Skip to main content

A Comprehensive Survey of Linear Semi-Infinite Optimization Theory

  • Chapter
Semi-Infinite Programming

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 25))

Abstract

This paper reviews the lineax semi-infinite optimization theory as well as its main foundations, namely, the theory of linear semi-infinite systems. The first part is devoted to existence theorems and geometrical properties of the solution set of a linear semi-infinite system. The second part concerns optimality conditions, geometrical properties of the optimal set and duality theory. Finally, the third part analyzes the well-posedness of the linear semi-infinite programming problem and the stability (or continuity properties) of the feasible set, the optimal set and the optimal value mappings when all the data are perturbed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. J. Anderson, M. A. Goberna, and M. A. Lopez. Locally polyhedral linear semi-infinite programming. Linear Algebra Appl., to appear.

    Google Scholar 

  2. N. N. Astaf’ev. On Infinite Systems of Linear Inequalities in Mathematical Programming (in Russian). Nauka, Moscow, 1991.

    Google Scholar 

  3. A. Auslander, R. Cominetti, and J. P. Crouzeix. Convex functions with unbounded level sets and applications to duality theory. SIAM J. Control Optim., 3:669–87, 1993.

    Article  Google Scholar 

  4. B. Bank, J. Guddat, D. Klatte, and K. Tammer. Non-Linear Parametric Optimization. Akademie Verlag, Berlin, 1983.

    MATH  Google Scholar 

  5. Ch. E. Blair. A note on infinite systems of linear inequalities in Rn. J. Math. Anal. Appl., 48:150–4, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Brosowski. Parametric Semi-Infinite Optimization. Peter Lang, Frankfurt am Main, 1982.

    MATH  Google Scholar 

  7. B. Brosowski. Parametric semi-infinite linear programming I. Continuity of the feasible set and of the optimal value. Math. Programming Study, 21:18–42, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. D. Canovas, M. A. Lopez, J. Parra, and M. I. Todorov. Stability and well-posedness in linear semi-infinite programming. Working paper, Dep. Stat. and Oper. Res., University of Alicante, 1996.

    Google Scholar 

  9. S. N. Cernikov. Linear inequalities (in Russian). Nauka, Moscou, 1968.

    Google Scholar 

  10. A. Charnes, W. W. Cooper, and K. O. Kortanek. Duality, Haar programs and finite sequences spaces. Proc. Nat. Acad. Sci. USA, 48:783–6, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Charnes, W. W. Cooper, and K. O. Kortanek. Duality in semi-infinite programs and some works of Haar and Carathéodory. Management Sci., 9:209–28, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Charnes, W. W. Cooper, and K. O. Kortanek. On representations of semi-infinite programs which have no duality gaps. Management Sci., 12:113–21, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Christov and M. I. Todorov. Semi-infinite optimization. Existence and uniqueness of the solution. Math. Balcanica, 2:182–91, 1988.

    MATH  MathSciNet  Google Scholar 

  14. F. E. Clark. Remarks on the constraints sets in linear programming. Amer. Math. Monthly, 58:351–2, 1961.

    Article  Google Scholar 

  15. G. B. Dantzig. Linear programming. In J. K. Lenstra, A. H. Rinnoy Kan, and A. Schrijvers, editors. History of Mathematical Programming. A Collection of Personal Reminiscences, North Holland, Amsterdam, 1991.

    Google Scholar 

  16. R. J. Duffin, R. G. Jeroslow, and L. A. Karlovitz. Duality in semi-infinite linear programming. In A. V. Fiacco and K. O. Kortanek, editors. Semi-infinite Programming and Applications, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  17. A. L. Dontchev and T. Zolezzi. Well-Posed Optimization Problems. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  18. U. Eckhardt. Theorems on the dimension of convex sets. Linear Algebra Appl., 12:63–76, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Fan. On infinite systems of linear inequalities. J. Math. Anal. Appl., 21:475–8, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Fisher. Contributions to semi-infinite linear optimization. In B. Brosowski and E. Martensen E, editors. Approximation and Optimization in Mathematical Phisics, Peter Lang, Frankfurt am Main, 1983.

    Google Scholar 

  21. T. Fisher. Strong unicity and alternation for linear optimization. J. Opt. Th. Appl., 69:251–67, 1991.

    Article  Google Scholar 

  22. K. Glashoff. Duality theory in semi-infinite programming. In R. Hettich, editor. Semi-infinite programming, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  23. K. Glashoff and S. A. Gustafson. Linear Optimization and Approximation. Springer-Verlag, Berlin, 1983.

    Book  MATH  Google Scholar 

  24. M. A. Goberna. Boundedness relations in linear semi-infinite programming. Adv. Appl. Math., 8:53–68, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. A. Goberna and V. Jornet. Geometric fundamentals of the simplex method in semi-infinite programming. O. R. Spektrum, 10:145–52, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. A. Goberna and M. A. Lopez. A theory of linear inequality systems. Linear Algebra Appl., 106:77–115, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. A. Goberna and M. A. Lopez. Optimal value function in semi-infinite programming. J. Opt. Th. Appl., 59:261–79, 1988.

    MATH  MathSciNet  Google Scholar 

  28. M. A. Goberna and M. A. Lopez. Dimension and finite reduction in linear semi-infinite programming. Optimization, 25:143–60, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. A. Goberna and M. A. Lopez. Optimality theory for semi-infinite linear programming. Numer. Fund. Anal. Optim., 16:669–700, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. A. Goberna and M. A. Lopez. A note on topological stability of linear semi-infinite inequality systems. J. Opt. Th. Appl., 89:227–236, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. A. Goberna and M. A. Lopez. Linear semi-infinite optimization. John Wiley, New York, 1997.

    Google Scholar 

  32. M. A. Goberna, M. A. Lopez, J. A. Mira, and J. Valls. On the existence of solutions for linear inequality systems. J. Math. Anal. Appl., 192:133–50, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. A. Goberna, M. A. Lopez, and M. I. Todorov. Unicity in linear optimization. J. Opt. Th. Appl., 86:37–56, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. A. Goberna, M. A. Lopez, and M. I. Todorov. Stability theory for linear inequality systems, SIAM J. Matrix Anal. Appl., 17:730–743, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  35. M. A. Goberna, M. A. Lopez, and M. I. Todorov. Stability theory for linear inequality systems II: upper semicontinuity of the solution set mapping. SIAM J. Optim., to appear, 1997.

    Google Scholar 

  36. A. Haar. Über lineare Ungleichungen. Acta Math. Szeged, 2:1–14, 1924.

    MATH  Google Scholar 

  37. R. Henrion and D. Klatte. Metric regularity of the feasible set mapping in semi-infinite optimization. Appl. Math. Opt., 30:103–9, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  38. R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods and applications, SIAM Review, 35:380–429, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  39. R. B. Holmes. Geometric Functional Analysis and its Applications. Springer-Verlag, New-York, 1975.

    Book  MATH  Google Scholar 

  40. R. G. Jeroslow and K. O. Kortanek. On semi-infinite systems of linear inequalities. Israel J. Math., 10:252–8, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  41. H. Th. Jongen, J.-J. Rückmann, and G. W. Weber. One-parametric semi-infinite optimization: on the stability of the feasible set. SIAM J. Optim., 4:637–48, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Th. Jongen, F. Twilt, and G. W. Weber. Semi-infinite optimization: structure and stability of the feasible set. J. Opt. Th. Appl., 72:529–52, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  43. D. F. Karney. Duality gaps in semi-infinite linear programming: An approximation theory. Math. Programming, 20:129–43, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  44. D. F. Karney. Clark’s theorem for semi-infinite convex programs. Adv. Appl. Math., 2:7–12, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  45. J. E. Kelley. The cutting-plane method for solving convex programs. SIAM J., 8:703–712, 1960.

    MathSciNet  Google Scholar 

  46. K. O. Kortanek and H. M. Strojwas. On constraint sets of infinite linear programs over ordered fields. Math. Programming, 33:146–61, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. A. Lopez and E. Vercher. Optimality conditions for nondifferentiable convex semi-infinite programming. Math. Programming, 27:307–19, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  48. E. Marchi, R. Puente, and V. N. Vera de Serio. Quasi-polyhedral sets in semi-infinite linear inequality systems. Linear Algebra Appl., 255:157–69, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  49. M. J. D. Powell. Karmarkar’s algorithm: A view from non-linear programming. IMA Bulletin, 26:165–81, 1990.

    MATH  Google Scholar 

  50. E. Rèmes. Sur le calcul effective des polinomes d’approximation de Tchebycheff. CR. Acad. Sci. Paris, 199:337–40, 1934.

    Google Scholar 

  51. S. M. Robinson. Stability theory for systems of inequalities. Part I: linear systems. SIAM J. Numer. Anal., 12:754–69, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  52. G. S. Rubinstein. A comment on Voigt’s paper “A duality theorem for linear semi-infinite programming” (in Russian). Optimization, 12:31–2, 1981.

    Google Scholar 

  53. M. J. Todd. Interior point algorithms for semi-infinite programming. Math. Programming, 65:217–45, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  54. M. I. Todorov. Generic existence and uniqueness of the solution set to linear semi-infinite optimization problems. Numer. Funct. Anal. Optim., 8:27–39, 1985–86.

    Google Scholar 

  55. H. Tuy. Stability property of a system of inequalities. Math. Oper. Statist. Series Opt., 8:27–39, 1977.

    Google Scholar 

  56. Y. J. Zhu. Generalizations of some fundamental theorems on linear inequalities. Acta Math. Sinica, 16:25–40, 1966.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goberna, M.A., López, M.A. (1998). A Comprehensive Survey of Linear Semi-Infinite Optimization Theory. In: Reemtsen, R., Rückmann, JJ. (eds) Semi-Infinite Programming. Nonconvex Optimization and Its Applications, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2868-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2868-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4795-6

  • Online ISBN: 978-1-4757-2868-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics