Vitamin D pp 109-128 | Cite as

Molecular Biology of the Vitamin D Receptor

  • Paul N. MacDonald
Part of the Nutrition and Health book series (NH)


Vitamin D was discovered as a micronutrient that is essential for normal skeletal development and for maintaining bone integrity. Its importance in bone physiology is most apparent in the deficiency state, in which the lack of vitamin D produces rickets in children and osteomalacia in adults. However, vitamin D is more appropriately classified as a hormone, and it is the vitamin D endocrine system that regulates skeletal homeostasis. In response to hypocalcemia and elevated parathyroid hormone, the kidney synthesizes and releases 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the bioactive, hormonal form of vitamin D. 1,25(OH)2D3 acts on mineral-regulating target tissues such as intestine, bone, kidney, and parathyroid glands to maintain normal calcium and mineral homeostasis. Its predominant role is to enhance the intestinal absorption of dietary calcium and phosphorus. Thus, vitamin D preserves skeletal calcium by ensuring that adequate absorption of dietary calcium takes place. In addition to this calciotropic role, vitamin D functions in a plethora of cellular actions, perhaps the most fundamental of which is cellular differentiation (1). In skeletal tissue, 1,25(OH)2D3 increases osteoclast number (2) possibly by inducing the differentiation of preosteoclasts into mature boneresorbing cells (3). Vitamin D also acts directly on the osteoblast, in which one well-established effect is stimulating the synthesis of several bone matrix proteins including osteocalcin and osteopontin. Thus vitamin D is thought to preserve and maintain the integrity of the bony tissues via an integrated series of diverse effects.


Nuclear Receptor Human Vitamin Transcription Factor TFIIB 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe E, Miyaura C, Sakagami H, Takeda M, Konno K, Yamazaki T, Yoshiki S, Suda, T. Differentiation of mouse myeloid leukemia cells induced by la,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1981; 78: 4990–4994.PubMedCrossRefGoogle Scholar
  2. 2.
    Holtrop ME, Cox KA, Clark MB, Holick MF, Anast CS. 1,25-Dihydroxycholecalciferol stimulates osteoclasts in rat bones in the absence of parathyroid hormone. Endocrinology 1981; 108: 2293–2301.PubMedCrossRefGoogle Scholar
  3. 3.
    Bar-Shavit Z, Teitelbaum SL, Reitsma P, Hall A, Pegg LE, Trial S, Kahn A. Induction of moncytic differentiation and bone resorption by 1,25(OH)2D3. Proc Natl Acad Sci USA 1983; 80: 5908–5911.CrossRefGoogle Scholar
  4. 4.
    Faraco JH, Morrison NA, Baker A, Shine J, Frossard PM. ApaI dimorphism at the human vitamin D receptor gene locus. Nucleic Acids Res 1989; 17: 2150.Google Scholar
  5. 5.
    Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman J-J, Wiese R, DeLuca HF. The Spl transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7. Genomics 1991; 11: 168–173.PubMedCrossRefGoogle Scholar
  6. 6.
    Labuda M, Fujiwara TM, Ross MV, Morgan K, Garcia-Heras J, Ledbetter DH, Hughes MR, Glorieux FH. Two hereditary defects related to vitamin D metabolism map to the same region of human chromosome 12g13–14. J Bone Miner Res 1992; 7: 1447–1453.PubMedCrossRefGoogle Scholar
  7. 7.
    Ishikawa T, Umesono K, Mangelsdorf D, Aburatani H, Stanger B, Shibasaki Y, Imawari M, Evans R, Takaku F. A functional retinoic acid receptor encoded by the gene on human chromosome 12. Mol Endocrinol 1990; 4: 837–844.PubMedCrossRefGoogle Scholar
  8. 8.
    Mattei MG, Riviere M, Krust A, Ingvarsson S, Vennstrom B, Islam MQ, Levan G, Kautner P, Zelent A, Chambon P, Szirer J, Szirer C. Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse, and rat genomes. Genomics 1991; 10: 1061–1069.PubMedCrossRefGoogle Scholar
  9. Pike JW, Kesterson RA, Scott RA, Kerner SA, McDonnell DP, O’Malley BW. Vitamin D3 receptors: molecular structure of the protein and its chromosomal gene. In: Vitamin D: Molecular, Cellular and Clinical Endocrinology. Norman AW, Schaefer K, Grigoleit H-G, nd von Herrath D, eds. Berlin: Walter de Gruyter, 1988; 215–224.Google Scholar
  10. 10.
    Sone T, Marx SJ, Liberman UA, Pike J W. A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3. Mol Endocrino11990; 4: 623–631.Google Scholar
  11. 11.
    Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O’Malley BW. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science 1988; 242: 1702–1705.PubMedCrossRefGoogle Scholar
  12. 12.
    Pike JW. Monoclonal antibodies to chick intestinal receptors for 1,25-dihydroxyvitamin D3. J Biol Chem 1984; 259: 1167–1173.PubMedGoogle Scholar
  13. 13.
    Pike JW, Marion SL, Donaldson CA, Haussier MR. Serum and monoclonal antibodies against the chick intestinal receptor for 1,25-dihydroxyvitamin D3. J Biol Chem 1983; 258: 1289–1296.PubMedGoogle Scholar
  14. 14.
    McDonnell DP, Mangelsdorf DJ, Pike JW, Haussier MR, O’Malley BW. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 1987; 235: 1214–1217.PubMedCrossRefGoogle Scholar
  15. 15.
    Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussier MR, Pike JW, Shine J, O’Malley BW. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Scl USA 1988; 85: 3294–3298.CrossRefGoogle Scholar
  16. 16.
    Burmester JK, Wiese RJ, Maeda N, DeLuca HF. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA 1988; 85: 9499–9502.PubMedCrossRefGoogle Scholar
  17. 17.
    McDonnell DP, Scott RA, Kerner SA, O’Malley BW, Pike JW. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol 1989; 3: 635–644.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown TA, Prahl JM, DeLuca HF. Partial amino acid sequence of porcine 1,25-dihydroxyvitamin D3 receptor isolated by immunoaffinity chromatography. Proc Natl Acad Sci USA 1988; 85: 2454–2458.PubMedCrossRefGoogle Scholar
  19. 19.
    Leid M, Kastner P, Chambon P. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 1992; 17: 427–433.PubMedCrossRefGoogle Scholar
  20. 20.
    Allegretto EA, Pike JW, Haussler MR Immunochemical detection of unique proteolytic fragments of the chick 1,25-dihydroxyvitamin D3 receptor. Distinct 20 kDa DNA-binding and 45 kDa hormone-binding species. J Biol Chem 1987; 262: 1312–1319.PubMedGoogle Scholar
  21. 21.
    Sone T, Kerner S, Pike JW. Vitamin D receptor interaction with specific DNA: association as a 1,25dihydroxyvitamin D3-modulated heterodimer. J Biol Chem 1991; 266:23, 296–23, 305.Google Scholar
  22. 22.
    Brown RS, Sander C, Argos P. The primary structure of transcription factor IIIA has 12 consecutive repeats. FEBS Lett 1985; 186: 271–274.PubMedCrossRefGoogle Scholar
  23. 23.
    Miller J, McClachlin AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 1985; 4: 1609–1614.PubMedGoogle Scholar
  24. 24.
    Danielson M, Hinck L, Ringold GM. Two amino acids within the knuckle of the first zinc finger specify response element activation by the glucocorticoid receptor. Cell 1989; 57: 1131–1138.CrossRefGoogle Scholar
  25. 25.
    Mader S, Kumar V, deVereneuil H, Chambon P. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 1989; 338: 271–274.PubMedCrossRefGoogle Scholar
  26. 26.
    Umesono K, Evans RM. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 1989; 57: 1139–1146.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee MS, Kliewer SA, Provencal J, Wright PE, Evans RM. Structure of the retinoid X receptor a DNA binding domain: a helix required for homodimeric DNA binding. Science 1993; 260: 1117–1121.PubMedCrossRefGoogle Scholar
  28. 28.
    Wilson TE, Paulsen RE, Padgett KA, Milbrandt J. Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors. Science 1992; 256: 107–110.PubMedCrossRefGoogle Scholar
  29. 29.
    Hsieh J-C, Jurutka PW, Selznick SH, Reeder MC, Haussler CA, Whitfield GK, Haussler, MR. The T-box near the zinc fingers of the human vitamin D receptor is required for heterodimeric DNA binding and transactivation. Biochem Biophys Res Commun 1995; 215: 1–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Härd T, Kellenbach E, Boelens R, Maler B, Dahlman K, Freedman LP, Carlstedt-Duke J, Yamamoto KR, Gustafsson J-A, Kaptein R. Solution structure of the glucocorticoid receptor DNA-binding domain. Science 1990; 249: 157–160.PubMedCrossRefGoogle Scholar
  31. 31.
    Katahira M, Knegtel RM, Boelens R, Eib D, Schilthuis JG, van der Saag PT, Kaptein R. Homo-and heteronuclear NMR studies of the human retinoic acid receptor beta DNA binding domain: sequential assignments and identification of secondary structural elements. Biochemistry 1992; 31: 6474–6480.PubMedCrossRefGoogle Scholar
  32. 32.
    Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991; 352: 497–505.PubMedCrossRefGoogle Scholar
  33. 33.
    Schwabe JWR, Neuhaus D, Rhodes D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 1990; 348: 458–461.PubMedCrossRefGoogle Scholar
  34. 34.
    Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 1995; 375: 203–211.PubMedCrossRefGoogle Scholar
  35. 35.
    Blanco JCG, Wang I-M Tsai SY, Tsai M-J, O’Malley BW, Jurutka PW, Haussler MR, Ozato K. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci USA 1995; 92: 1535–1539.PubMedCrossRefGoogle Scholar
  36. 36.
    MacDonald PN, Sherman DR, Dowd DR, Jefcoat SC, DeLisle RK. The vitamin D receptor interacts with general transcription factor IIB. J Biol Chem 1995; 270: 4748–4752.PubMedCrossRefGoogle Scholar
  37. 37.
    Le Douarin B, Zechel C, Gamier J-M, Lutz Y, Tora L, Pierrat B, Heery D, Gronemeyer H, Chambon P, Losson R. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 1995; 14: 2020–2033.PubMedGoogle Scholar
  38. 38.
    vom Baur E, Zechel C, Heery D, Heine MJS, Garneir JM, Vivat V, LeDouarin B, Gronemeyer H, Chambon P, Losson R. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J 1996; 15: 110–124.Google Scholar
  39. 39.
    Brumbaugh PF, Haussler MR. 1,25-Dihydroxycholecalciferol receptors in the chick intestine II Temperature dependent transfer of the hormone to chromatin via a specific cytosol receptor. J Biol Chem 1974; 249: 1258–1262.PubMedGoogle Scholar
  40. 40.
    Brumbaugh PF, Haussler MR. Specific binding of 1a,25-dihydroxycholecalciferol to nuclear components of chick intestine. J Biol Chem 1975; 250: 1588–1594.PubMedGoogle Scholar
  41. 41.
    Mellon W, DeLuca HF. An equilibrium and kinetic study of 1,25-dihydroxyvitamin D3 binding to chicken intestinal cytosol employing high specific activity 1,25-dihydroxy[3H-26,27jvitamin D3. Arch Biochem Biophys 1979; 197: 90–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Wecksler WR, Norman AW. A kinetic and equilibrium binding study of 1a,25-dihydroxyvitamin D3 with its cytosol receptor from chick intestinal mucosa. J Biol Chem 1980; 255: 3571–3574.PubMedGoogle Scholar
  43. 43.
    Procsal DA, Okamura WH, Norman AW. Structural requirements for the interaction of 1a,25(OH)2-vitamin D3 with its chick intestinal receptor system. J Biol Chem 1975; 250: 8382–8388.PubMedGoogle Scholar
  44. 44.
    Wecksler WR, Okamura WH, Norman AW. Studies on the mode of action of vitamin D: XIV. Quantitative assessment of the structural requirements for the interaction of 1a,25-dihydroxyvitamin D3 with its chick intestinal mucosa receptor system. J Steroid Biochem 1978; 9: 929–937.PubMedCrossRefGoogle Scholar
  45. 45.
    Allegretto EA, Pike JW, Haussler MR. C-terminal proteolysis of the avian 1,25-dihydroxyvitamin D3 receptor. Biochem Biophys Res Commun 1987; 147: 479–485.PubMedCrossRefGoogle Scholar
  46. 46.
    Nakajima S, Hsieh J-C, MacDonald PN, Galligan MA, Haussler CA, Whitfield GK, Haussler MR. The C-terminal region of the vitamin D receptor is essential to form a complex with a receptor auxiliary factor required for high affinity binding to the vitamin D-responsive element. Mol Endocrinol 1994; 8: 159–172.PubMedCrossRefGoogle Scholar
  47. 47.
    Forman BM, Samuels HH. Interactions among a subfamily of nuclear hormone receptors: the regulatory zipper model. Mol Endocrinol 1990; 4: 1293–1301.PubMedCrossRefGoogle Scholar
  48. 48.
    Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-a. Nature 1995; 375: 377–382.PubMedCrossRefGoogle Scholar
  49. 49.
    Renaud J-P, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. Crystal structure of the RAR-y ligand-binding domain bound to all-trans retinoic acid. Nature 1995; 378: 681–689.PubMedCrossRefGoogle Scholar
  50. 50.
    Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature 1995; 378: 690–697.PubMedCrossRefGoogle Scholar
  51. 51.
    Kristjansson K, Rut AR, Hewison M, O’Riordan JLH, Hughes MR. Two mutations in the hormone binding domain of the vitamin D receptor cause tissue resistance to 1,25 dihydroxyvitamin D3. J Clin Invest 1993; 92: 12–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Nakajima S, Hsieh J-C, Jurutka PW, Galligan MA, Haussier CA, Whitfield GK, Haussier MR. Examination of the potential functional role of conserved cysteine residues in the hormone binding domain of the human 1,25-dihydroxyvitamin D3 receptor. J Biol Chem 1996; 271: 5143–5149.PubMedCrossRefGoogle Scholar
  53. 53.
    Ray R, MacDonald PN, Swamy N, Ray S, Haussier MR, Holick MF. Affinity labeling of the l a,25dihydroxyvitamin D3 receptor. J Biol Chem 1996; 271: 2012–2017.PubMedCrossRefGoogle Scholar
  54. 54.
    Whitfield GK, Hsieh J-C, Nakajima S, MacDonald PN, Thompson PD, Jurutka PW, Haussier CA, Haussier MR. A highly conserved region in the hormone-binding domain of the human vitamin D receptor contains residues vital for heterodimerization with retinoid X receptor and for transcriptional activation. Mol Endocrinol 1995; 9: 1166–1179.PubMedCrossRefGoogle Scholar
  55. 55.
    Meyer M-E, Gronemeyer H, Turcotte B, Bocquel M-T, Tasset D, Chambon P. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 1989; 57: 433–442.PubMedCrossRefGoogle Scholar
  56. 56.
    Shemshedini L, Ji J, Brou C, Chambon P, and Gronemeyer H. In vitro activity of the transcription activation functions of the progesterone receptor. J Biol Chem 1992; 267: 1834–1839.PubMedGoogle Scholar
  57. 57.
    Pike JW, Sleator NM. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem Biophys Res Commun 1985; 131: 378–385.PubMedCrossRefGoogle Scholar
  58. 58.
    Haussler MR, Terpening CM, Jurutka PW, Meyer J, Schulman BA, Haussler CA, Whitfield GK, Komm B S. Vitamin D hormone receptors: structure, regulation and molecular function. In: Progress in Endocrinology. Imura H, Shizume K, Yoshida S, eds. Amsterdam: Elsevier Science Publishers, 1988; 763–770.Google Scholar
  59. 59.
    Brown TA, DeLuca HF. Phosphorylation of the 1,25-dihydroxyvitamin D3 receptor: A primary event in 1,25-dihydroxyvitamin D3 action. J Biol Chem 1990; 265:10, 025–10, 029.Google Scholar
  60. 60.
    Brown TA, DeLuca HF. Sites of phosphorylation and photoaffmity labeling of the 1,25-dihydroxyvitamin D3 receptor. Arch Biochem Biophys 1991; 286: 466–472.PubMedCrossRefGoogle Scholar
  61. 61.
    Jones BB, Jurutka PW, Haussier CA, Haussier MR, Whitfield GK. Vitamin D receptor phosphorylation in transfected ROS 17/2.8 cells is localized to the N-terminal region of the hormone-binding domain. Mol Endocrinol 1991; 5: 1137–1146.PubMedCrossRefGoogle Scholar
  62. 62.
    Jurutka PW, Hsieh J-C, MacDonald PN, Terpening CM, Haussler CA, Haussier MR, Whitfield GK. Phosphorylation of serine 208 in the human vitamin D receptor. The predominant amino acid phosphorylated by casein kinase II, in vitro, and identification as a significant phosphorylation site in intact cells. J Biol Chem 1993; 268: 6791–6799.PubMedGoogle Scholar
  63. 63.
    Jurutka PW, Hsieh J-C, Nakajima S, Haussier CA, Whitfield GK, Haussier MR. Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation. Proc Natl Acad Sci USA 1996; 93: 3519–3524.PubMedCrossRefGoogle Scholar
  64. 64.
    Hilliard GM, Cook RG, Weigel NL, Pike JW. 1,25-Dihydroxyvitamin D3 modulates phosphorylation of Ser 205 in the human vitamin D receptor: site-directed mutagenesis of this residue promotes alternative phosphorylation. Biochemistry 1994; 33: 4300–4311.PubMedCrossRefGoogle Scholar
  65. 65.
    Hsieh J-C, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS, Shimizu Y, Shimizu N, Haussler MR. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc Natl Acad Sci USA 1991; 88: 9315–9319.PubMedCrossRefGoogle Scholar
  66. 66.
    Desai RK, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Control of 1,25-dihydroxyvitamin D3 receptor-mediated enhancement of osteocalcin gene transcription: effects of perturbing phosphorylation pathways by okadaic acid and staurosporine. Endocrinology 1995; 136: 5685–5693.PubMedCrossRefGoogle Scholar
  67. 67.
    Matkovits T, Christakos S. Ligand occupancy is not required for vitamin D receptor and retinoid receptor-mediated transcriptional activation. Mol Endocrinol 1995; 9: 232–242.PubMedCrossRefGoogle Scholar
  68. 68.
    Hsieh J-C, Jurutka PW, Nakajima S, Galligan MA, Haussier CA, Shimizu Y, Shimizu N, Whitfield GK, Haussier MR. Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site. J Biol Chem 1993; 268: 15, 118–15, 126.Google Scholar
  69. 69.
    Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Characterization of 1,25-dihydroxyvitamin D3 receptor interactions with target sequences in the rat osteocalcin gene. Mol Endocrinol 1992; 6: 557–562.PubMedCrossRefGoogle Scholar
  70. 70.
    Mangelsdorf DJ, Umesono K, Kliewer SA, Borgmeyer U, Ong ES, Evans RM. A direct repeat in the cellular retinol-binding protein type H gene confers differential regulation by RXR and RAR. Cell 1991; 66: 555–561.PubMedCrossRefGoogle Scholar
  71. 71.
    Darwish HM, DeLuca HF. Identification of a 1,25-dihydroxyvitamin D3-response element in the 5’-flanking region of the rat calbindin D-9k gene. Proc Nail Acad Sci USA 1992; 89: 603–607.CrossRefGoogle Scholar
  72. 72.
    Gill, RK, Christakos S. Identification of sequence elements in mouse calbindin-D28k gene that confer 1,25-dihydroxyvitamin D3- and butyrate-inducible responses. Proc Nail Acad Sci USA 1993; 90: 2984–2988.CrossRefGoogle Scholar
  73. 73.
    Carlberg C, Bendik I, Wyss A, Meier E, Sturzenbecker LJ, Grippo JF, Hunziker W. Two nuclear signalling pathways for vitamin D. Nature 1993; 361: 657–660.PubMedCrossRefGoogle Scholar
  74. 74.
    Glass CK. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 1994; 15: 391–407.PubMedGoogle Scholar
  75. 75.
    Liao J, Ozono K, Sone T, McDonnell DP, Pike JW. Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1990; 87: 9751–9755.PubMedCrossRefGoogle Scholar
  76. 76.
    Levin AA, Sturzenbecker J, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen CL, Rosenberger M, Lovey A, Grippo JF. 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRa. Nature 1992; 355: 359–361.PubMedCrossRefGoogle Scholar
  77. 77.
    Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 1990; 345: 224–229.PubMedCrossRefGoogle Scholar
  78. 78.
    Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone, and vitamin D3 signalling. Nature 1992; 355: 446–449.PubMedCrossRefGoogle Scholar
  79. 79.
    MacDonald PN, Dowd DR, Nakajima S, Galligan MA, Reeder MC, Haussler CA, Ozato K, Haussler MR. Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxyvitamin D3-activated expression of the rat osteocalcin gene. Mol Cell Biol 1993; 13: 5907–5917.PubMedGoogle Scholar
  80. 80.
    Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, Naar AM, Kim SY, Boutin J-M, Glass CK, Rosenfeld MG. RXRß: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 1991; 67: 1251–1266.PubMedCrossRefGoogle Scholar
  81. 81.
    Mander M, Herzberg IM, Zierold C, Moss VE, Hanson K, Clagett-Dame M, DeLuca HF. Identification of the porcine intestinal accessory factor that enables DNA sequence recognition by vitamin D receptor. Proc Natl Acad Sci USA 1995; 92: 2795–2799.CrossRefGoogle Scholar
  82. 82.
    Jin CH, Pike JW. Human vitamin D receptor-dependent transactivation in Saccharomyces cerevisiae requires retinoid X receptor. Mol Endocrinol 1996; 10: 196–205.PubMedCrossRefGoogle Scholar
  83. 83.
    Schrader M, Nayeri S, Kahlen JP, Muller KM, Carlberg C. Natural vitamin D3 response elements formed by inverted palindromes: polarity-directed ligand sensitivity of vitamin D3 receptor-retinoid X receptor heterodimer-mediated transactivation. Mol Cell Biol 1995; 15: 1154–1161.PubMedGoogle Scholar
  84. 84.
    Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83: 841–850.PubMedCrossRefGoogle Scholar
  85. 85.
    Cheskis B, Freedman LP. Modulation of nuclear receptor interactions by ligands: kinetic analysis using surface plasmon resonance. Biochemistry 1996; 35: 3309–3318.PubMedCrossRefGoogle Scholar
  86. 86.
    Peleg S, Sastry M, Collins ED, Bishop JE, Norman AW. Distinct conformational changes induced by the 20-epi analogues of 1a,25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem 1995; 270:10, 551–10, 558.Google Scholar
  87. 87.
    Zawel L, Reinberg D. Advances in RNA polymerase II transcription. Carr Opin Cell Biol 1992; 4: 488–495.CrossRefGoogle Scholar
  88. 88.
    Sheldon M, Reinberg D. Timing-up transcription. Curr Biol 1995; 5: 43–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Gill G, Pascal E, Tseng ZH, Tjian R. A Glutamine-rich hydrophobic patch in transcription factor Sp 1 contacts the dTAF;i110 component of the Drosophila tfiid complex and mediates transcriptional activation. Proc Natl Acad Sci USA 1994; 91: 192–196.PubMedCrossRefGoogle Scholar
  90. 90.
    Goodrich JA, Hoey T, Thut CJ, Admon A, Tjian R. Drosophila TAF1140 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 1993; 75: 519–530.PubMedCrossRefGoogle Scholar
  91. 91.
    Choy B, Green MR. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 1993; 366: 531–536.PubMedCrossRefGoogle Scholar
  92. 92.
    Lin Y-S, Green MR. Mechanism of action of an acidic transcriptional activator in vitro. Cell 1991; 64: 971–981.PubMedCrossRefGoogle Scholar
  93. 93.
    Roberts SGE, Choy B, Walker SS, Lin Y-S, Green MR. A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Curr Biol 1995; 5: 508–516.PubMedCrossRefGoogle Scholar
  94. 94.
    Roberts SGE, Green MR. Activator-induced conformational change in general transcription factor ‘111113. Nature 1994; 371: 717–720.PubMedCrossRefGoogle Scholar
  95. 95.
    Cavailles V, Dauvois S, L’Horset F, Lopez G, Hoare S, Kushner PJ, Parker MG. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 1995; 14: 3741–3751.PubMedGoogle Scholar
  96. 96.
    Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377: 454–457.PubMedCrossRefGoogle Scholar
  97. 97.
    Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, Rosenfeld MG. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 397–404.PubMedCrossRefGoogle Scholar
  98. 98.
    Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin S-C, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–414.PubMedCrossRefGoogle Scholar
  99. 99.
    Lee JW, Ryan F, Swaffield JC, Johnston SA, Moore DD. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 1995; 374: 91–94.PubMedCrossRefGoogle Scholar
  100. 100.
    Onate SA, Tsai SY, Tsai M-J, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270: 1354–1357.PubMedCrossRefGoogle Scholar
  101. 101.
    Saijo T, Ito M, Takeda E, Mahbubul Huq AHM, Naito E, Yokota I, Sone T, Pike JW, Kuroda Y. A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-resistant rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection. Am J Hum Genet 1991; 49: 668–673.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Paul N. MacDonald

There are no affiliations available

Personalised recommendations