A novel low-cost and accurate multi-purpose sensor interface with continuous auto-calibration”, Proceedings IMTC’96, June 1996, pp. 782–786.Google Scholar
  37. [37]
    P.C. de Jong and G.C.M. Meijer, “Absolute voltage amplification using dynamic feedback control”, Proceedings IMTC’96, June 1996, pp. 67–71.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Gert van der Horn
    • 1
  • Johan L. Huijsing
    • 1
  1. 1.University of DelftThe Netherlands

Personalised recommendations