Vitamin D pp 39-56 | Cite as

Functional Metabolism and Molecular Biology of Vitamin D Action

  • Laura C. McCary
  • Hector F. DeLuca
Part of the Nutrition and Health book series (NH)


The dietary requirement for vitamin D and/or the necessity for exposure to the sun’s ultraviolet (UV) rays were first recognized in the prevention or cure of the disease rickets (1–4). This disease is the result of a failure to mineralize the organic matrix of bone. The resultant decrease in bone strength causes skeletal malformations and may result in death (5). In adults, the disease osteomalacia occurs, in which undermineralized osteoid seams appear and bones are easily fractured (6).


Serum Phosphorus Serum Phosphorus Level Skeletal Mineralization Steroid Hormone Receptor Superfamily Influence Gene Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mellanby E. An experimental investigation on rickets. Lancet 1919; 1: 407–412.Google Scholar
  2. 2.
    McCollum EV, Simmonds N, Becker JE, Shipley PG. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem 1922; 53: 293–312.Google Scholar
  3. 3.
    Huldshinsky K. Heilung von rachitis durch kunstlickhe hohensonne. Dtsch Med Wochschr 1919; 45: 712–713.CrossRefGoogle Scholar
  4. 4.
    Chick H, Palzell EJ, Hume EM. Studies of rickets in Vienna 1919–1922. Medical Research Council, 1923: Special Report No. 77.Google Scholar
  5. 5.
    Hess A, ed. Rickets, Including Osteomalacia and Tetany. Philadelphia: Lea & Febiger, 1929.Google Scholar
  6. 6.
    Sebrell WH, Harris RS, eds. The Vitamins New York: Academic Press, 1954.Google Scholar
  7. 7.
    Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem 1924; 61: 405–422.Google Scholar
  8. 8.
    Scriver CR, Reade TM, DeLuca HF, Hamstra AJ. Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med 1978; 299: 976–979.PubMedCrossRefGoogle Scholar
  9. 9.
    Fraser D, Kooh SW, Kind HP, Holick MF, Tanaka Y, DeLuca HF. Pathogenesis of hereditary vitamin D-dependent rickets: an inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D N Engl J Med 1973; 289: 817–822.Google Scholar
  10. 10.
    Brommage R, Jarnagin K, DeLuca HF, Yamada S, Takayama H. 1- But no 24- hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol 1983; 244: E298 - E304.PubMedGoogle Scholar
  11. 11.
    Eil C, Lieberman UA, Rosen JF, Marx SJ. A cellular defect in hereditary vitamin D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med 1981; 304: 1588–1591.PubMedCrossRefGoogle Scholar
  12. 12.
    Bell NH, Hamstra AJ, DeLuca HF. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med 1978; 298: 996–999.PubMedCrossRefGoogle Scholar
  13. 13.
    Rosen JF, Fleischman AR, Finberg L, Hamstra A, DeLuca HF. Rickets with alopecia: An inborn error of vitamin D metabolism. J Pediatr 1979; 94: 729–735.PubMedCrossRefGoogle Scholar
  14. 14.
    Marx SJ, Liberman UA, Eil C, Gamblin GT, DeGrange DA, Balsan S. Hereditary resistance to 1,25dihydroxyvitamin D Rec Prog Horm Res 1984; 40: 589–620.Google Scholar
  15. 15.
    Wiese RJ, Goto H, Prahl JM, Marx SJ, Thomas M, Al-Aqeel A, DeLuca HF. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol 1993; 90: 197–201.PubMedCrossRefGoogle Scholar
  16. 16.
    Liberman UA, Marx SJ. Vitamin D dependent rickets. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 1st ed. Favus MJ, ed. Richmond: William Byrd Press, 1990; 178–182.Google Scholar
  17. 17.
    Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol 1984; 246: E493 - E498.PubMedGoogle Scholar
  18. 18.
    DeLuca HF. Mechanism of action and metabolic fate of vitamin D. Vitam Horm 1967; 25: 315–367.PubMedCrossRefGoogle Scholar
  19. 19.
    DeLuca HF, Schnoes HK. Vitamin D: recent advances. Annu Rev Biochem 1983; 52: 41l - 439.CrossRefGoogle Scholar
  20. 20.
    Schachter D, Rosen SM. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol 1959; 196: 357–362.PubMedGoogle Scholar
  21. 21.
    Higaki M, Takahashi M, Suzuki T, Sahashi Y. Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol 1965; 11: 261–265.CrossRefGoogle Scholar
  22. 22.
    Martin DL, DeLuca HF. Calcium transport and the role of vitamin D Arch Biochem Biophys 1969; 134: 139–148.Google Scholar
  23. 23.
    Walling MW, Rothman SS. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol 1969; 217: 1144–1148.PubMedGoogle Scholar
  24. 24.
    Wasserman RH, Kallfelz FA, Comar CL. Active transport of calcium by rat duodenum in vivo. Science 1961; 133: 883–884.PubMedCrossRefGoogle Scholar
  25. 25.
    Schachter D. Vitamin D and the active transport of calcium by the small intestine. In: The Transfer of Calcium and Strontium Across Biological Membranes. Wasserman RH, ed. New York: Academic Press, 1963; 197–210.CrossRefGoogle Scholar
  26. 26.
    Chen TC, Castillo L, Korycka-Dahl M, DeLuca HF. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr 1974; 104: 1056–1060.PubMedGoogle Scholar
  27. Walling MW. Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Vitamin D: Biochemical, Chemical, and Clinical Aspects Related to Calcium Metabolism. Norman AW, Schaefer K, Coburn JW, eds. Berlin: Walter de Gruyter, 1977; 321–330.Google Scholar
  28. 28.
    Harrison HE, Harrison HC. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol 1961; 201: 1007–1012.PubMedGoogle Scholar
  29. 29.
    Carlsson A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand 1952; 26: 212–220.PubMedCrossRefGoogle Scholar
  30. 30.
    Nicolaysen R, Eeg-Larsen N. The mode of action of vitamin D. In: Ciba Foundation Symposium on Bone Structure and Metabolism. Wolstenholme GWE, O’Connor CM, eds. Boston: Little, Brown, 1956; 175–186.Google Scholar
  31. 31.
    Garabedian M, Tanaka Y, Holick MF, DeLuca HF. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihyoxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology 1974; 94: 1022–1027.PubMedCrossRefGoogle Scholar
  32. 32.
    Rasmussen H, DeLuca H, Arnaud C, Hawker C, Stedingk MV. The relationship between vitamin D and parathyroid hormone. J Clin Invest 1963; 42: 1940–1946.PubMedCrossRefGoogle Scholar
  33. 33.
    Yamamoto M, Kawanobe Y, Takahashi H, Shimazawa E, Kimura S, Ogata E. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest 1984; 74: 507–513.PubMedCrossRefGoogle Scholar
  34. 34.
    Bonjour JP, Preston C, Fleisch H. Effect of 1,25-dihydroxyvitamin D3 on renal handling of Pi in thyroparathyroidectomized rats. J Clin Invest 1977; 60: 1419–1428.PubMedCrossRefGoogle Scholar
  35. 35.
    Forte LR, Nickols GA, Anast CS. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3’ 5’monophosphate excretion. J Clin Invest 1976; 57: 559–568.PubMedCrossRefGoogle Scholar
  36. 36.
    Neville PF, DeLuca HF. The synthesis of [1,2–3H]vitamin D3 and the tissue localization of a (10 IU) dose per rat. Biochemistry 1966; 5: 2201–2207.PubMedCrossRefGoogle Scholar
  37. 37.
    Windus A, Bock F. Uber das Provitamin aus dem Sterin der Schweineschwarte. Z Physiol Chem 1937; 245: 168–170.Google Scholar
  38. 38.
    Esvelt RP, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys 1978; 188: 282–286.PubMedCrossRefGoogle Scholar
  39. 39.
    Windus A, Schenck F, Weder Fv. Uber das Antirachitisch Wirksame Bestrahlungs-produkt aus 7Dehydro-Cholesterin. Hoppe-Seylers Z Physiol Chem 1936; 241: 100–103.CrossRefGoogle Scholar
  40. 40.
    Velluz L, Amiard G. Chimie organique-le precalciferol. Compt Rend 1949; 228: 692–694.Google Scholar
  41. 41.
    Holick MF, Clark MB. The photobiogenesis and metabolism of vitamin D. Fed Proc 1978; 37: 2567–2574.PubMedGoogle Scholar
  42. 42.
    Ponchon G, DeLuca HF, Suda T. Metabolism of [1,21–3H-vitamin D3 and [26,27]-3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys 1970; 141: 397–408.PubMedCrossRefGoogle Scholar
  43. 43.
    Horsting M, DeLuca HF. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun 1969; 36: 251–256.CrossRefGoogle Scholar
  44. 44.
    Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 1970; 228: 764–766.PubMedCrossRefGoogle Scholar
  45. 45.
    Gray R, Boyle I, DeLuca HF. Vitamin D matabolism: the role of kidney tissue. Science 1971; 172: 1232–1234.PubMedCrossRefGoogle Scholar
  46. 46.
    Boyle IT, Miravet L, Gray RW, Holick MF, DeLuca HF. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology 1972; 90: 605–608.PubMedCrossRefGoogle Scholar
  47. 47.
    Holick MF, Garabedian M, DeLuca HF. 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science 1972; 176: 1146–1147.PubMedCrossRefGoogle Scholar
  48. 48.
    Wong RG, Norman AW, Reddy CR, Coburn JW. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest 1972; 51: 1287–1291.PubMedCrossRefGoogle Scholar
  49. 49.
    DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc 1974; 33: 2211–2219.PubMedGoogle Scholar
  50. 50.
    Pedersen JI, Shobaki HH, Holmberg I, Bergseth S, Bjorkhem I. 25-Hydroxyvitamin D3–24-hydroxylase in rat kidney mitochondria. J Biol Chem 1983; 258: 742–746.PubMedGoogle Scholar
  51. 51.
    Burgos-Trinidad M, DeLuca HF. Kinetic properties of 25-hydroxyvitamin D- and 1,25-dihydroxyvitamin D-24-hydroxylase from chick kidney. Biochim Biophys Acta 1991; 1078: 226–230.PubMedCrossRefGoogle Scholar
  52. 52.
    Akiyoshi-Shibata M, Sakaki T, Ohyama Y, Noshiro M, Okuda K, Yabusaki Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem 1994; 224: 335–343.PubMedCrossRefGoogle Scholar
  53. 53.
    Beckman MJ, Tadikonda P, Werner E, Prahl J, Yamada S, DeLuca HF. Human 25-hydroxyvitamin D3–24-hydroxylase, a multicatalytic enzyme. Biochemistry 1996; 35: 8465–8472.PubMedCrossRefGoogle Scholar
  54. 54.
    Esvelt RP, Rivizzani MA, Paaren HE, Schnoes HK, DeLuca HF. Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem 1981; 46: 456–458.CrossRefGoogle Scholar
  55. 55.
    Onisko BL, Esvelt RP, Schnoes HK, DeLuca HF. Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry 1980; 19: 4124–4130.PubMedCrossRefGoogle Scholar
  56. 56.
    Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lutton J, Hebert SC. Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature 1993; 366: 575–580.PubMedCrossRefGoogle Scholar
  57. 57.
    Omdahl JL, Gray RW, Boyle IT, Knutson J, DeLuca HF. Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nature New Biol 1972; 237: 63, 64.Google Scholar
  58. 58.
    Garabedian M, Holick MF, DeLuca HF, Boyle IT. Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA 1972; 69: 1673–1676.PubMedCrossRefGoogle Scholar
  59. 59.
    Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-l-hydroxylase activity in kidney by parathyroid hormone. Nature New Biol 1973; 241: 163–166.PubMedGoogle Scholar
  60. 60.
    Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 1973; 154: 566–574.PubMedCrossRefGoogle Scholar
  61. 61.
    Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3–1-hydroxylase by phosphate depletion. J Biol Chem 1976; 251: 3158–3161.PubMedGoogle Scholar
  62. 62.
    Hughes MR, Brumbaugh PF, Haussler MR, Wergedal JE, Baylink DJ. Regulation of serum 1,25dihydroxyvitamin D3 by calcium and phosphate in the rat. Science 1975; 190: 578–580.PubMedCrossRefGoogle Scholar
  63. 63.
    Gray RW. Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology 1987; 121: 504–512.PubMedCrossRefGoogle Scholar
  64. 64.
    Halloran BP, Spencer EM. Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor-1. Endocrinology 1988; 123: 1225–1229.PubMedCrossRefGoogle Scholar
  65. 65.
    Spencer EM, Tobiassen O. The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology 1981; 108: 1064–1070.PubMedCrossRefGoogle Scholar
  66. 66.
    Gray RW. Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tiss Int 1981; 33: 485–488.CrossRefGoogle Scholar
  67. 67.
    Pahuja DN, DeLuca HF. Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol 1981; 23: 345–350.PubMedCrossRefGoogle Scholar
  68. 68.
    Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. BMJ 1980; 280: 277.PubMedCrossRefGoogle Scholar
  69. 69.
    Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3–24-hydroxylase. Arch Biochem Biophys 1975; 171: 521–526.CrossRefGoogle Scholar
  70. 70.
    Tanaka Y, DeLuca HF. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science 1974; 183: 1198–1200.PubMedCrossRefGoogle Scholar
  71. 71.
    Shinki T, Jin CH, Nishimura A, Nagai Y, Ohyama Y, Noshiro M, Okuda K, Suda T. Parathyroid hormone inhibits 25-hydroxyvitamin D3–24-hydroxylase mRNA expression stimulated by 1,25dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem 1992; 267:13, 757–13, 762.Google Scholar
  72. 72.
    Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA 1994; 91: 900–902.PubMedCrossRefGoogle Scholar
  73. 73.
    Ohyama Y, Ozono K, Uchida M, Shinki T, Klato S, Suda T, Yamamoto O, Noshiro M, Kato Y. Identification of a vitamin D-responsive element in the 5’-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem 1994; 269:10, 545–10, 550.Google Scholar
  74. 74.
    Wu SX, Finch J, Zhong M, Slatopolsky E, Grieff M, Brown Ai. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys 1996; 40: F203 - F208.Google Scholar
  75. 75.
    Brenza HL, Kimmel-Jehan C, Jehan F, Shinki T, Wakino S, Anazawa H, Suda T, DeLuca HF. Parathyroid hormone activation of the 25-hydroxyvitamin D3-la-hydroxylase gene promoter. Proc Natl Acad Sci USA 1998; 95: 1387–1391.PubMedCrossRefGoogle Scholar
  76. 76.
    Rasmussen H, Bordier P. Vitamin D and bone. Metab Bone Dis Rel Res 1978; 1: 7–13.CrossRefGoogle Scholar
  77. 77.
    Ornoy A, Goodwin D, Noff D, Edelstein S. 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature 1978; 276: 517–519.PubMedCrossRefGoogle Scholar
  78. 78.
    Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr 1977; 107: 1918–1926.PubMedGoogle Scholar
  79. 79.
    Garabedian M, Lieberherr M, Nguyen TM, Corvol MT, DuBois MB, Balsan S. In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop 1978; 135: 241–248.PubMedGoogle Scholar
  80. 80.
    Henry HL, Norman AW. Vitamin D. two dihydroxylated metabolites are required for normal chicken egg hatchability. Science 1978; 201: 835–837.PubMedCrossRefGoogle Scholar
  81. 81.
    Jarnagin K, Brommage R, DeLuca HF, Yamada S, Takayama H. 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol 1983; 244: E290 - E297.PubMedGoogle Scholar
  82. 82.
    Halloran BP, DeLuca HF, Barthell E, Yamada S, Ohmori M, Takayama H. An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology 1981; 108: 2067–2071.PubMedCrossRefGoogle Scholar
  83. 83.
    Miller SC, Halloran BP, DeLuca HF, Yamada S, Takayama H, Jee WSS. Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tiss Int 1981; 33: 489–497.CrossRefGoogle Scholar
  84. 84.
    St-Arnaud R, Arabian A, Glorieux FH. Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. In: Proceedings of the ASBMR 18th Annual Meeting, Seattle, WA, 1996; S126.Google Scholar
  85. 85.
    Stumpf WE, Sar M, DeLuca HF. Sites of action of 1,25(OH)2vitamin D3 identified by thaw-mount autoradiography. In: Hormonal Control of Calcium Metabolism. Cohn DV, Talmage RV, Matthews JL, eds. Amsterdam: Excerpta Medica, 1981; 222–229.Google Scholar
  86. 86.
    Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci 1975; 16: 353.PubMedCrossRefGoogle Scholar
  87. 87.
    Kream BE, Reynolds RD, Knutson JC, Eisman JA, DeLuca HF. Intestinal cytosol binders of 1,25dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys 1976; 176: 779–787.PubMedCrossRefGoogle Scholar
  88. 88.
    Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’Malley BW. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 1988; 85: 3294–3298.PubMedCrossRefGoogle Scholar
  89. 89.
    Burmester JK, Wiese RJ, Maeda N, DeLuca HF. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA 1988; 85: 9499–9502.PubMedCrossRefGoogle Scholar
  90. 90.
    McDonnell DP, Scott RA, Kerner SA, O’Malley BW, Pike JW. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol 1989; 3: 635–644.PubMedCrossRefGoogle Scholar
  91. 91.
    Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991; 65: 1255–1266.PubMedCrossRefGoogle Scholar
  92. 92.
    Liao J, Ozono K, Sone T, McDonnell DP, Pike JW. Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1990; 87: 9751–9755.PubMedCrossRefGoogle Scholar
  93. 93.
    Ross TK, Moss VE, Prahl JM, DeLuca HF. A nuclear protein essential for binding of rat 1,25dihydroxyvitamin D3 receptor to its response elements. Proc Natl Acad Sci USA 1992; 89: 256–260.PubMedCrossRefGoogle Scholar
  94. 94.
    Yu VC, Deisert C, Andersen B, Holloway JM, Devary OV, Naar AM, Kim SY, Boutin JM, Glass CK, Rosenfeld MG. RXRI3: A coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 1991; 67: 1251–1266.PubMedCrossRefGoogle Scholar
  95. 95.
    Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 1992; 355: 446–449.PubMedCrossRefGoogle Scholar
  96. 96.
    Munder M, Herzberg IM, Zierold C, Moss VE, Hanson K, Clagett-Dame M, DeLuca HF. Identification of the porcine intestinal accessory factor that enables DNA sequence recognition by vitamin D receptor. Proc Natl Acad Sci USA 1995; 92: 2795–2799.PubMedCrossRefGoogle Scholar
  97. 97.
    Sone T, Kerner S, Pike JW. Vitamin D receptor interaction with specific DNA. J Biol Chem 1991; 266:23, 296–23, 305.Google Scholar
  98. 98.
    Rosen ED, Benenghof EG, Koenig RJ. Dimerization interfaces of thyroid hormone, retinoic acid, vitamin D, and retinoid X receptors. J Biol Chem 1993; 268:11, 534–11, 541.Google Scholar
  99. 99.
    Nakajima S, Hsieh J-C, MacDonald PN, Galligan MA, Haussler CA, Whitfield GK, Haussier MR. The C-terminal region of the vitamin D receptor is essential to form a complex with a receptor auxiliary factor required for high affinity binding to the vitamin D-responsive element. Mol Endocrinol 1994; 8: 159–172.PubMedCrossRefGoogle Scholar
  100. 100.
    Ing NH, Beekman JM, Tsai SY, Tsai M-J, O’Malley BW. Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J Biol Chem 1992; 267:17, 617–17, 623.Google Scholar
  101. 101.
    Blanco JCG, Wang I-M, Tsai SY, Tsai MJ, O’Malley BW, Jurutka PW, Haussier MR, Ozato K. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci USA 1995; 92: 1535–1539.PubMedCrossRefGoogle Scholar
  102. 102.
    MacDonald PN, Sherman DR, Dowd DR, Stephen C. Jefcoat J, DeLisle RK. The vitamin D receptor interacts with general transcription factor IIB. J Biol Chem 1995; 270: 4748–4752.PubMedCrossRefGoogle Scholar
  103. 103.
    Baniahmad A, Ha I, Reinberg D, Tsai S, Tsai M-J, O’Malley BW. Interaction of human thyroid hormone receptor ß with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc Natl Acad Sci USA 1993; 90: 8832–8836.PubMedCrossRefGoogle Scholar
  104. 104.
    Zierold C, DeLuca HF. Additional protein factors play a role in the formation of VDR/RXR complexes on vitamin D response elements. J Cell Biochem 1998; in press.Google Scholar
  105. 105.
    Onate SA, Tsai SY, Tsai M-J, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily Science 1995; 270: 1354–1357.Google Scholar
  106. 106.
    Gill RK, Atkins LM, Hollis BW, Bell NH. Mapping the domains of the interaction of the vitamin D receptor and steroid receptor coactivator-1. Mol Endocrinol 1998; 12: 57–65.PubMedCrossRefGoogle Scholar
  107. 107.
    Masuyama H, Brownfield CM, St-Arnaud R, MacDonald PN. Evidence for ligand-dependent intramolecular folding of the AF-2 domain in vitamin D receptor-activated transcription and coactivator interaction. Mol Endocrinol 1997; 11: 1507–1517.PubMedCrossRefGoogle Scholar
  108. 108.
    Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a trancriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 1997; 17: 2735–2744.PubMedGoogle Scholar
  109. 109.
    Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377: 454–457.PubMedCrossRefGoogle Scholar
  110. 110.
    Burris TP, Nawaz Z, Tsai M-J, O’Malley BW. A nuclear hormone receptor-associated protein that inhibits transactivation by the thyroid hormone and retinoic acid receptors. Proc Natl Acad Sci USA 1995; 92: 9525–9529.PubMedCrossRefGoogle Scholar
  111. 111.
    Horlein A.1, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, SoderstromGoogle Scholar
  112. M, Glass CK, Rosenfeld MG. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 397–404.PubMedCrossRefGoogle Scholar
  113. 112.
    Jurutka PW, Hsieh JC, Remus LS, Whitfield GK, Thompson PD, Haussler CA, Blanco JCG, Ozato K, Haussler MR. Mutations in the 1,25-dihydroxyvitamin D-3 receptor identifying C-terminal amino acids required for transcriptional activation that are functionally dissociated from hormone binding, heterodimeric DNA binding, and interaction with basal transcription factor IIB, in vitro. J Biol Chem 1997; 272:14, 592–14, 599.Google Scholar
  114. 113.
    Kerner SA, Scott RA, Pike JW. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitmain D3. Proc Natl Acad Sci USA 1989; 86: 4455–4459.PubMedCrossRefGoogle Scholar
  115. 114.
    Morrison NA, Shine J, Fragonas J-C, Verkest V, McMenemy ML, Eisman JA. 1,25-Dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science 1989; 246: 1158–1161.PubMedCrossRefGoogle Scholar
  116. 115.
    Noda M, Vogel RL, Craig AM, Prahl J, DeLuca HF, Denhardt DT. Identification of a DNA sequence responsible or binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (Spp-1 or osteopontin) gene expression. Proc Natl Acad Sci USA 1990; 87: 9995–9999.PubMedCrossRefGoogle Scholar
  117. 116.
    Demay MB, Gerardi JM, DeLuca HF, Kronenberg HM. DNA sequences in the rat osteocalcin gene that bind the 1,25-dihydroxyvitamin D3 receptor and confer responsiveness to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1990; 87: 369–373.PubMedCrossRefGoogle Scholar
  118. 117.
