Skip to main content

Ordering Heuristics in Interior Point LP Methods

  • Chapter
New Trends in Mathematical Programming

Part of the book series: Applied Optimization ((APOP,volume 13))

Abstract

The success of the implementation of the normal equations approach of interior point methods (IPM) for linear programming depends on the quality of its analysis phase, i.e. reordering for sparsity. The goal of this analysis is to find a permutation matrix P such that the Cholesky factor of PAD 2 A T P T is the sparsest possible. In practice, heuristics are used to solve this problem because finding an optimal permutation is an NP-complete problem. Two such heuristics, namely the minimum degree and the minimum local fill—in orderings are particularly useful in the context of IPM implementations. In this paper a parametric set of symbolic orderings is presented, which connects these two major approaches. It will be shown that in the “neighborhood” of the minimum degree ordering a practically efficient method exist. Implementation details will be discussed as well, and on a demonstrative set of linear programming test problems the performance of the new method will be compared with Sparspak’s GENQMD subroutine which was for a long time public accesible from NETLIB, and with the minimum local fill—in ordering implementation of CPLEX version 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. D. Andersen, J. Gondzio, Cs. Mészáros and X. Xu. Implementation of interior point methods for large scale linear programming. In T. Terlaky, editor, Interior point methods in mathematical programming. Kluwer Academic Publisher, 1996.

    Google Scholar 

  2. I. S. Duff, A. M. Erisman and J. K. Reid. Direct methods for sparse matrices. Oxford University Press, New York, 1986.

    MATH  Google Scholar 

  3. N. G. Esmond and B. W. Peyton. A supernodal Cholesky factorization algorithm for shared-memory multiprocessors. SIAM Journal on Scientific Computing, 2 (14): 761–769, 1993.

    Google Scholar 

  4. D. M. Gay. Electronic mail distribution of linear programming test problems. COAL Newsletter, 13: 10–12, 1985.

    Google Scholar 

  5. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

    MATH  Google Scholar 

  6. A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm. SIAM Rev., 31: 1–19, 1989.

    MathSciNet  MATH  Google Scholar 

  7. A. George and D. R. McIntyre. On the application of the minimum degree ordering to finite elements systems. SIAM J. Numer. Anal., 15: 90–111, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Gondzio. Multiple centrality corrections in a primal-dual method for linear programming. Technical Report 1994.20, Logilab, HEC Geneva, Section of Management Studies, University of Geneva, November 1994. Revised May 1995, to appear in Computational Optimization and Applications.

    Google Scholar 

  9. J. Gondzio and T. Terlaky. A computational view of interior point methods for linear programming. In J. Beasley, editor, Advances in linear and integer programming. Oxford University Press, Oxford, England, 1995.

    Google Scholar 

  10. J. W. H. Liu. Modification of the minimum-degree algorithm by multiple elimination. ACM Trans. Math. Software, 11(2):141–153,1985.

    Google Scholar 

  11. I. J. Lustig, R. E. Marsten and D. F. Shanno. Computational experience with a primal-dual interior point method for linear programming. Linear Algebra Appl., 20: 191–222, 1991.

    Article  MathSciNet  Google Scholar 

  12. I. J. Lustig, R. E. Marsten and D. F. Shanno Interior point methods for linear programming: Computational state of the art. Technical report sor 92–17, Department of Civil engineering and Operations Research, Princeton University, 1992.

    Google Scholar 

  13. I. J. Lustig, R. E. Marsten and D. F. Shanno Interior point methods for linear programming: Computational state of the art. ORSA Journal on Comput., 6 (1): 1–15, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. M. Markowitz. The elimination form of the inverse and its application to linear programming. Management Sci., 3: 255–269, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Maros and Cs. Mészâros. The role of the augmented system in interior point methods. Technical Report TR/06/95, Brunel University, Department of Mathematics and Statistics, London, 1995.

    Google Scholar 

  16. S. Mehrotra. Handling free variables in interior methods. Technical Report 91–06, Department of Industrial Engineering and Managment Sciences, Northwestern University, Evanston, USA., March 1991.

    Google Scholar 

  17. Cs. Mészáros. Fast Cholesky factorization for interior point methods of linear programming. Computers & Mathematics with Applications, 31 (4/5): 49–54, 1996.

    Article  MATH  Google Scholar 

  18. E. Rothberg and A. Gupta. Efficient sparse matrix factorization on high-performance workstations–exploiting the memory hierarchy. ACM Trans. Math. Software, 17 (3): 313–334, 1991.

    Article  MATH  Google Scholar 

  19. U. H. Suhl and L. M. Suhl. Computing sparse LU factorizations for large-scale linear programming bases. ORSA Journal on Comput., 2 (4): 325–335, 1990.

    Article  MATH  Google Scholar 

  20. W. F. Tinney and J. W. Walker. Direct solution of sparse network equations by optimally ordered triangular factorization. In Proceedings of IEEE, volume 55, pages 1801–1809. 1967.

    Google Scholar 

  21. M. J. Todd. Exploiting special structure in Karmarkar’s linear programming algorithm. Mathematical Programming, 41: 81–103, 1988.

    Article  MathSciNet  Google Scholar 

  22. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods, pages 77–79, 1981.

    Google Scholar 

  23. Z. Zlatev. On some pivotal strategies in Gaussian elimimination by sparse techniques. SIAM Journal on Numerical Analysis, 17 (1): 18–30, 1980.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mészáros, C. (1998). Ordering Heuristics in Interior Point LP Methods. In: Giannessi, F., Komlósi, S., Rapcsák, T. (eds) New Trends in Mathematical Programming. Applied Optimization, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2878-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2878-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4793-2

  • Online ISBN: 978-1-4757-2878-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics