Skip to main content

Connections between Semi-Infinite and Semidefinite Programming

  • Chapter
Semi-Infinite Programming

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 25))

Abstract

Some interesting semi-infinite optimization problems can be reduced to semidefinite optimization problems, and hence solved efficiently using recent interior-point methods. In this paper we discuss semidefinite optimization from this perspective and illustrate the connections between semidefinite optimization and semi-infinite programming with examples and applications from computational geometry, statistics, and systems and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. C. Atkinson and A. N. Donev. Optimum Experiment Designs. Oxford Statistical Science Series. Oxford University Press, 1992.

    Google Scholar 

  2. F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, February 1995.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Anderson and S. Vongpanitlerd. Network Analysis and Synthesis: A Modern Systems Theory Approach. Prentice-Hall, 1973.

    Google Scholar 

  4. E. R. Barnes. An algorithm for separating patterns by ellipsoids. IBM Journal of Research and Development, 26:759–764, 1982.

    Article  MATH  Google Scholar 

  5. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory, volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, June 1994.

    Book  Google Scholar 

  6. D. Bertsimas. The achievable region method in the optimal control of queuing systems; formulations, bounds and policies. Queueing Systems, 21:337–389, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis. Optimization of multiclass queueing networks:polyhedral and nonlinear characterizations of achievable performance. Ann. Appl. Prob., 4(l):43–75, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. L. Chernousko. State Estimation for Dynamic Systems. CRC Press, Boca Raton, Florida, 1994.

    Google Scholar 

  9. G. Dahlquist, S. C. Eisenstat, and G. H. Golub. Bounds for the error of linear systems of equations using the theory of moments. Journal of Mathematical Analysis and Applications, 37:151–166, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Danzer, B. Grunbaum, and V. Klee. Helly’s theorem and its relatives. In V. L. Klee, editor, Convexity, volume 7 of Proceedings of Symposia in Pure Mathematics, pages 101–180. American Mathematical Society, 1963.

    Chapter  Google Scholar 

  11. V. V. Fedorov. Theory of Optimal Experiments. Academic Press, 1971.

    MATH  Google Scholar 

  12. M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, 1988.

    Book  MATH  Google Scholar 

  13. F. John. Extremum problems with inequalities as subsidiary conditions. In J. Moser, editor, Fritz John, Collected Papers, pages 543–560. Birkhauser, Boston, Massachussetts, 1985.

    Chapter  Google Scholar 

  14. M. G. Krein and A. A. Nudelman. The Markov Moment Problem and Extremal Problems, volume 50 of Translations of Mathematical Monographs. American Mathematical Society, Providence, Rhode Island, 1977.

    Google Scholar 

  15. S. Karlin and W. J. Studden. Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley-Interscience, 1966.

    MATH  Google Scholar 

  16. J. B. Lasserre. Linear programming with positive semi-definite matrices. Technical Report LAAS-94099, Laboratoire d’Analyse et d’Architecture des Systèmes du CNRS, 1995.

    Google Scholar 

  17. A. S. Lewis and M. L. Overton. Eigenvalue optimization. Acta Numerica, pages 149–190, 1996.

    Google Scholar 

  18. Yu. Nesterov and A. Nemirovsky. Interior-Point Polynomial Methods in Convex Programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, 1994.

    Book  Google Scholar 

  19. G. Pataki. Cone-LP’s and semi-definite programs: facial structure, basic solutions, and the simplex method. Technical report, GSIA, Carnegie-Mellon University, 1995.

    Google Scholar 

  20. F. Pukelsheim. Optimal Design of Experiments. Wiley, 1993.

    MATH  Google Scholar 

  21. L. Pronzato and E. Walter. Minimum-volume ellipsoids containing compact sets: Application to parameter bounding. Automatica, 30(11):1731–1739, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Rimon and S. Boyd. Obstacle collision detection using best ellipsoid fit. Journal of Intelligent and Robotic Systems, pages 1–22, December 1996.

    Google Scholar 

  23. P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. Wiley, 1987.

    Book  MATH  Google Scholar 

  24. R. T. Rockafellar. Convex Analysis. Princeton Univ. Press, Princeton, second edition, 1970.

    MATH  Google Scholar 

  25. J. B. Rosen. Pattern separation by convex programming. Journal of Mathematical Analysis and Applications, 10:123–134, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Schwerer. A Linear Programming Approach to the Steady-State Analysis of Markov Processes. PhD thesis, Graduate School of Business, Stanford University, 1996. Draft.

    Google Scholar 

  27. D. M. Titterington. Optimal design: some geometric aspects of D-optimality. Biometrika, 62:313–320, 1975.

    MathSciNet  MATH  Google Scholar 

  28. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, March 1996.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear matrix inequality constraints. SIAM J. on Matrix Analysis and Applications, April 1998. To appear.

    Google Scholar 

  30. S.-P. Wu and S. Boyd. SDPSOL: A Parser/Solver for Semidefinite Programming and Determinant Maximization Problems with Matrix Structure. User’s Guide, Version Beta. Stanford University, June 1996.

    Google Scholar 

  31. S.-P. Wu, S. Boyd, and L. Vandenberghe. FIR filter design via semidefinite programming and spectral factorization. In Proc. IEEE Conf. on Decision and Control, pages 271–276, 1996.

    Google Scholar 

  32. S.-P. Wu, S. Boyd, and L. Vandenberghe. Magnitude filter design via spectral factorization and convex optimization. Applied and Computational Control, Signals and Circuits, 1997. To appear.

    Google Scholar 

  33. S.-P. Wu, L. Vandenberghe, and S. Boyd. Maxdet: Software for Determinant Maximization Problems. User’s Guide, Alpha Version. Stanford University, April 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vandenberghe, L., Boyd, S. (1998). Connections between Semi-Infinite and Semidefinite Programming. In: Reemtsen, R., Rückmann, JJ. (eds) Semi-Infinite Programming. Nonconvex Optimization and Its Applications, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2868-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2868-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4795-6

  • Online ISBN: 978-1-4757-2868-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics