The Design of Nonrecursive Digital Filters via Convex Optimization

  • Alexander W. Potchinkov
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 25)


The advantages of optimization in filter design over strongly specialized methods based upon approximation theory are well known since some years, first of all in the area of constrained linear-phase filter design. Mainly finite linear optimization has been used which requires the discretization w.r.t. the frequency variable and, if necessary, the linearization of important nonlinear filter characteristics. The work here is founded on convex finite and semi-infinite optimization. The approach avoids the discretization step and thereby, in particular, enables the design of large filters on personal computers. Moreover, convex functions such as the magnitude response, magnitude of the complex approximation error, and some quadratic error functions can be used in their original form.


Digital Filter Filter Design Magnitude Response Tolerance Scheme Reconstruction Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. W. Adams. FIR digital filters with least-squares stopbands subject to peak-gain constraints. IEEE Trans, on Circuits and Systems, 39:376–388, 1991.CrossRefGoogle Scholar
  2. [2]
    A. S. Alkhairy, K. G. Christian, and J. S. Lim. Design and characterization of optimal FIR filters with arbitrary phase. IEEE Trans. on Signal Processing, 41(2):559–572, 1993.zbMATHCrossRefGoogle Scholar
  3. [3]
    D. Burnside and Th. W. Parks. Optimal design of FIR filters with the complex Chebyshev error criteria. IEEE Trans, on Signal Processing, 43:605–616, 1995.CrossRefGoogle Scholar
  4. [4]
    C. S. Burrus and I. W. Selesnick. New results in digital filter design. Mini-Workshop on Filter Design, LNT Erlangen, H. W. Schüssler (ed.), 1997.Google Scholar
  5. [5]
    X. Chen and T. W. Parks. Design of FIR filters in the complex domain. IEEE Trans. Acoust., Speech, and Signal Processing, ASSP-35:144–153, 1987.CrossRefGoogle Scholar
  6. [6]
    G. Cortelazzo and M. R. Lightner. Simultaneous design in both magnitude and group-delay of IIR and FIR filters based on multiple criterion optimization. IEEE Trans. Acoust, Speech, and Signal Processing, ASSP-32:949–967, 1984.CrossRefGoogle Scholar
  7. [7]
    R. E. Crochiere and L. R. Rabiner. Multirate Digital Signal Processing. Prentice Hall, New Jersey, 1983.Google Scholar
  8. [8]
    Rick Downs. A low noise, low distortion design for anti-aliasing and anti-imaging filters. Burr-Brown Application Bulletin AB-026A, Burr-Brown Corporation, Tucson, Arizona.Google Scholar
  9. [9]
    F. Grenez. Design of linear or minimum-phase FIR filters by constrained Chebyshev approximation. Signal Processing, 5:325–332, 1983.CrossRefGoogle Scholar
  10. [10]
    J. H. McClellan, T. W. Parks, and L. R. Rabiner. A computer program for designing optimum FIR linear phase digital filters. IEEE Trans., AU-21, 1973.Google Scholar
  11. [11]
    T. W. Parks and C. S. Burrus. Digital Filter Design. J. Wiley, 1987.zbMATHGoogle Scholar
  12. [12]
    Thomas W. Parks and James H. McClellan. Chebyshev approximation for non-recursive digital filters with linear phase. IEEE Trans, on Circuit Theory, CT-19(2):189–194, 1972.CrossRefGoogle Scholar
  13. [13]
    A. Potchinkov. Der Entwurf digitaler FIR-Filter mit Methoden der konvexen semi-infiniten Optimierung. PhD thesis, Techn. Univ. Berlin, 1994.Google Scholar
  14. [14]
    A. Potchinkov. Design of optimal linear phase FIR filters by a semi-infinite programming technique. Signal Processing, 58:165–180, 1997.zbMATHCrossRefGoogle Scholar
  15. [15]
    A. Potchinkov. Entwurf minimalphasiger nichtrekursiver digitaler Filter mit Verfahren der nichtlinearen Optimierung. Frequenz, 51:132–137, 1997.CrossRefGoogle Scholar
  16. [16]
    A. Potchinkov and R. Reemtsen. FIR filter design in the complex domain by a semi-infinite programming technique. Archiv für Elektronik und Übertragungstechnik, 48:1. The method: 135–144, IL Numerical results: 200–209, 1994.Google Scholar
  17. [17]
    A. Potchinkov and R. Reemtsen. The design of FIR filters in the complex plane by convex optimization. Signal Processing, 46:127–146, 1995.zbMATHCrossRefGoogle Scholar
  18. [18]
    A. Potchinkov and R. Reemtsen. The simultaneous approximation of magnitude and phase by FIR digital filters. Intern. J. Circuit Theory and Appl., 25:1. A new approach: 167–177, II. Methods and examples: 179–197, 1997.zbMATHCrossRefGoogle Scholar
  19. [19]
    K. Preuss. On the design of FIR filters by complex Chebyshev approximation. IEEE Trans. Acoust., Speech, and Signal Processing, ASSP-37:702–712, 1989.CrossRefGoogle Scholar
  20. [20]
    L. R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing. Prentice Hall, London, 1975.Google Scholar
  21. [21]
    R. Reemtsen. Design problems for nonrecursive digital filters. Technical Report M-04/1997, BTU Cottbus, 1997.Google Scholar
  22. [22]
    R. Reemtsen and S. Görner. Numerical methods for semi-infinite programming: a survey. This volume. Google Scholar
  23. [23]
    J. S. Rosko. Digital Simulation of Physical Systems. Addison Wesley, 1972.zbMATHGoogle Scholar
  24. [24]
    M. Schulist. Ein Beitrag zum Entwurf nichtrekursiver Filter. PhD thesis, Univ. Erlangen-Nürnberg, Germany, 1992.Google Scholar
  25. [25]
    H. W. Schüssler. Digitale Signalverarbeitung. Springer Verlag, 1988.Google Scholar
  26. [26]
    H. W. Schüssler and P. Steffen. Some advanced topics in filter design. In J. S. Lim and A. Oppenheim, editors, Advanced Topics in Signal Processing, pages 416–491. Prentice Hall, NJ, 1988.Google Scholar
  27. [27]
    H.W. Schüssler, P. Möhringer, and P. Steffen. On partly digital anti-aliasing filters. Archiv für Elektronik und Übertragungstechnik, 36:349–355, 1982.Google Scholar
  28. [28]
    K. Steiglitz. Design of FIR digital phase networks. IEEE Trans. Acoust., Speech, and Signal Processing, ASSP-29:171–176, 1981.CrossRefGoogle Scholar
  29. [29]
    K. Steiglitz, T. W. Parks, and J. F. Kaiser. METEOR: a constraint-based FIR filter design program. IEEE Trans. on Signal Processing, ASSP-40:1901–1909, 1992.CrossRefGoogle Scholar
  30. [30]
    F. J. Taylor. Digital Filter Design Handbook. Marcel Dekker, Inc., 1983.Google Scholar
  31. [31]
    W.-S. Yu, I-K. Fong, and K.-C. Chang. An U-approximation based method for synthesizing FIR filters. IEEE Trans. on Circuits and Systems, 39:578–581, 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Alexander W. Potchinkov
    • 1
  1. 1.Fakultät 1Brandenburgische Technische Universität CottbusCottbusGermany

Personalised recommendations