Vitamin D pp 129-145 | Cite as

Vitamin D Receptor Translocation

  • Julia Barsony
Part of the Nutrition and Health book series (NH)


In eukaryotic cells, a constant exchange of ions, lipids, RNA, and proteins is carried out between the cytoplasm and nucleus. The nuclear envelope separates the nucleus from the cytoplasm, and the nuclear pore complex (NPC) is the site of exchange between the two compartments Small molecules may pass through the NPC by diffusion, but macromolecules that are larger than 20 kDa cannot enter the nucleus by passive diffusion. Transport of large proteins, such as the steroid receptors, into the nucleus is a multistep, highly regulated, time- and energy-dependent process [recently reviewed by Jans and Hubner (1)]. Protein import involves transport from the cytoplasm to the NPC, translocation through the NPC, and intranuclear targeting (Fig. 1).


Glucocorticoid Receptor Guanylate Cyclase Nuclear Pore Complex Nuclear Localization Sequence Receptor Translocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jans DA, Hubner S. Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev 1996; 76: 651–685.PubMedGoogle Scholar
  2. 2.
    Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear localization signals are receptors for nuclear import. Cell 1991; 66: 837–847.PubMedCrossRefGoogle Scholar
  3. 3.
    Picard D, Yamamoto KR. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 1987; 6: 3333–3340.PubMedGoogle Scholar
  4. 4.
    Picard D, Salser SJ, Yamamoto KR. A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 1988; 54: 1073–1080.PubMedCrossRefGoogle Scholar
  5. 5.
    Cadepond F, Gasc JM, Delahaye F, Jibard N, Schweizer-Groyer G, Segard-Maurel I, et al. Hormonal regulation of the nuclear localization signals of the human glucocorticosteroid receptor. Exp Cell Res 1992; 201: 99–108.PubMedCrossRefGoogle Scholar
  6. 6.
    Guiochon-Mantel A, Delabre K, Lescop P, Milgrom E. The Ernst Schering Poster Award. Intracellular traffic of steroid hormone receptors. J Steroid Biochem Mol Biol 1996; 56: 3–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhou ZX, Sar M, Simental JA, Lane MV, Wilson EM. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J Biol Chem 1994; 269: 13115–13123.PubMedGoogle Scholar
  8. 8.
    LaCasse EC, Lochnan HA, Walker P, Lefebvre YA. Identification of binding proteins for nuclear localization signals of the glucocorticoid and thyroid hormone receptors [published erratum appears in Endocrinology 1993; 133:2760]. Endocrinology 1993; 132: 1017–1025.PubMedCrossRefGoogle Scholar
  9. 9.
    Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P. Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J 1992; 11: 3681–3694.PubMedGoogle Scholar
  10. 10.
    Vancurova I, Jochova-Rupes J, Lou W, Paine PL. Distinct phosphorylation sites differentially influence facilitated transport of an NLS-protein and its subsequent intranuclear binding. Biochem Biophys Res Commun 1995; 217: 419–427.PubMedCrossRefGoogle Scholar
  11. 10a.
    Hsieh JC, Simizu Y, Minosima S, Simizu N, Haussler CA, Jurutka PW et al. Novel nuclear localization signal between the two DNA-binding zinc fingers in the human vitamin D receptor. J Cell Biochem 1998; 70: 94–109.PubMedCrossRefGoogle Scholar
  12. 11.
    Kuiper GG, Brinkmann AO. Steroid hormone receptor phosphorylation: is there a physiological role? Mol Cell Endocrinol 1994; 100: 103–107.PubMedCrossRefGoogle Scholar
  13. 12.
    Czar MJ, Owens-Grillo JK, Yem AW, Leach KL, Deibel MR, Welsh MJ, et al. The hsp56 immunophilin component of untransformed steroid receptor complexes is localized both to micro-tubules in the cytoplasm and to the same nonrandom regions within the nucleus as the steroid receptor. Mol Endocrinol 1994; 8: 1731–1741.PubMedCrossRefGoogle Scholar
  14. 13.
    Hutchison KA, Stancato LF, Owens-Grillo JK, Johnson JL, Krishna P, Toft DO, et al. The 23-kDa acidic protein in reticulocyte lysate is the weakly bound component of the hsp foldosome that is required for assembly of the glucocorticoid receptor into a functional heterocomplex with hsp90. J Biol Chem 1995; 270: 18841–18847.PubMedCrossRefGoogle Scholar
  15. 14.
    Hutchison KA, Dittmar KD, Pratt WB. All of the factors required for assembly of the glucocorticoid receptor into a functional heterocomplex with heat shock protein 90 are preassociated in a self-sufficient protein folding structure, a “foldosome”. J Biol Chem 1994; 269: 27894–27899.PubMedGoogle Scholar
  16. 15.
    Tai PK, Chang H, Albers MW, Schreiber SL, Toft DO, Faber LE. P59 (FK506 binding protein 59) interaction with heat shock proteins is highly conserved and may involve proteins other than steroid receptors. Biochemistry 1993; 32: 8842–8847.PubMedCrossRefGoogle Scholar
  17. 16.
    Yang J, DeFranco DB. Assessment of glucocorticoid receptor-heat shock protein 90 interactions in vivo during nucleocytoplasmic trafficking. Mol Endocrinol 1996; 10: 3–13.PubMedCrossRefGoogle Scholar
  18. 17.
    Smith DF. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol 1993; 7: 1418–1429.PubMedCrossRefGoogle Scholar
  19. 18.
    Pratt B, Scherrer L. Heat shock proteins and the cytoplasmic-nuclear trafficking of steroid receptors. In: Steroid Hormone Receptors: Basic and Clinical Aspects. Moudgil VK, ed. Boston: Birkhauser, 1994; 215–246.CrossRefGoogle Scholar
  20. 19.
    Shago M, Flock G, Leung Hagesteijn CY, Woodside M, Grinstein S, Giguere V, et al. Modulation of the retinoic acid and retinoid X receptor signaling pathways in P19 embryonal carcinoma cells by calreticulin. Exp Cell Res 1997; 230: 50–60.PubMedCrossRefGoogle Scholar
  21. 20.
    Michalak M, Burns K, Andrin C, Mesaeli N, Jass GH, Busaan JL, et al. Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem 1996; 271: 29436–29445.PubMedCrossRefGoogle Scholar
  22. 21.
    Ning YM, Sanchez ER. In vivo evidence for the generation of a glucocorticoid receptor-heat shock protein-90 complex incapable of binding hormone by the calmodulin antagonist phenoxybenzamine. Mol Endocrinol 1996; 10: 14–23.PubMedCrossRefGoogle Scholar
  23. 22.
    Ning YM, Sanchez ER. Evidence for a functional interaction between calmodulin and the glucocorticoid receptor. Biochem Biophys Res Commun 1995; 208: 48–54.PubMedCrossRefGoogle Scholar
  24. 23.
    Goldfarb DS, Gariepy J, Schoolnik G, Kornberg RD. Synthetic peptides as nuclear localization signals. Nature 1986; 322: 641–644.PubMedCrossRefGoogle Scholar
  25. 24.
    Htun H, Barsony J, Renyi I, Gould D, Hager G. Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc Natl Acad Sci USA 1996; 93: 4845–4850.PubMedCrossRefGoogle Scholar
  26. 25.
    Richards SA, Lounsbury KM, Carey KL, Macara IG. A nuclear export signal is essential for the cytosolic localization of the Ran binding protein, RanBP1. J Cell Biol 1996; 134: 1157–1168.PubMedCrossRefGoogle Scholar
  27. 26.
    Carey KL, Richards SA, Lounsbury KM, Macara IG. Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import. J Cell Biol 1996; 133: 985–996.PubMedCrossRefGoogle Scholar
  28. 27.
