Skip to main content

First and Second Order Optimality Conditions and Perturbation Analysis of Semi-Infinite Programming Problems

  • Chapter
Book cover Semi-Infinite Programming

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 25))

Abstract

In this paper we discuss finite dimensional optimization problems subject to an infinite number of inequality constraints (semi-infinite programming problems). We study such problems in a general framework of optimization problems subject to constraints formulated in a form of cone inclusions. General results on duality, and first and second order optimality conditions are presented and specified to considered semi-infinite programming problems. Finally some recent results on quantitative stability and sensitivity analysis of parameterized semi-infinite programming problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. J. Anderson and P. Nash. Linear Programming in Infinite-Dimensional Spaces. Wiley, New York, 1987.

    MATH  Google Scholar 

  2. A. Auslender and R. Cominetti. First and second order sensitivity analysis of nonlinear programs under directional constraint qualification conditions. Optimization, 21:351–363, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Ben-Tal, M. Telboulle, and J. Zowe. Second order necessary optimality conditions for semi-infinite programming problems. In R. Hettich editor. Lecture Notes in Control and Information Sciences15. pages 17–30. Springer Verlag, Berlin, 1979.

    Google Scholar 

  4. A. Ben-Tal. Second order and related extremality conditions in nonlinear programming. Journal of Optimization Theory and Applications, 31:143–165, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Ben-Tal and J. Zowe. A unified theory of first and second order conditions for extremum problems in topological vector spaces. Mathematical Programming Study, 19:39–76, 1982.

    Article  MathSciNet  Google Scholar 

  6. J. F. Bonnans. Directional derivatives of optimal solutions in smooth nonlinear programming. Journal Optimization Theory and Applications, 73:27–45, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. F. Bonnans and R. Cominetti. Perturbed optimization in Banach spaces, part I: a general theory based on a weak directional constraint qualification. SIAM J. Control and Optimization, 34:1151–1171, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. F. Bonnans and R. Cominetti. Perturbed optimization in Banach spaces II: a theory based on a strong directional qualification. SIAM J. Control and Optimization, 34:1172–1189, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. F. Bonnans and R. Cominetti. Perturbed optimization in Banach spaces III: semi-infinite optimization. SIAM J. Control and Optimization, 34:1555–1567, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. F. Bonnans and A. Shapiro. Optimization problems with perturbations, a guided tour. SIAM Review, to appear.

    Google Scholar 

  11. J. F. Bonnans, R. Cominetti, and A. Shapiro. Second order necessary and sufficient optimality conditions under abstract constraints. Rapport de Recherche INRIA 2952.

    Google Scholar 

  12. J. F. Bonnans, R. Cominetti, and A. Shapiro. Sensitivity analysis of optimization problems under second order regular constraints. Rapport de Recherche INRIA 2989, 1996.

    Google Scholar 

  13. J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. in preparation.

    Google Scholar 

  14. R. Cominetti. Metric regularity, tangent sets and second order optimality conditions. Applied Mathematics and Optimization, 21:265–287, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Cominetti and J.-P. Penot. Tangent sets to unilateral convex sets. C. R. Acad. Sci. Paris Sér. I Math.321, 12:1631–1636, 1995.

    MATH  MathSciNet  Google Scholar 

  16. I. Ekeland and R. Temam. Analyse convexe et problèmes variationnels. Collection Etudes Mathématiques. Dunod; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974.

    MATH  Google Scholar 

  17. A. V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. New York: Academic Press, 1983.

    MATH  Google Scholar 

  18. J. Gauvin. A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming. Mathematical Programming, 12:136–138, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Gauvin and J. W. Tolle. Differential stability in nonlinear programming. SIAM J. Control and Optimization, 15:294–311, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Gauvin and R. Janin. Directional behaviour of optimal solutions in nonlinear mathematical programming. Mathematics of Operations Research, 13:629–649, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Gollan. On the marginal function in nonlinear programming. Mathematics of Operations Research, 9:208–221, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. G. Gol’shtein. Theory of Convex Programming. Translations of Mathematical Monographs 36, American Mathematical Society, Providence, RJ, 1972.

    Google Scholar 

  23. R. Hettich and H. Th. Jongen. Semi-infinite programming: conditions of optimality and applications. In J. Stoer, editor. Optimization Techniques2, pages 1–11. Springer, Berlin-Heidelberg-New York, 1978.

    Chapter  Google Scholar 

  24. R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods and applications. SIAM Review, 35:380–429, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  25. A.D. Ioffe. On some recent developments in the theory of second order optimality conditions. In S. Dolecki editor. Optimization, Lecture Notes in Mathematics, pages 55–68, vol. 1405. Springer Verlag, Berlin, 1989.

    Chapter  Google Scholar 

  26. A. D. Ioffe. Variational analysis of a composite function: A formula for the lower second order epi-derivative. J. of Mathematical Analysis and Applications, 160:379–405, 1990.

