Advertisement

Longest Fragment First Algorithms for Data Compression

  • József Békési
  • Gábor Galambos
  • Timo Raita
Part of the Applied Optimization book series (APOP, volume 13)

Abstract

On—line text—compression algorithms are considered, where compression is done by substituting substrings of the text according to some fixed dictionary (code book). Due to the long running time of optimal compression algorithms, several on—line heuristics have been introduced in the literature. In this paper we analyse two modified version of an old algorithm introduced by Shuegraf and Heaps [9]. We will investigate the worst case behaviour of this Longest Fragment First (LFF) algorithm for several types of special dictionaries.

Keywords

Data Compression Greedy Heuristic Arithmetic Code Longe Fragment Source Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Békési, G. Galambos, U. Pferschy, G. J. Woeginger, The Fractional Greedy Algorithm for Data Compression, Computing 56 (1), 1996, 29–46.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Békési, G. Galambos, U. Pferschy, G. J. Woeginger, Operations Research Proceedings, Ed. U. Derigs, A. Bachem, A. Drexl, Berlin, 1994, 76–80.Google Scholar
  3. 3.
    R. M. Fano, Transmission of information, Wiley, New York, 1961.Google Scholar
  4. 4.
    M. E. Gonzalez-Smith and J. A. Storer, Parallel algorithms for data compression, Journal of the ACM 32, 1985, 344–373.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    D. A Huffman, A method for the construction od minimum-redundancy codes, Proc Institute of Electrical and Radio Engineers, 40 (9), 1952, 1098–1101.Google Scholar
  6. 6.
    F. Jelinek, K. Schneider, On variable length-to-block coding, IEEE-IT 18, 1972, 765–774MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. Katajainen and T. Raita, An analysis of the longest matching and the greedy heuristic in text encoding, Journal of the ACM 39, 1992, 281–294.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    J. J. Risassen, G. G. Langdon, Arithmetic coding, IBM J. Research and Development, 23 (2), 1979, 149–162.CrossRefGoogle Scholar
  9. 9.
    E. J. Schuegraf and H. S. Heaps, A comparison of algorithms for data base compression by use of fragments as language elements, Inf. Stor. Ret. 10, 1974, 309–319.CrossRefGoogle Scholar
  10. 10.
    J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inf. Theory 23, 1977, 337–343.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • József Békési
    • 1
  • Gábor Galambos
    • 1
  • Timo Raita
    • 2
  1. 1.Department of Computer ScienceJuhász Gyula Teacher Training CollegeSzegedHungary
  2. 2.Department of Computer ScienceUniversity of TurkuTurkuFinland

Personalised recommendations