    Akner G, Sundqvist KG, Denis M, Wikstrom AC, Gustafsson JA Immunocytochemical localization of glucocorticoid receptor in human gingival fibroblasts and evidence for a colocalization of glucocorticoid receptor with cytoplasmic microtubules. Eur J Cell Biol 1990; 53: 390–401.PubMedGoogle Scholar
  29. 28.
    Akner G, Mossberg K, Wikstrom A, Sundquist K, Gustafsson J. Evidence for colocalization of glucocorticoid receptor with cytoplasmic microtubules in human gingival fibroblasts, using two different monoclonal anti-GR antibodies, confocal laser scanning microscopy, and image analysis. J Steriod Biochem Mol Biol 1991; 39: 419–432.CrossRefGoogle Scholar
  30. 29.
    Perrot-Applanat M, Cibert C, Geraud G, Renoir JM, Baulieu EE. The 59 kDa FK506-binding protein, a 90 kDa heat shock protein binding immunophilin (FKBP59-HBI), is associated with the nucleus, the cytoskeleton and mitotic apparatus. J Cell Sci 1995; 108: 2037–2051.PubMedGoogle Scholar
  31. 30.
    Sanchez ER, Redmond T, Scherrer LC, Bresnick EH, Welsh MJ, Pratt WB. Evidence that the 90-kilodalton heat shock protein is associated with tubulin-containing complexes in L cell cytosol and in intact PtK cells. Mol Endocrinol 1988; 2: 756–760.PubMedCrossRefGoogle Scholar
  32. 31.
    Scherrer LC, Pratt WB. Energy-dependent conversion of transformed cytosolic glucocorticoid receptors from soluble to particulate-bound form. Biochemistry 1992; 31: 10879–10886.PubMedCrossRefGoogle Scholar
  33. 32.
    Scherrer LC, Pratt WB. Association of the transformed glucocorticoid receptor with a cytoskeletal protein complex. J Steroid Biochem Mol Biol 1992; 41: 719–721.PubMedCrossRefGoogle Scholar
  34. 33.
    Akner G, Wikstrom AC, Stromstedt PE, Stockman O, Gustafsson JA, Wallin M. Glucocorticoid receptor inhibits microtubule assembly in vitro. Mol Cell Endocrinol 1995; 110: 49–54.PubMedCrossRefGoogle Scholar
  35. 34.
    Perrot-Applanat M, Lescop P, Milgrom E. The cytoskeleton and the cellular traffic of the progesterone receptor. J Cell Biol 1992; 119: 337–348.PubMedCrossRefGoogle Scholar
  36. 35.
    Szapary D, Barber T, Dwyer N, Blanchette-Mackie E, Simons Jr. S. Microtubules are not required for glucocorticoid receptor mediated gene induction. J Steroid Biochem Mol Biol 1994; 51: 143–148.PubMedCrossRefGoogle Scholar
  37. 36.
    Owens-Grillo JK, Czar MJ, Hutchison KA, Hoffmann K, Perdew GH, Pratt WB. A model of protein targeting mediated by immunophilins and other proteins that bind to hsp90 via tetratricopeptide repeat domains. J Biol Chem 1996; 271: 13468–13475.PubMedCrossRefGoogle Scholar
  38. 37.
    Selkirk JK, Merrick BA, Stackhouse BL, He C. Multiple p53 protein isoforms and formation of oligomeric complexes with heat shock proteins Hsp70 and Hsp90 in the human mammary tumor, T47D, cell line. Appl Theor Electrophor 1994; 4: 11–18.PubMedGoogle Scholar
  39. 38.
    Chi NC, Adam EJ, Visser GD, Adam SA. RanBPl stabilizes the interaction of Ran with p97 nuclear protein import. J Cell Biol 1996; 135: 559–569.PubMedCrossRefGoogle Scholar
  40. 39.
    Weis K, Dingwall C, Lamond AI. Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities. EMBO J 1996; 15: 7120–7128.PubMedGoogle Scholar
  41. 40.
    Paschal BM, Delphin C, Gerace L. Nucleotide-specific interaction of Ran/TC4 with nuclear transport factors NTF2 and p97. Proc Natl Acad Sci USA 1996; 93: 7679–7683.PubMedCrossRefGoogle Scholar
  42. 41.
    Clarkson WD, Kent HM, Stewart M. Separate binding sites on nuclear transport factor 2 (NTF2) for GDP-Ran and the phenylalanine-rich repeat regions of nucleoporins p62 and Nsplp. J Mol Biol 1996; 263: 517–524.PubMedCrossRefGoogle Scholar
  43. 42.
    Corbett AH, Silver PA. The NTF2 gene encodes an essential, highly conserved protein that functions in nuclear transport in vivo. J Biol Chem 1996; 271: 18477–18484.PubMedCrossRefGoogle Scholar
  44. 43.
    Jensen EV, Szuzuki T, Kawashima T, Stumpf W, Jungblut P. A two step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci USA 1968; 59: 632–638.PubMedCrossRefGoogle Scholar
  45. 44.
    Williams D, Gorski J. Kinetic and equilibrium analysis of estradiol in uterus: a model of binding-site distribution in uterine cells. Proc Natl Acad Sci USA 1972; 69: 3464–3468.PubMedCrossRefGoogle Scholar
  46. 45.
    Gorski J, Welshons W, Sakai D, Hansen J, Kassis J, Shull J, et al. Evolution of a model of estrogen action. Recent Prog Horm Res 1986; 42: 297–329.PubMedGoogle Scholar
  47. 46.
    Jensen EV. Steroid hormones, receptors, and antagonists. Ann NY Acad Sci 1996; 784: 1–17.PubMedCrossRefGoogle Scholar
  48. 47.
    Pratt WB, Sanchez ER, Bresnick EH, Meshinchi S, Scherrer LC, Dalman FC, et al. Interaction of the glucocorticoid receptor with the Mr 90,000 heat shock protein: an evolving model of ligand-mediated receptor transformation and translocation. Cancer Res 1989; 49: 2222s - 2229s.PubMedGoogle Scholar
  49. 48.
    Walters MR. Newly identified actions of the vitamin D endocrine system Endocr Rev 1992; 13: 719–764.Google Scholar
  50. 49.
    Barsony J, Marx SJ. Immunocytology on microwave-fixed cells reveals rapid and agonist-specific changes in subcellular accumulation patterns for cAMP or cGMP [published erratum appears in Proc Natl Acad Sci USA 1990; 87:3633]. Proc Natl Acad Sci USA 1990; 87: 1188–1192.PubMedCrossRefGoogle Scholar
  51. 50.
    Barsony J, Pike JW, DeLuca HF, Marx SJ. Immunocytology with microwave-fixed fibroblasts shows 1alpha,25-dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors. J Cell Biol 1990; 111: 2385–2395.PubMedCrossRefGoogle Scholar
  52. 51.
    Ritchie HH, Hughes MR, Thompson ET, Malloy PJ, Hochberg Z, Feldman D, et al. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D3-resistant rickets in three families. Proc Natl Acad Sci USA 1989; 86: 9783–9787.PubMedCrossRefGoogle Scholar
  53. 52.
    Amizuka N, Ozawa H. Intracellular localization and translocation of lalpha, 25-dihydroxyvitamin D3 receptor in osteoblasts. Arch Histol Cytol 1992; 55: 77–88.PubMedCrossRefGoogle Scholar
  54. 53.
    Jakob F, Gieseler F, Tresch A, Hammer S, Seufert J, Schneider D. Kinetics of nuclear translocation and turnover of the vitamin D receptor in human HL60 leukemia cells and peripheral blood lymphocytes-coincident rise of DNA-relaxing activity in nuclear extracts. J Steroid Biochem Mol Biol 1992; 42: 11–16.PubMedCrossRefGoogle Scholar
  55. 54.
    Liu L, Ng M, lacopino AM, Dunn ST, Hughes MR, Bourdeau JE. Vitamin D receptor gene expression in mammalian kidney. J Am Soc Nephrol 1994; 5: 1251–1258.PubMedGoogle Scholar
  56. 55.
    Johnson JA, Grande JP, Roche PC, Campbell RJ, Kumar R Immunolocalization of calcitriol receptor, plasma membrane calcium pump and calbindin-D28k in the cornea and ciliary body of the rat eye. Ophthalmic Res 1995; 27: 42–47.PubMedCrossRefGoogle Scholar
  57. 56.
    Berdal A, Papagerakis P, Hotton D, Bailleul-Forestier I, Davideau JL. Ameloblasts and odontoblasts, target-cells for 1,25-dihydroxyvitamin D3: a review. Int J Dev Biol 1995; 39: 257–262.PubMedGoogle Scholar
  58. 57.
    Reichrath J, Collins ED, Epple S, Kerber A, Norman AW, Bahmer FA. Immunohistochemical detection of 1,25-dihydroxyvitamin D3 receptors (VDR) in human skin. A comparison of five antibodies. Pathol Res Pract 1996; 192: 281–289.PubMedCrossRefGoogle Scholar
  59. 58.
    Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem Cell Biol 1996; 105: 7–15.PubMedCrossRefGoogle Scholar
  60. 59.
    Barsony J, Renyi I, McKoy W, Kang HC, Haugland RP, Smith CL. Development of a biologically active fluorescent-labeled calcitriol and its use to study hormone binding to the vitamin D receptor. Anal Biochem 1995; 229: 68–79.PubMedCrossRefGoogle Scholar
  61. 60.
    Barsony J, Renyi I, McKoy W. Subcellular distribution of normal and mutant vitamin D receptors in living cells. J Biol Chem 1997; 272: 5774–5782.PubMedCrossRefGoogle Scholar
  62. 61.
    Deng Y, Bennink JR, Kang HC, Haugland RP, Yewdell JW. Fluorescent conjugates of brefeldin A selectively stain the endoplasmic reticulum and Golgi complex of living cells. J Histochem Cytochem 1995; 43: 907–915.PubMedCrossRefGoogle Scholar
  63. 62.
    Feiguin F, Ferreira A, Kosik KS, Caceres A. Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol 1994; 127: 1021–1039.PubMedCrossRefGoogle Scholar
  64. 63.
    Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, et al. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 1994; 367: 480–483.PubMedCrossRefGoogle Scholar
  65. 64.
    Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, et al. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 1994; 367: 476–480.PubMedCrossRefGoogle Scholar
  66. 65.
    Winrow CJ, Miyata KS, Marcus SL, Burns K, Michalak M, Capone JP, et al. Calreticulin modulates the in vitro DNA binding but not the in vivo transcriptional activation by peroxisome proliferatoractivated receptor/retinoid X receptor heterodimers. Mol Cell Endocrinol 1995; 111: 175–179.PubMedCrossRefGoogle Scholar
  67. 66.
    Wheeler DG, Horsford J, Michalak M, White JH, Hendy GN. Calreticulin inhibits vitamin D3 signal transduction. Nucleic Acids Res 1995; 23: 3268–3274.PubMedCrossRefGoogle Scholar
  68. 67.
    St-Arnaud R, Prud’homme J, Leung-Hagesteijn C, Dedhar S. Constitutive expression of calreticulin in osteoblasts inhibits mineralization. J Cell Biol 1995; 131: 1351–1359.PubMedCrossRefGoogle Scholar
  69. 68.
    Kim YS, Macdonald PN, Dedhar S, Hruska KA. Association of 1alpha,25-dihydroxyvitamin D3-occupied vitamin D receptors with cellular membrane acceptance sites. Endocrinology 1996; 137: 3649–3658.PubMedCrossRefGoogle Scholar
  70. 69.
    Barsony J, McKoy W. Molybdate increases intracellular 3’,5’-guanosine cyclic monophosphate and stabilizes vitamin D receptor association with tubulin-containing filaments. J Biol Chem 1992; 267: 24457–24465.PubMedGoogle Scholar
  71. 70.
    Kamimura S, Gallieni M, Zhong M, Beron W, Slatopolsky E, Dusso A. Microtubules mediate cellular 25-hydroxyvitamin D3 trafficking and the genomic response to 1,25-dihydroxyvitamin D3 in normal human monocytes. J Biol Chem 1995; 270: 22160–22166.PubMedCrossRefGoogle Scholar
  72. 71.
    Wang C, Asai DJ, Robinson KR. Retrograde but not anterograde bead movement in intact axons requires dynein. J Neurobiol 1995; 27: 216–226.PubMedCrossRefGoogle Scholar
  73. 72.
    Whitfield GK, Hsieh JC, Nakajima S, Macdonald PN, Thompson PD, Jurutka PW, et al. A highly conserved region in the hormone-binding domain of the human vitamin D receptor contains residues vital for heterodimerization with retinoid X receptor and for transcriptional activation. Mol Endocrinol 1995; 9: 1166–1179.PubMedCrossRefGoogle Scholar
  74. 73.
    Hirst M, Feldman D. Salt-induced activation of 1,25-dihydroxyvitamin D3 receptors to a DNA binding form. J Biol Chem 1987; 262: 7072–7075.PubMedGoogle Scholar
  75. 74.
    Nakada M, Simpson RU, DeLuca HF. Molybdate and the 1,25-dihydroxyvitamin D3 receptor from chick intestine. Arch Biochem Biophys 1985; 238: 517–521.PubMedCrossRefGoogle Scholar
  76. 75.
    Holley SJ, Yamamoto KR. A role for Hsp90 in retinoid receptor signal transduction. Mol Biol Cell 1995; 6: 1833–1842.PubMedGoogle Scholar
  77. 76.
    Barsony J, Marx SJ. Receptor-mediated rapid action of lalpha,25-dihydroxycholecalciferol: increase of intracellular cGMP in human skin fibroblasts. Proc Natl Acad Sci USA 1988; 85: 1223–1226.PubMedCrossRefGoogle Scholar
  78. 77.
    Barsony J, Marx SJ. Rapid accumulation of cyclic GMP near activated vitamin D receptors. Proc Natl Acad Sci USA 1991; 88: 1436–1440.PubMedCrossRefGoogle Scholar
  79. 78.
    Fleming H, Blumenthal R, Gurpide E. Rapid changes in specific estrogen binding elicited by cGMP or cAMP in cytosol from human endometrial cells. Proc Natl Acad Sci USA 1983; 80: 2486–2490.PubMedCrossRefGoogle Scholar
  80. 79.
    Gurpide E, Blumenthal R, Fleming H. Regulation of estrogen receptor levels in endometrial cancer cells. Prog Clin Biol Res 1984; 142: 145–165.PubMedGoogle Scholar
  81. 80.
    Strukov AI, Paukov VS, Kaufman OI. [Leukocyte cytoskeleton under normal and pathological conditions]. Arkh Patol 1983; 45: 81–87.PubMedGoogle Scholar
  82. 81.
    Walczak CE, Nelson DL. In vitro phosphorylation of ciliary dyneins by protein kinases from Paramecium. J Cell Sci 1993; 106: 1369–1376.PubMedGoogle Scholar
  83. 82.
    Travis SM, Nelson DL. Regulation of axonemal Mgt+-ATPase from Paramecium cilia: effects of Cat+ and cyclic nucleotides. Biochim Biophys Acta 1988; 966: 84–93.PubMedCrossRefGoogle Scholar
  84. 83.
    Khare S, Wilson DM, Tien XY, Dudeja PK, Wali RK, Sitrin MD, et al. 1,25-Dihydroxycholecalciferol rapidly activates rat colonic particulate guanylate cyclase via a protein kinase C-dependent mechanism. Endocrinology 1993; 133: 2213–2219.PubMedCrossRefGoogle Scholar
  85. 84.
    Tien XY, Brasitus TA, Qasawa BM, Norman AW, Sitrin MD. Effect of 1,25(OH)2D3 and its analogues on membrane phosphoinositide turnover and [Ca2+]; in Caco-2 cells. Am J Physiol 1993; 265: G143 - G148.PubMedGoogle Scholar
  86. 85.
    Slater SJ, Kelly MB, Taddeo FJ, Larkin JD, Yeager MD, McLane JA, et al. Direct activation of protein kinase C by lalpha,25-dihydroxyvitamin D3. J Biol Chem 1995; 270: 6639–6643.PubMedCrossRefGoogle Scholar
  87. 86.
    Morelli S, de Boland AR, Boland RL. Generation of inositol phosphates, diacylglycerol and calcium fluxes in myoblasts treated with 1,25-dihydroxyvitamin D3. Biochem J 1993; 289: 675–679.PubMedGoogle Scholar
  88. 87.
    Bissonnette M, Wali RK, Hartmann SC, Niedziela SM, Roy HK, Tien XY, et al. 1,25-Dihydroxyvitamin D3 and 12–0-tetradecanoyl phorbol 13-acetate cause differential activation of Ca(2+)-dependent and Ca(2+)-independent isoforms of protein kinase C in rat colonocytes. J Clin Invest 1995; 95: 2215–2221.PubMedCrossRefGoogle Scholar
  89. 88.
    Berry DM, Antochi R, Bhatia M, Meckling-Gill KA. 1,25-Dihydroxyvitamin D3 stimulates expression and translocation of protein kinase Calpha and Cdelta via a nongenomic mechanism and rapidly induces phosphorylation of a 33-kDa protein in acute promyelocytic NB4 cells. J Biol Chem 1996; 271: 16090–16096.PubMedCrossRefGoogle Scholar
  90. 89.
    Goodnight JA, Mischak H, Kolch W, Mushinski JF. Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. Isoform-specific association with microfilaments, Golgi, endoplasmic reticulum, and nuclear and cell membranes. J Biol Chem 1995; 270: 9991–10001.PubMedCrossRefGoogle Scholar
  91. 90.
    Davidoff M, Dimitrov N. Electron microscopical localization of guanylate cyclase activity in the neocortex of the guinea pig. Acta Histochem 1989; 85: 109–116.PubMedCrossRefGoogle Scholar
  92. 91.
    Pryzwansky KB, Kidao S, Wyatt TA, Reed W, Lincoln TM. Localization of cyclic GMP-dependent protein kinase in human mononuclear phagocytes. J Leukoc Biol 1995; 57: 670–678.PubMedGoogle Scholar
  93. 92.
    Fabbri M, Bannykh S, Balch WE. Export of protein from the endoplasmic reticulum is regulated by a diacylglycerol/phorbol ester binding protein. J Biol Chem 1994; 269: 26848–26857.PubMedGoogle Scholar
  94. 93.
    Bodine PV, Litwack G. Purification of the glucocorticoid receptor-mineralocorticoid receptor modulator-2 from rabbit liver. Receptor 1995; 5: 133–143.PubMedGoogle Scholar
  95. 94.
    Celiker MY, Haas A, Saunders D, Litwack G. Specific regulation of male rat liver cytosolic estrogen receptor by the modulator of the glucocorticoid receptor. Biochem Biophys Res Commun 1993; 195: 151–157.PubMedCrossRefGoogle Scholar
  96. 95.
    Hsu TC, Bodine PV, Litwack G. Endogenous modulators of glucocorticoid receptor function also regulate purified protein kinase C. J Biol Chem 1991; 266: 17573–17579.PubMedGoogle Scholar
  97. 96.
    Bodine PV, Litwack G. The glucocorticoid receptor and its endogenous regulators. Receptor 1990; 1: 83–119.PubMedGoogle Scholar
  98. 97.
    Miller-Diener A, Schmidt TJ, Litwack G. Protein kinase activity associated with the purified rat hepatic glucocorticoid receptor. Proc Natl Acad Sci USA 1985; 82: 4003–4007.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Julia Barsony

There are no affiliations available

Personalised recommendations