    Article  MathSciNet  Google Scholar 

  27. H. Th. Jongen and G. Zwier. On the local structure of the feasible set in semi-infinite optimization. In B. Brosowski, F. Deutsch, editors. Parametric Optimization and Approximation, Int. Series of Num. Math., 72:185–202. Basel: Birkhäuser, 1985.

    Google Scholar 

  28. H. Kawasaki. An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems. Mathematical Programming, 41:73–96, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Kawasaki. The upper and lower second order directional derivatives of a sup-type function. Mathematical Programming, 41:327–339, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Kawasaki. Second-order necessary and sufficient optimality conditions for minimizing a sup-type function. Appl. Math. Opt., 26:195–220, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  31. D. Klatte. Stability of stationary solutions in semi-infinite optimization via the reduction approach. In W. Oettli, D. Pallaschke, editors. Advances in Optimization, pages 155–170. Springer, Berlin-Heidelberg-New York, 1992.

    Google Scholar 

  32. D. Klatte. Stable local minimizers in semi-infinite optimization: regularity and second-order conditions. J. Comp. Appl. Math., 56:137–157, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  33. D. Klatte. On regularity and stability in semi-infinite optimization. Set-Valued Analysis, 3:101–111, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  34. D. Klatte and R. Henrion. Regularity and stability in nonlinear semi-infinite optimization. This volume.

    Google Scholar 

  35. S. Kurcyusz. On the existence and nonexistence of Lagrange multipliers in Ba-nach spaces. Journal of Optimization Theory and Applications, 20:81–110, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  36. P.-J. Laurent. Approximation et Optimisation. Collection Enseignement des Sciences, No. 13. Hermann, Paris, 1972.

    MATH  Google Scholar 

  37. F. Lempio and H. Maurer. Differential stability in infinite-dimensional nonlinear programming. Applied Mathematics and Optimization, 6:139–152, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  38. E. S. Levitin. Differentiability with respect to a parameter of the optimal value in parametric problems of mathematical programming. Kibemetika, pp. 44–59, 1976.

    Google Scholar 

  39. E. S. Levitin. Perturbation Theory in Mathematical Programming. Wiley, Chichester, 1994.

    MATH  Google Scholar 

  40. O. L. Mangasarian and S. Fromovitz. The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl., 17:37–47, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. P. Penot. Optimality conditions for minimax problems, semi-infinite programming problems and their relatives. Report 92/16, UPRA, Laboratoire de Math. Appl., Av. de l’Université, 64000 Pau, France.

    Google Scholar 

  42. J. P. Penot. Optimality conditions in mathematical programming and composite optimization. Mathematical Programming, 67:225–245, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  43. B. N. Pshenichnyi. Necessary Conditions for an Extremum. Marcel Dekker, New York, 1971.

    Google Scholar 

  44. S. M. Robinson. Regularity and stability for convex multivalued functions. Mathematics of Operations Research, 1:130–143, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  45. S. M. Robinson. Stability theorems for systems of inequalities, Part II: differen-tiable nonlinear systems. SIAM J. Numerical Analysis, 13:497–513, 1976.

    Article  MATH  Google Scholar 

  46. S. M. Robinson. First order conditions for general nonlinear optimization. SIAM Journal on Applied Mathematics, 30:597–607, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  47. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  48. R. T. Rockafellar. Conjugate Duality and Optimization. Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1974.

    Book  MATH  Google Scholar 

  49. R. T. Rockafellar. Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives. Mathematics of Operations Research, 14:462–484, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Shapiro. Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite programs. Mathematics of Operations Research, 10:207–219, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  51. A. Shapiro. Sensitivity analysis of nonlinear programs and differentiability properties of metric projections. SIAM J. Control and Optimization, 26:628–645, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Shapiro. Perturbation analysis of optimization problems in Banach spaces. Numerical Functional Analysis and Optimization, 13:97–116, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  53. A. Shapiro. On Lipschitzian stability of optimal solutions of parametrized semi-infinite programs. Mathematics of Operations Research, 19:743–752, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  54. A. Shapiro. Directional differentiability of the optimal value function in convex semi-infinite programming. Mathematical Programming, Series A, 70:149–157, 1995.

    MATH  MathSciNet  Google Scholar 

  55. A. Shapiro. On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints. SIAM J. Optimization, 7:508–518, 1997.

    Article  MATH  Google Scholar 

  56. C. Ursescu. Multifunctions with convex closed graph. Czechoslovak Mathematical Journal, 25:438–441, 1975.

    MathSciNet  Google Scholar 

  57. W. Wetterling. Definitheitsbedingungen für relative Extrema bei Optimierungs-und Approximationsaufgaben. Num. Math., 15:122–136, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  58. J. Zowe and S. Kurcyusz. Regularity and stability for the mathematical programming problem in Banach spaces. Applied Mathematics and Optimization, 5:49–62, 1979.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shapiro, A. (1998). First and Second Order Optimality Conditions and Perturbation Analysis of Semi-Infinite Programming Problems. In: Reemtsen, R., Rückmann, JJ. (eds) Semi-Infinite Programming. Nonconvex Optimization and Its Applications, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2868-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2868-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4795-6

  • Online ISBN: 978-1-4757-2868-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics