Vitamin D pp 147-162 | Cite as

Molecular Recognition and Structure-Activity Relations in Vitamin D-Binding Protein and Vitamin D Receptor

  • Rahul Ray
Part of the Nutrition and Health book series (NH)


1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], a dihydroxylated metabolite of vitamin D3, is a secosteroid with diverse biological actions (1,2). Vitamin D3 is synthesized in skin by the interaction of ultraviolet (UV) light from the sun with 7-dehydrocholesterol, a constituent of the epidermis. The product of this photolytic reaction is predominantly a ring-opened compound called previtamin D3, which then isomerizes slowly by the body temperature to vitamin D3. After the cutaneous synthesis, vitamin D3 diffuses into the blood stream and is sequentially oxidized by specific P450-containing hydroxylases in the liver to form 25-hydroxyvitamin D3 [25(OH)D3], and in the kidney to form lα,25(OH)2 D3, the active form of vitamin D hormone. After the biosynthesis, lα,25(OH)2 D3 trans-locates into numerous target organs like intestine, bone, skin, pituitary, kidney, ovary, etc., where its various biologic functions manifest (see below) (Fig. 1). In addition to vitamin D3 (synthesized in the skin), another chemical form of vitamin D3 (called vitamin D2, which is obtained primarily from diet and vitamin D supplements) and all of its metabolites exist in nature. Vitamin D2 is metabolized to 25-hydroxyvitamin D2 and 1α,25-dihydroxyvitamin D2, similar to vitamin D3 (1).


Photoaffinity Label Affinity Label Sterol Binding Photoaffinity Analog Affinity Label Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holick MF. Vitamin D: biosynthesis, metabolism and mode of action. In: Endocrinology, vol 2. DeGroot LJ, Besser GM, et al, eds. Philadelphia: WB Saunders, 1994; 902–926.Google Scholar
  2. 2.
    Bikle DD. A bright future for the sunshine hormone. Sci Am Sci Med 1995; March/April:58–67.Google Scholar
  3. 3.
    Cooke NE, Haddad JG. Vitamin D binding protein (Gc-globulin). Endocrinol Rev 1989; 10: 294–307.CrossRefGoogle Scholar
  4. 4.
    Ray R. Molecular recognition in vitamin D-binding protein. Proc Soc Exp Biol Med 1996; 212: 305–312.PubMedGoogle Scholar
  5. 5.
    Binderup L. Immunological properties of vitamin D analogues and metabolites. Biochem Pharmacol 1992; 43: 1885–1892.PubMedCrossRefGoogle Scholar
  6. 6.
    Colston KW, MacKay AG, Janus SY, Binderup L, Chander S, Coombes RC. EB 1089: a new vitamin D analogue that inhibits the growth of breast cancer cells in vivo and in vitro. Biochem Pharmacol 1992; 44: 2273–2280.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith E, Pincus SH, Donovan L, Holick MF. A novel approach for the evaluation and treatment of psoraisis: oral or topical use of 1,25-dihydroxyvitamin D3 can be a safe and effective therapy for psoraisis. J Acad Dermatol 1988; 19: 516–528.CrossRefGoogle Scholar
  8. 8.
    Christakos S. Vitamin D and breast cancer (review). Adv Exp Med Biol 1994; 364: 115–118.PubMedCrossRefGoogle Scholar
  9. 9.
    Feldman D, Skowronski RJ, and Peehl DM. Vitamin D and prostate cancer (review). Adv Exp Med Biol 1995; 375: 53–63.PubMedGoogle Scholar
  10. 10.
    Habahang M, Buras RR, Davoodi F, Schumaker LM, Nauta RJ, Uskokovic MR, Brenner RV, Evans SR. Growth inhibition of HT-29 human colon cancer cells by analogues of 1,25-dihydroxyvitamin D3. Cancer Res 1994; 54: 4057–4064.Google Scholar
  11. 11.
    Jung SJ, Lee YY, Pakkala S, deVos S, Elstner E, Norman AW, Green J, Uskokovic MR, Koeffler HP. 1,25(OH)2–16-ene-vitamin D3 is a potent antileukemic agent with low potential to cause hypercalcemia. Leuk Res 1994; 18: 453–463.PubMedCrossRefGoogle Scholar
  12. 12.
    Haussler MR, Whitfield GK, Haussler CA, Hsieh J-C, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998; 13: 325–349.PubMedCrossRefGoogle Scholar
  13. 13.
    Haussler MR, Haussler CA, Jurutka PW, Thompson PD, Hsieh J-C, Remus LS, Selznick SH, Whitfield GK. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. J Endocrinol 1997; 154:5S7–S73.Google Scholar
  14. 14.
    Darwish H, DeLuca HF. Vitamin D-regulated gene expression. Crit Rev Eukaryot Gene Expr 1993; 3: 89–116.PubMedGoogle Scholar
  15. 15.
    Baran DT, Sorensen AM, Shalhoub V, Owen T, Oberdorf, A, Stein, G, Lian J. 1 a,25-Dihydroxyvitamin D3 rapidly increases cytosolic calcium in clonal rat osteosarcoma cells lacking the vitamin D receptor. J Bone Miner Res 1991; 6: 1269–1275.PubMedCrossRefGoogle Scholar
  16. 16.
    Farach-Carson MC, Sergeev IN, Norman AW. Nongenomic actions of la,25-dihydroxyvitamin D3 in rat osteosarcoma cells: structure-function studies using ligand analogs. Endocrinology 1991; 129: 1876–1884.PubMedCrossRefGoogle Scholar
  17. 17.
    Norman AW, Nemere I, Zhou LX, Bishop JE, Lowe KE, Maiyar AC, Collins ED, Taoka T, Sergeev I, Farach-Carson MC. la,25-(OH)2-Vitamin D3, a steroid hormone that produces biologic effects via both genomic and nongenomic pathways. J Steroid Mol Biol 1992; 41: 231–240.CrossRefGoogle Scholar
  18. 18.
    Baran DT, Ray R, Sorensen AM, Honeyman T, Holick MF. Binding characteristics of a membrane receptor that recognizes la,25-dihydroxyvitamin D3 and its epimer, 1(3,25-dihydroxyvitamin D3. J Cell Biochem 1994; 56: 510–517.PubMedCrossRefGoogle Scholar
  19. 19.
    Norman AW, Bouillon R, Farach-Carson MC, Bishop JE, Zhou LX, Nemere I, Zhao J, Muralidharan KR, Okamura WH. Demonstration that 1(3,25-dihydroxyvitamin D3 is an anatgonist of the nongenomic but not genomic biological responses and biological profile of the three A-ring diastereoisomers of la,25-dihydroxyvitamin D3. J Biol Chem 1993; 268: 2022–2030.Google Scholar
  20. 20.
    Bouillon R, Okamura WH, Norman AW. Structure-function relationships in the vitamin D endocrine system. Endocr Rev 1995; 16: 200–257.PubMedGoogle Scholar
  21. 21.
    Norman AW, Bishop JE, Collins E-GS, Satchell DP, Dormanen MC, Zanello SB, Farcah-Carson MC, Bouillon R, Okamura WH. Differing shapes of 1a,25-dihydroxyvitamin D3 function as ligands for the D-binding protein, nuclear receptor: a staus report. J Steroid Biochem Mol Biol 1996; 56: 13–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Addo JK, Swamy N, Ray R. Novel C-6 functionalized analogs of 25-hydroxyvitamin D3 and la,25dihydroxyvitamin D3: synthesis and binding analysis with vitamin D-binding protein and vitamin D receptor. 1998, submitted.Google Scholar
  23. 23.
    Wurtz J-M, Guillot B, Moras D. Model of the ligand binding domain of the vitamin D nuclear receptor based on the crystal structure of holo RARy. In: Vitamin D Chemistry, Biology and Clinical Applications of the Steroid Hormone. Norman AW, Bouillon R, Thomasset M, eds. Riverside, CA: University of California, 1997; 165–172.Google Scholar
  24. 24.
    Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P., Moras D, Gronenmeyer H. A canonical structure for the ligand-binding domain of nuclear receptors. Nature Struct Biol 1996; 3: 87–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Wecksler WR, Ross FP, Norman AW. Characterization of the la,25-dihydroxyvitamin D3 receptor from rat intestinal cytosol. J Biol Chem 1979; 254: 9488–9491.PubMedGoogle Scholar
  26. 26.
    Coty WA. Reversible dissociation of steroid hormone receptor complexes by mercurial reagents. J Biol Chem 1980; 255: 8035–8037.PubMedGoogle Scholar
  27. 27.
    Pike JW. Evidence for a reactive sulhydryl in the DNA binding domain of the 1 a,25-dihydroxyvitamin D3 receptor. Biochem Biophys Res Commun 1981; 100: 1713–1719.PubMedCrossRefGoogle Scholar
  28. 28.
    Swamy N, Brisson M, Ray R. Trp-145 is essential for the binding of 25-hydroxyvitamin D3 to human serum vitamin D-binding protein. J Biol Chem 1995; 270: 2636–2639.PubMedCrossRefGoogle Scholar
  29. 29.
    Swamy N, Ghosh S, Ray R. Bacterial expression of human vitamin D-binding protein (Gc2) in functional form. Protein Expr Purif 1997; 10: 115–122.PubMedCrossRefGoogle Scholar
  30. 30.
    Swamy N, Paz N, Ray R. Expression of 25-OH-D3-binding domain (LBD) of human vitamin D-binding protein: C-terminal domain does not bind 25-OH-vitamin D3. In:. Vitamin D Chemistry, Biology and Clinical Applications of the Steroid Hormone. Norman AW, Bouillon R, Thomasset M, eds. Riverside, CA: University of California, 1997; 114–115.Google Scholar
  31. 31.
    Nakajima S, Hsieh J-C, Jurutka PW, Galligan MA, Haussler CA Whitfield GK, Haussier MR. Examination of the potential functional role of conserved cysteine residues in the hormone binding domain of the human 1,25-dihydroxyvitamin D3 receptor. J Biol Chem 1996; 271: 5143–5149.PubMedCrossRefGoogle Scholar
  32. 32.
    Hsieh J-C, Jurutka PW, Nakjima S, Galligan MA, Haussler CA, Shimizu Y, Shimizu N, Whitfield GK, Haussler MR. Phosphorylation of the human vitamin D receptor by protein kinase C: biochemical and functional evaluation of the serine 51 recognition site. J Biol Chem 1993; 268: 1511–1512.Google Scholar
  33. 33.
    Jurutka PW, Hsieh J-C, MacDonald PN, Terpening CM, Haussler, CA, Haussler MR, Whitfield GK. Phosphorylation of serine 208 in the human vitamin D receptor: the predominant amino acid phosphorylated by casein kinase II, in vitro, and identification as a significant phosphorylation site in intact cells. J Biol Chem 1993; 268: 6791–6799.PubMedGoogle Scholar
  34. 34.
    Malloy PJ, Eccleshall TR, Gross C, Van Maldergem L, Bouillon R, Feldman D. Hereditary vitamin D resistant rickets caused by a novel mutation in the vitamin D receptor that results in decreased affinity for hormone and cellular responsiveness. J Clin Invest 1997; 99: 297–304.PubMedCrossRefGoogle Scholar
  35. 35.
    Sweet F, Murdock GL. Affinity labeling of hormone-specific proteins. Endocr Rev 1987; 8: 154–184.PubMedCrossRefGoogle Scholar
  36. 36.
    Ray R, Holick SA, Hanafin N, Holick MF. Photoaffinity labeling of the rat plasma vitamin D binding protein with [26,27–3H]-25-hydroxyvitamin D3–3-[N-(4-amido-2-nitrophenyl)glycinate]. Biochemistry 1986; 25: 4729–4733.PubMedCrossRefGoogle Scholar
  37. 37.
    Ray R, Bouillon R, Van Baelen HG, Holick MF. Photoaffinity labeling of rat plasma vitamin D binding protein with a second generation photoaffinity analog of 25-hydroxyvitamin D3. Biochemistry 1991; 36: 4809–4813.CrossRefGoogle Scholar
  38. 38.
    Ray R, Bouillon R, Van Baden HG, Holick MF. Photoaffinity labeling of human serum vitamin D binding protein, and chemical cleavages of the labeled protein: identification of a 11.5 KDa peptide, containing the putative 25-hydroxyvitamin D3-binding site. Biochemistry 1991; 30: 7638–7642.PubMedCrossRefGoogle Scholar
  39. 39.
    Link R, Kutner A, Schnoes HK, DeLuca HF. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3. Biochemistry 1987; 26: 3957–3964.PubMedCrossRefGoogle Scholar
  40. 40.
    Swamy N, Ray R. 25-Hydroxy[26,27-methyl-3H]vitamin D3–3(3-(1,2-epoxypropyl)ether: an affinity labeling reagent for human vitamin D-binding protein. Arch Biochem Biophys 1995; 319: 504–507.PubMedCrossRefGoogle Scholar
  41. 41.
    Haddad JG, Hu YZ, Kowalski MA, Laramore C, Ray K, Robzyk P, Cooke NE. Identification of the sterol-and actin-binding domains of plasma vitamin D binding protein (Gc-globulin). Biochemistry 1992; 31: 7174–7181.PubMedCrossRefGoogle Scholar
  42. 42.
    Swamy N, Ray R. Affinity labeling of rat serum vitamin D binding protein. Arch Biochem Biophys 1996; 333: 139–144.PubMedCrossRefGoogle Scholar
  43. 43.
    Swamy N, Dutta A, Ray R. Roles of structure and orientation of ligands and ligand-mimicks inside the ligand-binding pocket of vitamin D-binding protein. Biochemistry 1997; 36: 7432–7436.PubMedCrossRefGoogle Scholar
  44. 44.
    Addo JK, Ray R. Synthesis and binding analysis of 5E-[19-(2-bromoacetoxy)methyl]25-hydroxyvitamin D3 and 5E-25-hydroxyvitamin D3-19-methyl[(4-azido-2-nitro)phenyllgiycinate: novel C19-modified affinity and photoaffinity analogs of 25-hydroxyvitamin D3. Steroids 1998, in press.Google Scholar
  45. 45.
    Ray R, Holick SA, Holick MF. Synthesis of a photoaffinity-labelled analogue of 1,25-dihydroxyvitamin D3. J Chem Soc Chem Commun 1985; 702, 703.Google Scholar
  46. 46.
    Ray R, Rose SR, Holick SA, Holick MF. Evaluation of a photolabile derivative of 1,25-dihydroxyvitamin D3 as a photoaffinity probe for 1,25-dihydroxyvitamin D3 receptor. Biochem Biophys Res Commun 1985; 132: 198–203.PubMedCrossRefGoogle Scholar
  47. 47.
    Ray R, Holick MF. The synthesis of a radiolabeled photoaffinity analog of 1,25-dihydroxyvitamin D3. Steroids 1988; 51: 623–630.PubMedCrossRefGoogle Scholar
  48. 48.
    Ray R, Ray S, Holick MF. Photoaffinity labeling of chick intestinal la,25-dihydroxyvitamin D3 receptor. Steroids 1993; 58: 462–465.PubMedCrossRefGoogle Scholar
  49. 49.
    Roy A, Ray R Aminopropylation of vitamin D hormone (1a,25-dihydroxyvitamin D3), its biological precursors, and other steroidal alcohols: an anchoring moiety for affinity studies of sterol. Steroids 1995; 60: 530–533.PubMedCrossRefGoogle Scholar
  50. 50.
    Brown TA, DeLuca HF. Photoaffinity labeling of the 1,25-dihydroxyvitamin D3 receptor. Biochim Biophys Act 1991; 1073: 324–328.CrossRefGoogle Scholar
  51. 51.
    Ray R, Ray S, Holick MF. 1a,25-Dihydroxyvitamin D3–3-deoxy-3f3-bromoacetate, an affinity labeling analog of 1a,25-dihydroxyvitamin D3. Bioorg Chem 1994; 22: 276–283.CrossRefGoogle Scholar
  52. 52.
    Ray R, Swamy N, MacDonald PN, Ray S, Haussler MR,and Holick MF. Affinity labeling of la,25dihydroxyvitamin D3 receptor. J Biol Chem 1996; 271: 2012–2017.PubMedCrossRefGoogle Scholar
  53. 53.
    Swamy N, Kounine M, Ray R. Identification of the subdomain in the nuclear receptor for the hormonal form of vitamin D3, la,25-dihydroxyvitamin D3, vitamin D receptor, that is covalently modified by an affinity labeling reagent. Arch Biochem Biophys 1997; 348: 91–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Norman AW, Roth J, Orci L. The vitamin D endocrine system: steroid metabolism, hormone receptors and biological response (calcium binding proteins). Endocr Rev 1982; 3: 331–366.PubMedCrossRefGoogle Scholar
  55. 55.
    Baran D, Merriman H, Ray R, Sorensen A, Quail J. Characteristics of an osteoblast protein that recognizes 1a,25-dihydroxyvitamin D3. J Bone Miner Res 1995; 10 (Suppl 1): S569.Google Scholar
  56. 56.
    Nemere I, Ray R, Jia Z. Further characterization of the putative basal-lateral membrane receptor for 1,25(OH)2D3. J Bone Miner Res 1996; 11 (Suppl 1): M522.Google Scholar
  57. 57.
    Koszelak S, McPherson A, Bouillon R, Van Baelen H. Crystallization and preliminary x-Ray analysis of the vitamin D-binding protein from human serum. J Steroid Biochem 1985; 23: 1077–1078.PubMedCrossRefGoogle Scholar
  58. 58.
    Vogelaar NJ, Lindberg U, Schutt CE. Crystallization and preliminary X-Ray analysis of Gc, the vitamin D-binding protein in serum. J Mol Biol 1991; 220: 545–547.PubMedCrossRefGoogle Scholar
  59. 59.
    Verboven CC, De Bondt HL, De Ranter C, Bouillon R, Van Baelen H. Crystallization and x-Ray investigation of vitamin D-binding protein from human serum. Identification of the crystal content. J Steroid Biochem Mol Biol 1995; 54: 11–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature 1995; 378: 690–697.PubMedCrossRefGoogle Scholar
  61. 61.
    Renaud J-P, Rochel N, Ruff M, Vivat V, Chambon P, Gronenmeyer H, Moras D. Crystal structure of the RAR-y ligand-binding doman bound to all-trans retinoic acid. Nature 1995; 378: 681–689.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Rahul Ray

There are no affiliations available

Personalised recommendations