Advertisement

Exact Penalty Function Methods for Nonlinear Semi-Infinite Programming

  • Ian D. Coope
  • Christopher J. Price
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 25)

Abstract

Exact penalty function algorithms have been employed with considerable success to solve nonlinear semi-infinite programming problems over the last sixteen years. The development of these methods is traced from the perspective of standard nonlinear programming algorithms. The extension of standard theory to the semi-infinite case is illustrated through simple examples and some of the theoretical and computational difficulties are highlighted.

Keywords

Local Search Penalty Function Active Point Exact Penalty Function Trust Region Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. M. Ali and C. Storey. Topographical multi-level single linkage. J. Global Optimization, 5:349–358, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    B. M. Bell. Global convergence of a semi-infinite optimisation method. Appl. Math. Opt., 21(1):89–110, 1990.CrossRefGoogle Scholar
  3. [3]
    C. G. E. Boender and A. H. G. Rinnooy Kan. Bayesian stopping rules for multistart global optimization methods. Math. Prog., 37:59–80, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    R. Bojanic and R. Devore. On polynomials of best one-sided approximation. L’Ensiegnement Mathematique, 12(2):139–164, 1966.zbMATHMathSciNetGoogle Scholar
  5. [5]
    A. R. Conn and N. I. M. Gould. An exact penalty function for semi-infinite programming. Math. Prog., 37:19–40, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    I. D. Coope and C. J. Price. A two-parameter exact penalty function for nonlinear programming. Journal of Optimization Theory & Applications, 83(1):49–61, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    I. D. Coope and G. A. Watson. A projected Lagrangian algorithm for semi-infinite programming. Math. Prog., 32:337–356, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Y. J. Evtushenko. Numerical Optimisation Techniques. Optimization Software inc. Publications Division, 1985.CrossRefGoogle Scholar
  9. [9]
    A. C. Fiacco and K. O. Kortanek, editors. Semi-Infinite Programming and Applications, Lecture Notes in Economics and Mathematical Systems, no. 215. Springer-Verlag, Berlin, 1983.Google Scholar
  10. [10]
    C. E. Gonzaga, E. Polak, and R. Trahan. An improved algorithm for optimisation problems with functional inequality constraints. IEEE Trans. Automatic Control, 25(l):49–54, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    S.-Å. Gustafson. On the computational solution of a class of generalized moment problems. SIAM J. Numer. Anal, 7:343–357, 1970.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    S.-Å. Gustafson. A three phase algorithm for semi-infinite programmes, pages 138–157. In Fiacco and Kortanek [9], 1983.Google Scholar
  13. [13]
    J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2:84–90, 1960.CrossRefMathSciNetGoogle Scholar
  14. [14]
    R. Hettich. An implementation of a discretization method for semi-infinite programming. Math. Prog., 34:354–361, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    R. Hettich and W. van Honstede. On quadratically convergent methods for semi-infinite programming. In R. Hettich, editor, Semi-Infinite Programming, pages 97–111. Springer-Verlag, Berlin, 1979.CrossRefGoogle Scholar
  16. [16]
    H. T. Jongen, J.-J. Rückmann, and O. Stein. Generalized semi-infinite optimization: A first order optimality condition and example. Technical Report Nr. 95–24, Universität Trier, Mathematik/Informatik, 1995.Google Scholar
  17. [17]
    R. H. Mladineo. An algorithm for finding the global maximum of a multimodal, multivariate function. Math. Prog., 34:188–200, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    R. E. Moore and H. Ratschek. Inclusion functions and global optimisation II. Math. Prog., 41:341–356, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    H. Niederreiter. Quasi Monte Carlo methods and pseudo-random numbers. Bulletin of the American Math. Soc., 84(6):957–1041, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    E. R. Panier and A. L. Tits. A globally convergent algorithm with adaptively refined discretization for semi-infinite optimisation problems arising in engineering design. IEEE Trans. Automatic Control, 34(8):903–908, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    T. Pietrzkowski. The potential method for conditional maxima in locally compact metric spaces. Numer. Math., 14:325–329, 1970.CrossRefMathSciNetGoogle Scholar
  22. [22]
    C. J. Price. Non-Linear Semi-Infinite Programming. PhD thesis, University of Canterbury, Christchurch, New Zealand, 1992.Google Scholar
  23. [23]
    C. J. Price and I. D. Coope. An exact penalty function algorithm for semi-infinite programmes. BIT, 30:723–734, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    C. J. Price and I. D. Coope. Numerical experiments in semi-infinite programming. Computational Optimisation and Applications, 6(2):169–189, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    H. Ratschek. Inclusion functions and global optimisation. Math. Prog., 33:300–317, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    R. Reemtsen. Discretization methods for the solution of semi-infinite programming problems. Journal of Optimization Theory & Applications, 23:141–153, 1988.Google Scholar
  27. [27]
    A. H. G. Rinnooy Kan and G. T. Timmer. Stochastic global optimisation methods part I: Clustering methods. Math. Prog., 39:27–56, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    A. H. G. Rinnooy Kan and G. T. Timmer. Stochastic global optimisation methods part II: Multi-level methods. Math. Prog., 39:57–78, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    Y. Tanaka, M. Fukushima, and T. Hasegawa. Implementable L penalty function method for semi-infinite optimisation. Int. J. Systems Sci., 18(8): 1563–1568, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Y. Tanaka, M. Fukushima, and T. Ibaraki. A globally convergent SQP method for semi-infinite non-linear optimization. Journal of Computational and Applied Mathematics, 23:141–153, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    A. Törn and A. Zilinskas. Global Optimisation, Lecture Notes in Computer Science No. 350. Springer-Verlag, Berlin-Heidelberg, 1989.Google Scholar
  32. [32]
    G. A. Watson. Globally convergent methods for semi-infinite programming. BIT, 21:362–373, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    G. A. Watson. Numerical experiments with globally convergent methods for semi-infinite programming problems, pages 193–205. In Fiacco and Kortanek [9], 1983.Google Scholar
  34. [34]
    G. A. Watson. Lagrangian methods for semi-infinite programming problems. In E. J. Anderson and A. B. Philpott, editors, Infinite Dimensional Linear Programming, Lecture Notes in Economics and Mathematical Systems no. 259, pages 90–107. Springer-Verlag, 1985.Google Scholar
  35. [35]
    G. R. Wood. Multidimensional bisection applied to global optimization. Computers and Mathematics with Applications, 21:161–172, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    J. L. Zhou and A. L. Tits. Erratum to “An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions”. SIAM J. Optimization, to appear.Google Scholar
  37. [37]
    J. L. Zhou and A. L. Tits. An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions. SIAM J. Optimization, 6:461–487, 1996.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Ian D. Coope
    • 1
  • Christopher J. Price
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations