Numerical Methods for Semi-Infinite Programming: A Survey

  • Rembert Reemtsen
  • Stephan Görner
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 25)

Abstract

This paper provides a review of numerical methods for the solution of smooth semi-infinite programming problems. Fundamental and partly new results on level sets, discretization, and local reduction are presented in a primary section. References to algorithms for real and complex continuous Chebyshev approximation are given for historical reasons and in order to point out connections.

Keywords

Discretization Method Simplex Algorithm Exact Penalty Function Reduction Base Method Haar Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. D. Andersen and E. Christiansen. Limit analysis with the dual affine scaling algorithm. J. Comp. Appl. Math., 59:233–243, 1995.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. J. Anderson. A new primal algorithm for semi-infinite linear programming. In [5], pages 108–122, 1985.Google Scholar
  3. [3]
    E. J. Anderson and A. S. Lewis. An extension of the simplex algorithm for semi-infinite linear programming. Math. Programming, 44:247–269, 1989.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. J. Anderson and P. Nash. Linear Programming in Infinite-Dimensional Spaces. John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1987.MATHGoogle Scholar
  5. [5]
    E. J. Anderson and A. B. Philpott, editors. Infinite Programming. Lecture Notes in Econom. and Math. Systems 259. Springer, Berlin-Heidelberg-New York-Tokyo, 1985.MATHGoogle Scholar
  6. [6]
    M. D. Ašić and V. V. Kovačević-Vujčić. An interior semi-infinite programming method. J. Optim. Theory Appl., 59:353–367, 1988.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts, 1995.Google Scholar
  8. [8]
    D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Belmont, Massachusetts, 1996.Google Scholar
  9. [9]
    L. Bittner. Das Austauschverfahren der linearen Tschebyscheff-Approximation bei nicht erfüllter Haarscher Bedingung. Z. Angew. Math. Mech., 41:238–256, 1961.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. W. Blankenship and J. E. Falk. Infinitely constrained optimization problems. J. Optim. Theory Appl., 19:261–281, 1976.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    H.-P. Blatt, U. Kaiser, and B. Ruffer-Beedgen. A multiple exchange algorithm in convex programming. In J.-B. Hiriart-Urruty, W. Oettli, and J. Stoer, editors, Optimization: Theory and Applications, pages 113–130. Marcel Dekker, New York-Basel, 1983.Google Scholar
  12. [12]
    E. Blum and W. Oettli. Mathematische Optimierung. Springer, Berlin, 1975.MATHCrossRefGoogle Scholar
  13. [13]
    P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica, 1–51, 1995.Google Scholar
  14. [14]
    P. T. Boggs, J. W. Tolle, and P. Wang. On the local convergence of quasi-Newton methods for constrained optimization. SIAM J. Control Optim., 20:161–171, 1982.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Burke and S.-P. Han. A robust sequential quadratic programming method. Math. Programming, 43:277–303, 1989.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    D. Burnside and T. W. Parks. Optimal design of FIR filters with the complex Chebyshev error criteria. IEEE Trans. on Signal Processing, 43:605–616, 1995.CrossRefGoogle Scholar
  17. [17]
    C. Carasso and P. J. Laurent. Un algorithme de minimisation en chaine en optimisation convexe. SIAM J. Control Optim., 16:209–235, 1978.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    R. M. Chamberlain, M. J. D. Powell, C. Lemaréchal, and H. C. Pedersen. The watchdog technique for forcing convergence in algorithms for constrained optimization. Math. Programming Study, 16:1–17, 1982.MATHCrossRefGoogle Scholar
  19. [19]
    E. W. Cheney. Introduction to Approximation Theory. Chelsea, New York, NY, 2nd edition, 1982.MATHGoogle Scholar
  20. [20]
    E. W. Cheney and A. A. Goldstein. Newton’s method for convex programming and Tchebycheff approximation. Numer. Math., 1:253–268, 1959.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Christiansen and K. O. Kortanek. Computing material collapse displacement fields on a Cray X-MP/48 by the LP primal affine scaling algorithm. Annals Oper. Res., 22:355–376, 1990.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. R. Conn and N. I. M. Gould. An exact penalty function for semi-infinite programming. Math. Programming, 37:19–40, 1987.MATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    I. D. Coope and C. J. Price. A two parameter exact penalty function for nonlinear programming. J. Optim. Theory Appl., 83:49–61, 1994.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    I. D. Coope and C. J. Price. Exact penalty function methods for nonlinear semi-infinite programming. This volume.Google Scholar
  25. [25]
    I. D. Coope and G. A. Watson. A projected Lagrangian algorithm for semi-infinite programming. Math. Programming, 32:337–356, 1985.MATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, New York, 1975.MATHGoogle Scholar
  27. [27]
    V. F. Dem’yanov and V. N. Malozemov. Introduction to Minimax. John Wiley &; Sons, 1974.Google Scholar
  28. [28]
    D. Den Hertog, J. Kaliski, C. Roos, and T. Terlaky. A logarithmic barrier cutting plane method for convex programming. Annals Oper. Res., 58:69–98, 1995.MATHCrossRefGoogle Scholar
  29. [29]
    J. E. Dennis Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs, NJ, 1983.MATHGoogle Scholar
  30. [30]
    I. I. Dikin. Iterative solution of problems of linear and quadratic programming. Soviet Math. Doklady, 8:674–675, 1967.MATHGoogle Scholar
  31. [31]
    J. J. Dinkel, W. H. Elliott, and G. A. Kochenberger. Computational aspects of cutting-plane algorithms for geometric programming problems. Math. Programming, 13:200–220, 1977.MATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    C. B. Dunham and J. Williams. Rate of convergence of discretization in Chebyshev approximation. Math. Comp., 37:135–139, 1981.MATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    B. C. Eaves and W. I. Zangwill. Generalized cutting plane algorithms. SIAM J. Control, 9:529–542, 1971.MathSciNetCrossRefGoogle Scholar
  34. [34]
    U. Eckhardt. Semi-infinite quadratic programming. OR Spektrum, 1:51–55, 1979.MATHCrossRefGoogle Scholar
  35. [35]
    J. Elzinga and T. G. Moore. A central cutting plane algorithm for the convex programming problem. Math. Programming, 8:134–145, 1975.MATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    S.-C. Fang, C.-J. Lin, and S.-Y. Wu. On solving convex quadratic semi-infinite programming problems. Optimization, 31:107–125, 1994.MATHMathSciNetCrossRefGoogle Scholar
  37. [37]
    S.-C. Fang and S. Puthenpura. Linear Optimization and Extensions. Prentice Hall, Englewood Cliffs, NJ, 1993.Google Scholar
  38. [38]
    S.-C. Fang, J. R. Rajasekera, and H.-S. J. Tsao. Entropy Optimization and Mathematical Programming. Kluwer, Boston-London-Dordrecht, 1997.MATHCrossRefGoogle Scholar
  39. [39]
    S.-C. Fang and H. S. J. Tsao. Linear programming with entropic perturbation. ZOR, 37:171–186, 1993.MATHMathSciNetGoogle Scholar
  40. [40]
    S.-C. Fang and H.-S. J. Tsao. An efficient computational procedure for solving entropy optimization problems with infinitely many linear constraints. J. Comp. Appl. Math., 72:127–139, 1996.MATHMathSciNetCrossRefGoogle Scholar
  41. [41]
    S.-C. Fang and S.-Y. Wu. An entropic path-following approach for linear semi-infinite programming problems. In Mathematics Today Vol. XII-A, pages 1–16. 1994.Google Scholar
  42. [42]
    S.-C. Fang and S.-Y. Wu. An inexact approach to solving linear semi-infinite programming problems. Optimization, 28:291–299, 1994.MATHMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. C. Ferris and A. B. Philpott. An interior point algorithm for semi-infinite linear programming. Math. Programming, 43:257–276, 1989.MATHMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. C. Ferris and A.B. Philpott. On affine scaling and semi-infinite programming. Math. Programming, 56:361–364, 1992.MATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    A. V. Fiacco and K. O. Kortanek, editors. Semi-Infinite Programming and Applications. Lecture Notes in Econom. and Math. Systems 215. Springer, Berlin-Heidelberg-New York-Tokyo, 1983.MATHGoogle Scholar
  46. [46]
    B. Fischer and J. Modersitzki. An algorithm for complex linear approximation based on semi-infinite programming. Numerical Algorithms, 5:287–297, 1993.MATHMathSciNetCrossRefGoogle Scholar
  47. [47]
    R. Fletcher. Practical Methods of Optimization, volume 2, Constrained Optimization. John Wiley & Sons, Chichester-New York-Brisbane-Toronto, 1981.MATHGoogle Scholar
  48. [48]
    J. Fülöp. A semi-infinite programming method for approximating load duration curves by polynomials. Computing, 49:201–212, 1992.MATHMathSciNetCrossRefGoogle Scholar
  49. [49]
    K. Georg and R. Hettich. On the numerical stability of the simplex algorithm: The package LINOP. Technical report, Universität Trier, Trier, Germany, 1985.Google Scholar
  50. [50]
    P. E. Gill and W. Murray. The computation of Lagrange multiplier estimates for constrained optimization. Math. Programming, 17:32–60, 1979.MATHMathSciNetCrossRefGoogle Scholar
  51. [51]
    P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, New York, 1981.MATHGoogle Scholar
  52. [52]
    D. R. Gimlin, R. K. Cavin, and M. C. Budge. A multiple exchange algorithm for calculation of best restricted approximations. SIAM J. Numer. Anal., 11:219–231, 1974.MATHMathSciNetCrossRefGoogle Scholar
  53. [53]
    K. Glashoff and S.-Å. Gustafson. Einführung in die lineare Optimierung. Wissenschaftliche Buchgesellschaft, Darmstadt, 1978.MATHGoogle Scholar
  54. [54]
    K. Glashoff and S.-Å. Gustafson. Linear Optimization and Approximation. Springer, New York-Heidelberg-Berlin, 1983.MATHCrossRefGoogle Scholar
  55. [55]
    K. Glashoff and K. Roleff. A new method for Chebyshev approximation of complex-valued functions. Math. Comp., 36:233–239, 1981.MATHMathSciNetCrossRefGoogle Scholar
  56. [56]
    M. A. Goberna and V. Jornet. Geometric fundamentals of the simplex method in semi-infinite programming. OR Spektrum, 10:145–152, 1988.MATHMathSciNetCrossRefGoogle Scholar
  57. [57]
    M. A. Goberna and M. A. Lopez. Reduction and discrete approximation in linear semi-infinite programming. Optimization, 18:643–658, 1987.MATHMathSciNetCrossRefGoogle Scholar
  58. [58]
    M. A. Goberna and M. A. Lopez. Optimal value function in semi-infinite programming. J. Optim. Theory Appl., 59:261–279, 1988.MATHMathSciNetGoogle Scholar
  59. [59]
    M. A. Goberna and M. A. Lopez. Linear Semi-Infinite Optimization. John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1998.MATHGoogle Scholar
  60. [60]
    D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex quadratic programs. Math. Programming, 27:1–33, 1983.MATHMathSciNetCrossRefGoogle Scholar
  61. [61]
    C. Gonzaga and E. Polak. On constraint dropping schemes and optimality functions for a class of outer approximations algorithms. SIAM J. Control Optim., 17:477–493, 1979.MATHMathSciNetCrossRefGoogle Scholar
  62. [62]
    C. Gonzaga, E. Polak, and R. Trahan. An improved algorithm for optimization problems with functional inequality constraints. IEEE Trans. Automat. Contr., AC-25:49–54, 1980.MathSciNetCrossRefGoogle Scholar
  63. [63]
    S. Görner. Ein Hybridverfahren zur Lösung nichtlinearer semi-infiniter Optimierungsprobleme. PhD thesis, Technische Universität Berlin, Berlin, Germany, 1997.Google Scholar
  64. [64]
    G. Gramlich. SQP-Methoden für semiinfinite Optimierungsprobleme. PhD thesis, Universität Trier, Trier, Germany, 1990.Google Scholar
  65. [65]
    G. Gramlich, R. Hettich, and E. W. Sachs. Local convergence of SQP-methods in semi-infinite programming. SIAM J. Optim., 5:641–658, 1995.MATHMathSciNetCrossRefGoogle Scholar
  66. [66]
    P. R. Gribik. A central-cutting plane algorithm for semi-infinite programming problems. In [83], pages 66–82, 1979.CrossRefGoogle Scholar
  67. [67]
    P. R. Gribik and D. N. Lee. A comparison of two central-cutting-plane algorithms for prototype geometric programming problems. In W. Oettli and F. Steffens, editors, Methods of Operations Research 31, pages 275–287. Anton Hain, Mannheim, Germany, 1978.Google Scholar
  68. [68]
    R. Grigorieff and R. Reemtsen. Discrete approximations of minimization problems. I. Theory. Numer. Fund. Anal. Optim., 11:701–719, 1990.MATHMathSciNetCrossRefGoogle Scholar
  69. [69]
    R. Grigorieff and R. Reemtsen. Discrete approximations of minimization problems. II. Applications. Numer. Fund. Anal. Optim., 11:721–761, 1990.MATHMathSciNetCrossRefGoogle Scholar
  70. [70]
    S.-Å. Gustafson. On the computational solution of a class of generalized moment problems. SIAM J. Numer. Anal., 7:343–357, 1970.MATHMathSciNetCrossRefGoogle Scholar
  71. [71]
    S.-Å. Gustafson. Nonlinear systems in semi-infinite programming. In G. B. Byrne and C. A. Hall, editors, Numerical Solution of Nonlinear Algebraic Systems, pages 63–99. Academic Press, London-New York, 1973.Google Scholar
  72. [72]
    S.-Å. Gustafson. On numerical analysis in semi-infinite programming. In [83], pages 51–65, 1979.MATHCrossRefGoogle Scholar
  73. [73]
    S.-Å. Gustafson. A three-phase algorithm for semi-infinite programs. In [45], pages 138–157, 1983.Google Scholar
  74. [74]
    S.-Å. Gustafson and K. Kortanek. Numerical treatment of a class of semi-infinite programming problems. Nav. Res. Log. Quart., 20:477–504, 1973.MATHMathSciNetCrossRefGoogle Scholar
  75. [75]
    S.-Å. Gustafson and K. O. Kortanek. Numerical solution of a class of convex programs. Meth. Oper. Res., 16:138–149, 1973.Google Scholar
  76. [76]
    S.-Å. Gustafson and K. O. Kortanek. Semi-infinite programming and applications. In A. Bachern, M. Grötschel, and B. Korte, editors, Mathematical Programming. The State of the Art, pages 132–157. Springer, Berlin-Heidelberg-New York, 1982.Google Scholar
  77. [77]
    E. Haaren-Retagne. A Semi-Infinite Programming Algorithm for Robot Trajectory Planning. PhD thesis, Universität Trier, Trier, Germany, 1992.Google Scholar
  78. [78]
    S.-P. Han. A globally convergent method for nonlinear programming. J. Optim. Theory Appl., 22:297–309, 1977.MATHCrossRefGoogle Scholar
  79. [79]
    S.-P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear programming. Math. Programming, 17:251–269, 1979.MATHMathSciNetCrossRefGoogle Scholar
  80. [80]
    R. Hettich. A Newton method for nonlinear Chebyshev approximation. In R. Schaback and K. Scherer, editors, Approximation Theory, pages 222–236. Springer, Berlin-Heidelberg-New York, 1976.CrossRefGoogle Scholar
  81. [81]
    R. Hettich. A comparison of some numerical methods for semi-infinite programming. In [83], pages 112–125, 1979.CrossRefGoogle Scholar
  82. [82]
    R. Hettich. Numerical methods for nonlinear Chebyshev approximation. In G. Meinardus, editor, Approximation in Theorie und Praxis, pages 139–156. B.I.-Wissenschaftsverlag, Mannheim-Wien-Zürich, 1979.Google Scholar
  83. [83]
    R. Hettich, editor. Semi-Infinite Programming. Lecture Notes in Contr. and Inform. Sci. 15. Springer, Berlin-Heidelberg-New York, 1979.MATHGoogle Scholar
  84. [84]
    R. Hettich. A review of numerical methods for semi-infinite optimization. In [45], pages 158–178, 1983.Google Scholar
  85. [85]
    R. Hettich. An implementation of a discretization method for semi-infinite programming. Math. Programming, 34:354–361, 1986.MATHMathSciNetCrossRefGoogle Scholar
  86. [86]
    R. Hettich and G. Gramlich. A note on an implementation of a method for quadratic semi-infinite programming. Math. Programming, 46:249–254, 1990.MATHMathSciNetCrossRefGoogle Scholar
  87. [87]
    R. Hettich and H. Jongen. Semi-infinite programming: conditions of optimality and applications. Springer Lecture Notes in Control and Information Science, 7:1–11, 1978.MathSciNetCrossRefGoogle Scholar
  88. [88]
    R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods, and applications. SIAM Review, 35:380–429, 1993.MATHMathSciNetCrossRefGoogle Scholar
  89. [89]
    R. Hettich and W. van Honstede. On quadratically convergent methods for semi-infinite programming. In [83], pages 97–111, 1979.CrossRefGoogle Scholar
  90. [90]
    R. Hettich and P. Zencke. Superlinear konvergente Verfahren für semi-infinite Optimierungsprobleme im stark eindeutigen Fall. In L. Collatz, G. Meinardus, and W. Wetterling, editors, Konstruktive Methoden der finiten nichtlinearen Optimierung, pages 103–120. Birkhäuser, Basel-Stuttgart, 1980.Google Scholar
  91. [91]
    R. Hettich and P. Zencke. Numerische Methoden der Approximation und semiinfiniten Optimierung. Teubner, Stuttgart, 1982.Google Scholar
  92. [92]
    K.-H. Hoffmann and A. Klostermair. A semi-infinite linear programming procedure and applications to approximation problems in optimal control. In G. G. Lorentz et al., editors, Approximation Theory II, pages 379–389. Academic Press, New York-San Francisco-London, 1976.Google Scholar
  93. [93]
    R. Horst. Deterministic methods in constrained global optimization: Some recent advances and new fields of application. Nav. Res. Log., 37:433–471, 1990.MATHMathSciNetCrossRefGoogle Scholar
  94. [94]
    H. Hu. A one-phase algorithm for semi-infinite linear programming. Math. Programming, 46:85–103, 1990.MATHMathSciNetCrossRefGoogle Scholar
  95. [95]
    H. Hu. A globally convergent method for semi-infinite linear programming. J. Global Optim., 8:189–199, 1996.MATHMathSciNetCrossRefGoogle Scholar
  96. [96]
    M. Huth. Superlinear konvergente Verfahren zur Lösung semi-infiniter Optimierungsaufgaben — Eine Hybridmethode. Dissertation (A), Pädagogische Hochschule Halle “N.K.Krupskaja”, Halle, DDR, 1987.Google Scholar
  97. [97]
    M. Huth and R. Tichatschke. A hybrid method for semi-infinite programming problems. In U. Rieder et al., editors, Methods of Operations Research 62, pages 79–90. Anton Hain, Frankfurt, 1990.Google Scholar
  98. [98]
    IMSL Math/Library. IMSL Inc., Houston, TX, 1989.Google Scholar
  99. [99]
    L. S. Jennings and K. L. Teo. A computational algorithm for functional inequality constrained optimization problems. Automatica, 26:371–375, 1990.MATHMathSciNetCrossRefGoogle Scholar
  100. [100]
    K. Jittorntrum. Solution point differentiability without strict complementarity in nonlinear programming. Math. Programming, 21:127–138, 1984.MATHMathSciNetGoogle Scholar
  101. [101]
    H. T. Jongen, P. Jonker, and F. Twilt. Critical sets in parametric optimization. Math. Programming, 34:333–353, 1986.MATHMathSciNetCrossRefGoogle Scholar
  102. [102]
    H. T. Jongen, P. Jonker, and F. Twilt. One-parameter families of optimization problems: Equality constraints. J. Optim. Theory Appl., 48:141–161, 1986.MATHMathSciNetGoogle Scholar
  103. [103]
    D. B. Judin and E. G. Golstein. Lineare Optimierung I. Akademieverlag, Berlin, 1968.MATHGoogle Scholar
  104. [104]
    U. Jürgens. Zur Konvergenz semi-infiniter Mehrfachaustauschalgorithmen. PhD thesis, Universität Hamburg, Hamburg, Germany, 1986.Google Scholar
  105. [105]
    J. Kaliski, D. Haglin, C. Roos, and T. Terlaky. Logarithmic barrier decomposition methods for semi-infinite programming. Intern. Trans. Oper. Res. (in print).Google Scholar
  106. [106]
    A. Kaplan and R. Tichatschke. Adaptive methods of solving ill-posed semi-infinite convex optimization problems. Soviet Math. Doklady, 45:119–123, 1992.MathSciNetGoogle Scholar
  107. [107]
    A. Kaplan and R. Tichatschke. A regularized penalty method for solving convex semi-infinite programs. Optimization, 26:215–228, 1992.MATHMathSciNetCrossRefGoogle Scholar
  108. [108]
    A. Kaplan and R. Tichatschke. Variational inequalities and convex semi-infinite programming problems. Optimization, 26:187–214, 1992.MATHMathSciNetCrossRefGoogle Scholar
  109. [109]
    A. Kaplan and R. Tichatschke. Iterative processes for solving incorrect convex variational problems. J. Global Optim., 3:243–255, 1993.MATHMathSciNetCrossRefGoogle Scholar
  110. [110]
    A. Kaplan and R. Tichatschke. Regularized penalty methods for semi-infinite programming problems. In B. Brosowski, F. Deutsch, and J. Guddat, editors, Approximation & Optimization, pages 341–356. Peter Lang, Frankfurt, 1993.Google Scholar
  111. [111]
    A. Kaplan and R. Tichatschke. Stable Methods for Ill-Posed Variational Problems. Akademie Verlag, Berlin, 1994.MATHGoogle Scholar
  112. [112]
    N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373–395, 1984.MATHMathSciNetCrossRefGoogle Scholar
  113. [113]
    J. E. Kelley. The cutting-plane method for solving convex programs. J. Soc. Industr. Appl. Math., 8:703–712, 1960.MathSciNetCrossRefGoogle Scholar
  114. [114]
    H. Kleinmichel. Überlinear konvergente Verfahren der nichtlinearen Optimierung. In Proceedings X. IKM, Wiss. Z. der Hochsch. f. Arch, und Bauw., pages 73–76, Weimar, 1984.Google Scholar
  115. [115]
    M. Kojima. Strongly stable stationary solutions in nonlinear programs. In S. M. Robinson, editor, Analysis and Computation of Fixed Points, pages 93–138. Academic Press, New York, 1980.Google Scholar
  116. [116]
    M. Kojima, N. Meggido, and S. Mizuno. A primal-dual infeasible-interior-point algorithm for linear programming. Math. Programming, 61:263–280, 1991.CrossRefGoogle Scholar
  117. [117]
    K. O. Kortanek. Vector-supercomputer experiments with the primal affine linear programming scaling algorithm. SIAM J. Sci. Comput., 14:279–294, 1993.MATHMathSciNetCrossRefGoogle Scholar
  118. [118]
    K. O. Kortanek and H. No. A central cutting plane algorithm for convex semi-infinite programming problems. SIAM J. Optim., 3:901–918, 1993.MATHMathSciNetCrossRefGoogle Scholar
  119. [119]
    H.-C. Lai and S.-Y. Wu. On linear semi-infinite programming problems: An algorithm. Numer. Fund. Anal. Optim., 13:287–304, 1992.MATHMathSciNetCrossRefGoogle Scholar
  120. [120]
    P. J. Laurent and C. Carasso. An algorithm of successive minimization in convex programming. R.A.LR.O. Numer. Anal., 12:377–400, 1978.MATHMathSciNetGoogle Scholar
  121. [121]
    C.T. Lawrence and A. L. Tits. Feasible sequential quadratic programming for finely discretized problems from SIP. This volume.Google Scholar
  122. [122]
    T. Leon and E. Vercher. An optimality test for semi-infinite linear programming. Optimization, 26:51–60, 1992.MATHMathSciNetCrossRefGoogle Scholar
  123. [123]
    T. Leon and E. Vercher. A purification algorithm for semi-infinite programming. Europ. J. Oper. Res., 57:412–420, 1992.MATHCrossRefGoogle Scholar
  124. [124]
    T. Leon and E. Vercher. New descent rules for solving the linear semi-infinite programming problem. Oper. Res. Letters, 15:105–114, 1994.MATHMathSciNetCrossRefGoogle Scholar
  125. [125]
    V. L. Levin. Application of E. Helly’s theorem to convex programming, problems of best approximation and related questions. Math. USSR Sbornik, 8:235–247, 1969.CrossRefGoogle Scholar
  126. [126]
    A. S. Lewis and A. B. Philpott. Experiments with affine scaling and semi-infinite programming. New Zealand J. Math., 24:49–71, 1995.MATHMathSciNetGoogle Scholar
  127. [127]
    C.-J. Lin, S.-C. Fang, and S.-Y. Wu. An unconstrained convex programming approach for linear semi-infinite programming. SIAM J. Optim. (in print).Google Scholar
  128. [128]
    C.-J. Lin, S.-C. Fang, and S.-Y. Wu. A dual affine scaling based algorithm for solving linear semi-infinite programming problems. In D.-Z. Du and J. Sun, editors, Advances in Optimization and Approximation, pages 217–233. Kluwer, Dordrecht-Boston-London, 1994.CrossRefGoogle Scholar
  129. [129]
    C.-J. Lin, E. K. Yang, S.-C. Fang, and S.-Y. Wu. Implementation of an inexact approach to solving linear semi-infinite programming problems. J. Comp. Appl. Math., 61:87–103, 1995.MATHMathSciNetCrossRefGoogle Scholar
  130. [130]
    D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading, Massachusetts, 2nd edition, 1989.Google Scholar
  131. [131]
    N. Maratos. Exact Penalty Function Algorithms for Finite Dimensional and Control Optimization Problems. PhD thesis, Imperial College Sci. Tech, University of London, London, 1978.Google Scholar
  132. [132]
    D. Q. Mayne and E. Polak. A superlinearly convergent algorithm for constrained optimization problems. Math. Programming Study, 16:45–61, 1982.MATHMathSciNetCrossRefGoogle Scholar
  133. [133]
    D. Q. Mayne, E. Polak, and R. Trahan. An outer approximations algorithm for computer-aided design problems. J. Optim. Theory Appl., 28:331–352, 1979.MATHMathSciNetCrossRefGoogle Scholar
  134. [134]
    G. Meinardus. Approximation of Functions: Theory and Numerical Methods. Springer, Berlin-Heidelberg-New York, 1967.MATHCrossRefGoogle Scholar
  135. [135]
    H. Mine, M. Fukushima, and Y. Tanaka. On the use of ε-most-active constraints in an exact penalty function method for nonlinear optimization. IEEE Trans. Automat. Contr., AC-29:1040–1042, 1984.MathSciNetCrossRefGoogle Scholar
  136. [136]
    P. Moulin, M. Anitescu, K. O. Kortanek, and F. Potra. The role of linear semi-infinite programming in signal-adapted QMF bank design. IEEE Trans. on Signal Process., 45:2160–2174, 1997.CrossRefGoogle Scholar
  137. [137]
    N. Müller and M. Ries. Parallel computing using DECnet. Technical Report 32, Universität Trier, Trier, Germany, 1991.Google Scholar
  138. [138]
    NAG Ltd, Oxford, England UK. NAG Fortran Library, Mark 16, 1993.Google Scholar
  139. [139]
    P. Nash. Algebraic fundamentals of linear programming. In [5], pages 37–52, 1985.Google Scholar
  140. [140]
    J. Nocedal and M. Overton. Projected Hessian updating algorithms for nonlin-early constrained optimization. SIAM J. Numer. Anal, 22:821–850, 1985.MATHMathSciNetCrossRefGoogle Scholar
  141. [141]
    K. Oettershagen. Ein superlinear konvergenter Algorithmus zur Lösung semiinfiniter Optimierungsprobleme. PhD thesis, Universität Bonn, Bonn, Germany, 1982.Google Scholar
  142. [142]
    J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.MATHGoogle Scholar
  143. [143]
    E. R. Panier and A. L. Tits. A globally convergent algorithm with adaptively refined discretization for semi-infinite optimization problems arising in engineering design. IEEE Trans. Automat. Contr., 34:903–908, 1989.MATHMathSciNetCrossRefGoogle Scholar
  144. [144]
    E. R. Panier and A. L. Tits. Avoiding the Maratos effect by means of a non-monotone line search I. SIAM J. Numer. Analysis, 28:1183–1195, 1991.MATHMathSciNetCrossRefGoogle Scholar
  145. [145]
    E. R. Panier, A. L. Tits, and J. N. Herskovits. A QP-free globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization. SIAM J. Control Optim., 26:788–811, 1988.MATHMathSciNetCrossRefGoogle Scholar
  146. [146]
    E. R. Pantoja and D. Q. Mayne. Exact penalty function algorithm with simple updating of the penalty parameter. J. Optim. Theory Appl., 69:441–467, 1991.MATHMathSciNetCrossRefGoogle Scholar
  147. [147]
    T. Pietrzykowski. The potential method for conditional maxima in the locally compact metric spaces. Numer. Math., 14:325–329, 1970.MATHMathSciNetCrossRefGoogle Scholar
  148. [148]
    E. Polak. On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Review, 29:21–89, 1987.MathSciNetCrossRefGoogle Scholar
  149. [149]
    E. Polak. On the use of consistent approximations in the solution of semi-infinite optimization and optimal control problems. Math. Programming, 62:385–414, 1993.MATHMathSciNetCrossRefGoogle Scholar
  150. [150]
    E. Polak. Optimization. Algorithms and Consistent Approximations. Springer, Berlin-Heidelberg-New York, 1997.MATHGoogle Scholar
  151. [151]
    E. Polak and L. He. Unified steerable phase I-phase II method of feasible directions for semi-infinite optimization. J. Optim. Theory Appl., 69:83–107, 1991.MATHMathSciNetCrossRefGoogle Scholar
  152. [152]
    E. Polak and L. He. Rate-preserving discretization strategies for semi-infinite programming and optimal control. SIAM J. Control Optim., 30:548–572, 1992.MATHMathSciNetCrossRefGoogle Scholar
  153. [153]
    E. Polak and D. Q. Mayne. An algorithm for optimization problems with functional inequality constraints. IEEE Trans. Automat Contr., AC-21-.184–193, 1976.MathSciNetCrossRefGoogle Scholar
  154. [154]
    E. Polak and A. L. Tits. A recursive quadratic programming algorithm for semi-infinite optimization problems. Appl. Math. Optim., 8:325–349, 1982.MATHMathSciNetCrossRefGoogle Scholar
  155. [155]
    E. Polak, R. Trahan, and D. Q. Mayne. Combined phase I-phase II methods of feasible directions. Math. Programming, 17:61–73, 1979.MATHMathSciNetCrossRefGoogle Scholar
  156. [156]
    A. Potchinkov. Der Entwurf digitaler FIR-Filter mit Methoden der konvexen semi-infiniten Optimierung. PhD thesis, Technische Universität Berlin, Berlin, Germany, 1994.Google Scholar
  157. [157]
    A. Potchinkov. Design of optimal linear phase FIR filters by a semi-infinite programming technique. Signal Processing, 58:165–180, 1997.MATHCrossRefGoogle Scholar
  158. [158]
    A. Potchinkov and R. Reemtsen. A globally most violated cutting plane method for complex minimax problems with application to digital filter design. Numerical Algorithms, 5:611–620, 1993.MATHMathSciNetCrossRefGoogle Scholar
  159. [159]
    A. Potchinkov and R. Reemtsen. FIR filter design in the complex domain by a semi-infinite programming technique. Archiv für Elektronik und Übertragungstechnik, 48:1. The method: 135–144, II. Numerical results: 200–209, 1994.Google Scholar
  160. [160]
    A. Potchinkov and R. Reemtsen. The design of FIR filters in the complex plane by convex optimization. Signal Processing, 46:127–146, 1995.MATHCrossRefGoogle Scholar
  161. [161]
    A. Potchinkov and R. Reemtsen. The simultaneous approximation of magnitude and phase by FIR digital filters. Intern. J. Circuit Theory and Appl., 25:1. A new approach: 167–177, II. Methods and examples: 179–197, 1997.MATHCrossRefGoogle Scholar
  162. [162]
    M. J. D. Powell. The convergence of variable metric methods for nonlinearly constrained optimization calculations. In O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear Programming 3, pages 27–63. Academic Press, New York, 1978.Google Scholar
  163. [163]
    M. J. D. Powell. Variable metric methods for constrained optimization. In A. Bachern, M. Grötschel, and B. Korte, editors, Mathematical Programming: The state of the art, pages 288–311. Springer, Berlin-Heidelberg-New York, 1983.CrossRefGoogle Scholar
  164. [164]
    M. J. D. Powell. ZQPCVX a Fortran subroutine for convex quadratic programming. Technical Report DAMTP/1983/NA17, Dept. of Appl. Math. and Theor. Phys., Univ. of Cambridge, Cambridge, UK, 1983.Google Scholar
  165. [165]
    M. J. D. Powell. On the quadratic programming algorithm of Goldfarb and Idnani. Math. Programming Study, 25:46–61, 1985.MATHCrossRefGoogle Scholar
  166. [166]
    M. J. D. Powell. A tolerant algorithm for linearly constrained optimization calculations. Math. Programming, 45:547–566, 1989.MATHMathSciNetCrossRefGoogle Scholar
  167. [167]
    M. J. D. Powell. TOLMIN: a Fortran package for linearly constrained optimization calculations. Technical Report DAMTP 1989/NA2, University of Cambridge, Cambridge, UK, 1989.Google Scholar
  168. [168]
    M. J. D. Powell. Karmarkar’s algorithm: A view from nonlinear programming. IMA Bulletin, 26:165–181, 1990.MATHGoogle Scholar
  169. [169]
    M. J. D. Powell. The complexity of Karmarkar’s algorithm for linear programming. In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis 1991, pages 142–163. Longman Scientific & Technical, Burnt Mill, England, 1992.Google Scholar
  170. [170]
    M. J. D. Powell. Log barrier methods for semi-infinite programming calculations. In E. A. Lipitakis, editor, Advances on Computer Mathematics and its Applications, pages 1–21. World Scientific, Singapore, 1993.Google Scholar
  171. [171]
    M. J. D. Powell. On the number of iterations of Karmarkar’s algorithm for linear programming. Math. Programming, 62:153–197, 1993.MATHMathSciNetCrossRefGoogle Scholar
  172. [172]
    C. J. Price. Non-Linear Semi-Infinite Programming. PhD thesis, University of Canterbury, Christchurch, New Zealand, 1992.Google Scholar
  173. [173]
    C. J. Price and I. D. Coope. An exact penalty function algorithm for semi-infinite programmes. BIT, 30:723–734, 1990.MATHMathSciNetCrossRefGoogle Scholar
  174. [174]
    C. J. Price and I. D. Coope. Numerical experiments in semi-infinite programming. Comp. Optim. Appl., 6:169–189, 1996.MATHMathSciNetCrossRefGoogle Scholar
  175. [175]
    R. Reemtsen. Modifications of the first Remez algorithm. SIAM J. Numer. Anal., 27:507–518, 1990.MATHMathSciNetCrossRefGoogle Scholar
  176. [176]
    R. Reemtsen. Discretization methods for the solution of semi-infinite programming problems. J. Optim. Theory Appl., 71:85–103, 1991.MATHMathSciNetCrossRefGoogle Scholar
  177. [177]
    R. Reemtsen. A cutting plane method for solving minimax problems in the complex plane. Numerical Algorithms, 2:409–436, 1992.MATHMathSciNetCrossRefGoogle Scholar
  178. [178]
    R. Reemtsen. Some outer approximation methods for semi-infinite optimization problems. J. Comp. Appl. Math., 53:87–108, 1994.MATHMathSciNetCrossRefGoogle Scholar
  179. [179]
    S. M. Robinson. Strongly regular generalized equations. Math. Oper. Res., 5:43–62, 1980.MATHMathSciNetCrossRefGoogle Scholar
  180. [180]
    S. M. Robinson. Generalized equations and their solutions, part II: applications to nonlinear programming. Math. Programming Study, 19:200–221, 1982.MATHCrossRefGoogle Scholar
  181. [181]
    K. Roleff. A stable multiple exchange algorithm for linear SIP. In [83], pages 83–96, 1979.Google Scholar
  182. [182]
    C. Roos, T. Terlaky, and J.-P. Vial. Theory and Algorithms for Linear Optimization. John Wiley & Sons, Chichester, 1997.MATHGoogle Scholar
  183. [183]
    H. Rudolph. Der Simplexalgorithmus der semiinfiniten linearen Optimierung. Wiss. Z. TE Leuna-Merseburg, 29:782–806, 1987.MATHMathSciNetGoogle Scholar
  184. [184]
    T. Rupp. Kontinuitätsmethoden zur Lösung einparametrischer semi-infiniter Optimierungsprobleme. PhD thesis, Universität Trier, Trier, Germany, 1988.Google Scholar
  185. [185]
    R. Schaback and D. Braess. Eine Lösungsmethode für die lineare Tschebyscheff-Approximation bei nicht erfüllter Haarscher Bedingung. Computing, 6:289–294, 1970.MATHMathSciNetCrossRefGoogle Scholar
  186. [186]
    E. Schäfer. Ein Konstruktionsverfahren bei allgemeiner linearer Approximation. Numer. Math., 18:113–126, 1971.MATHMathSciNetCrossRefGoogle Scholar
  187. [187]
    U. Schattler. An Interior-Point-Method for Semi-Infinite Programming Problems. PhD thesis, Universität Würzburg, Würzburg, Germany, 1992.Google Scholar
  188. [188]
    U. Schättier. An interior-point method for semi-infinite programming problems. Ann. Oper. Res., 62:277–301, 1996.MathSciNetCrossRefGoogle Scholar
  189. [189]
    K. Schittkowski. Solving nonlinear programming problems with very many constraints. Optimization, 25:179–196, 1992.MATHMathSciNetCrossRefGoogle Scholar
  190. [190]
    R.-L. Sheu, S.-Y. Wu, and S.-C. Fang. A primal-dual infeasible-interior-point algorithm for linear semi-infinite programming. Computers Math. Applic., 29:7–18, 1995.MATHMathSciNetCrossRefGoogle Scholar
  191. [191]
    G. Sonnevend. Applications of analytic centers for the numerical solution of semiinfinite, convex programs arising in control theory. In H.-J. Sebastian and K. Tammer, editors, System Modelling and Optimization, Lecture Notes in Contr. and Inform. Sci. 143, pages 413–422. Springer, Berlin-Heidelberg-New York, 1990.Google Scholar
  192. [192]
    G. Sonnevend. A new class of a high order interior point method for the solution of convex semiinfinite optimization problems. In R. Bulirsch and D. Kraft, editors, Computational and Optimal Control, pages 193–211. Birkhäuser, Basel, 1994.CrossRefGoogle Scholar
  193. [193]
    C. Spagl. Charakterisierung und Numerik in der linearen komplexen Tschebyscheff-Approximation. PhD thesis, Univ. Eichstätt, Eichstätt, Germany, 1988.Google Scholar
  194. [194]
    P. Spellucci. Sequential quadratic programming: theory, implementation, problems. Meth. Oper. Res., 53:183–213, 1985.MathSciNetGoogle Scholar
  195. [195]
    P. Spellucci. Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser, Basel-Boston-Berlin, 1993.MATHCrossRefGoogle Scholar
  196. [196]
    Y. Tanaka, M. Fukushima, and T. Hasegawa. Implementable L penalty function-method for semi-infinite optimization. Int. J. Systems Sci., 18:1563–1568, 1987.MATHMathSciNetCrossRefGoogle Scholar
  197. [197]
    Y. Tanaka, M. Fukushima, and T. Ibaraki. A comparative study of several semi-infinite nonlinear programming algorithms. Europ. J. Oper. Res., 36:92–100, 1988.MATHMathSciNetCrossRefGoogle Scholar
  198. [198]
    Y. Tanaka, M. Fukushima, and T. Ibaraki. A globally convergent SQP method for semi-infinite nonlinear optimization. J. Comp. Appl. Math., 23:141–153, 1988.MATHMathSciNetCrossRefGoogle Scholar
  199. [199]
    P. T. P. Tang. Chebyshev Approximation on the Complex Plane. PhD thesis, University of California, Berkeley, CA, 1987.Google Scholar
  200. [200]
    P. T. P. Tang. A fast algorithm for linear complex Chebyshev approximation. Math. Comp., 51:721–739, 1988.MATHMathSciNetCrossRefGoogle Scholar
  201. [201]
    P. T. P. Tang. A fast algorithm for linear complex Chebyshev approximation. In J. C. Mason and M. G. Cox, editors, Algorithms for Approximation II, pages 265–273. Chapman and Hill, London-New York, 1990.Google Scholar
  202. [202]
    K. L. Teo and C. J. Goh. A simple computational procedure for optimization problems with functional inequality constraints. IEEE Trans. Automat. Contr., AC-32:940–941, 1987.CrossRefGoogle Scholar
  203. [203]
    K. L. Teo, V. Rehbock, and L. S. Jennings. A new computational algorithm for functional inequality constrained optimization problems. Automatica, 29:789–792, 1993.MATHMathSciNetCrossRefGoogle Scholar
  204. [204]
    T. Terlaky, editor. Interior Point Methods of Mathematical Programming. Kluwer, Dordrecht-Boston-London, 1996.MATHGoogle Scholar
  205. [205]
    R. Tichatschke. Stetigkeitseigenschaften und Konvergenz von Folgen diskretisierter semi-infiniter konvexer Optimierungsaufgaben. Wiss. Z. TE Karl-Marx-Stadt, 21:577–586, 1979.MATHMathSciNetGoogle Scholar
  206. [206]
    R. Tichatschke. Semi-infinite programming problems. Banach Center Publ., 14:543–554, 1985.MathSciNetGoogle Scholar
  207. [207]
    R. Tichatschke and T. Lohse. Eine verallgemeinerte Schnittmethode für konvexe semi-infinite Optimierungsaufgaben. Wiss. Z. TE Karl-Marx-Stadt, 24:332–338, 1982.MATHMathSciNetGoogle Scholar
  208. [208]
    R. Tichatschke and V. Nebeling. A cutting plane method for quadratic semi-infinite programming problems. Optimization, 19:803–817, 1988.MATHMathSciNetCrossRefGoogle Scholar
  209. [209]
    R. Tichatschke and B. Schwartz. Methods of feasible directions for semi-infinite programming problems. Wiss. Inform. TH Karl-Marx-Stadt, 33:Part I: 1–15, Part II: 16–23, 1982.MathSciNetGoogle Scholar
  210. [210]
    A. L. Tits. Lagrangian Based Superlinearly Convergent Algorithms for Ordinary and Semi-Infinite Optimization Problems. PhD thesis, University of California, Berkeley, CA, 1980.Google Scholar
  211. [211]
    M. J. Todd. Interior-point algorithms for semi-infinite programming. Math. Programming, 65:217–245, 1994.MATHMathSciNetCrossRefGoogle Scholar
  212. [212]
    H.-J. Töpfer. Tschebyscheff-Approximation und Austauschverfahren bei nicht erfüllter Haarscher Bedingung. In L. Collatz, G. Meinardus, and H. Unger, editors, Funktionalanalysis, Approximationstheorie, Numerische Mathematik, pages 71–89. Birkhäuser, Basel-Stuttgart, 1967.Google Scholar
  213. [213]
    D. M. Topkis. Cutting-plane methods without nested constraint sets. Oper. Res., 18:404–413, 1970.MATHMathSciNetCrossRefGoogle Scholar
  214. [214]
    D. M. Topkis. A note on cutting-plane methods without nested constraint sets. Oper. Res., 18:1216–1220, 1970.MATHMathSciNetCrossRefGoogle Scholar
  215. [215]
    L. N. Trefethen. Near-circularity of the error curve in complex Chebyshev approximation. J. Approx. Theory, 31:344–367, 1981.MATHMathSciNetCrossRefGoogle Scholar
  216. [216]
    L. Tuncel and M. J. Todd. Asymptotic behavior of interior point methods: A view from semi-infinite programming. Math. Oper. Res., 21:354–381, 1996.MATHMathSciNetCrossRefGoogle Scholar
  217. [217]
    W. van Honstede. An approximation method for semi-infinite problems. In [83], pages 126–136, 1979.Google Scholar
  218. [218]
    R. J. Vanderbei. Affine scaling trajectories associated with a linear semi-infinite program. Math. Oper. Res., 20:163–174, 1995.MATHMathSciNetCrossRefGoogle Scholar
  219. [219]
    R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer, Dordrecht-Boston-London, 1997.Google Scholar
  220. [220]
    L. Veidinger. On the numerical determination of the best approximations in the Chebyshev sense. Numer. Math., 2:99–105, 1960.MATHMathSciNetCrossRefGoogle Scholar
  221. [221]
    A. F. Veinott. The supporting hyperplane method for unimodal programming. Oper. Res., 15:147–152, 1967.MATHMathSciNetCrossRefGoogle Scholar
  222. [222]
    Y. V. Volkov and S. K. Zavriev. A general stochastic outer approximations method. SIAM J. Control Optim., 35:1387–1421, 1997.MATHMathSciNetCrossRefGoogle Scholar
  223. [223]
    G. A. Watson. A multiple exchange algorithm for multivariate Chebyshev approximation. SIAM J. Numer. Anal., 12:46–52, 1975.MATHMathSciNetCrossRefGoogle Scholar
  224. [224]
    G. A. Watson. A method for calculating best non-linear Chebyshev approximations. J. Inst. Maths. Applics., 18:351–360, 1976.MATHCrossRefGoogle Scholar
  225. [225]
    G. A. Watson. Globally convergent methods for semi-infinite programming. BIT, 21:362–373, 1981.MATHMathSciNetCrossRefGoogle Scholar
  226. [226]
    G. A. Watson. Numerical experiments with globally convergent methods for semi-infinite programming problems. In [45], pages 193–205, 1983.Google Scholar
  227. [227]
    G. A. Watson. Lagrangian methods for semi-infinite programming problems. In [5], pages 90–107, 1985.CrossRefGoogle Scholar
  228. [228]
    W. Wetterling. Anwendung des Newtonschen Iterationsverfahrens bei der Tschebyscheff-Approximation, insbesondere mit nichtlinear auftretenden Parametern. MTW, pages 61–63 (Teil I), 112–115 (Teil II), 1963.Google Scholar
  229. [229]
    R. B. Wilson. A Simplicial Algorithm for Concave Programming. PhD thesis, Harvard University, Boston, 1963.Google Scholar
  230. [230]
    S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.MATHCrossRefGoogle Scholar
  231. [231]
    J. L. Zhou and A. L. Tits. An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions. SIAM J. Optim., 6:461–487, 1996.MATHMathSciNetCrossRefGoogle Scholar
  232. [232]
    G. Zoutendijk. Methods of Feasible Directions. Elsevier, Amsterdam-New York-Oxford, 1960.MATHGoogle Scholar
  233. [233]
    G. Zwier. Structural Analysis in Semi-Infinite Programming. PhD thesis, Universiteit Twente, Enschede, Netherlands, 1987.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Rembert Reemtsen
    • 1
  • Stephan Görner
    • 2
  1. 1.Fakultät 1Brandenburgische Technische Universität CottbusCottbusGermany
  2. 2.Fachbereich MathematikTechnische Universität BerlinGermany

Personalised recommendations