    Darwish HM, DeLuca HF. Identification of a 1,25-dihydroxyvitamin D3-response element in the 5’- flanking region of the rat calbindin D-9k gene. Proc Natl Acad Sci USA 1992; 89: 603–607.PubMedCrossRefGoogle Scholar
  119. 118.
    Pike JW, Sleator NM. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem Biophys Res Commun 1985; 131: 378–385.PubMedCrossRefGoogle Scholar
  120. 119.
    Brown TA, DeLuca HF. Phosphorylation of the 1,25-dihydroxyvitamin D3 receptor. J Biol Chem 1990; 265:10, 025–10, 029.Google Scholar
  121. 120.
    Brown TA, DeLuca HF. Sites of phosphorylation and photoaffinity labeling of the 1,25-dihydroxyvitamin D3 receptor. Arch Biochem Biophys 1991; 286: 466–472.PubMedCrossRefGoogle Scholar
  122. 121.
    Bagchi MK, Tsai SY, Tsai M-J, O’Malley BW. Ligand and DNA-dependent phosphorylation of human progesterone receptor in vitro. Proc Natl Acad Sci USA 1992; 89: 2664–2668.PubMedCrossRefGoogle Scholar
  123. 122.
    Weigel NL, Carter TH, Schrader WT, O’Malley BW. Chicken progesterone receptor is phosphorylated by a DNA-dependent protein kinase during in vitro transcription assays. Mol Endocrinol 1992; 6: 8–14.PubMedCrossRefGoogle Scholar
  124. 123.
    Hilliard GM, Cook RG, Weigel NL, Pike JW. 1,25-Dihydroxyvitamin D3 modulates phosphorylation of serine 205 in the human vitamin D receptor: site-directed mutagenesis of this residue promotes alternative phosphorylation. Biochemistry 1994; 33: 4300–4311.PubMedCrossRefGoogle Scholar
  125. 124.
    Jurutka PW, Hsieh J-C, MacDonald PN, Terpening CM, Haussler CA, Haussler MR, Whitfield GK. Phosphorylation of serine 208 in the human vitamin D receptor. J Biol Chem 1993; 268: 6791–6799.PubMedGoogle Scholar
  126. 125.
    Hsieh J-C, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS, Shimizu Y, ShimizuGoogle Scholar
  127. N, Haussler MR. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc Natl Acad Sci USA 1991; 88: 9315–9319.PubMedCrossRefGoogle Scholar
  128. 126.
    Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1992; 89: 8097–8101.PubMedCrossRefGoogle Scholar
  129. 127.
    Mackey SL, Heymont JL, Kronenberg HM, Demay MB. Vitamin D receptor binding to the negative human parathyroid hormone vitamin D response element does not require the retinoid X receptor. Mol Endocrinol 1996; 10: 298–305.PubMedCrossRefGoogle Scholar
  130. 128.
    Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys 1996; 334: 223–234.PubMedCrossRefGoogle Scholar
  131. 129.
    Zierold C, Darwish HM, DeLuca HF. Two vitamin D response elements function in the rat 1,25dihydroxyvitamin D 24-hydroxylase promoter. J Biol Chem 1995; 270: 1675–1678.PubMedCrossRefGoogle Scholar
  132. 130.
    Takeyama KI, Khanaka D, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D-3 lahydroxylase and vitamin D synthesis. Science 1997; 277: 1827–1830.PubMedCrossRefGoogle Scholar
  133. 131.
    St-Arnaud R, Messerlain S, Moir JM, Omdahl JL, Glorieux FH. The 25-hydroxyvitamin D lahydroxylase gene maps to the pseudovitamin D deficiency rickets (PDDR) disease locus. J Bone Miner Res 1997; 12: 1552–1559.PubMedCrossRefGoogle Scholar
  134. 132.
    Shinki T, Shimada H, Wakino S, Anazawa H, Hayashi M, Saruta T, DeLuca HF, Suda T. Cloning and expression of rat 25-hydroxyvitamin D-3–1-a-hydroxylase cDNA. Proc Natl Acad Sci USA 1997; 94:12, 920–12, 925.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Laura C. McCary
  • Hector F. DeLuca

There are no affiliations available

Personalised recommendations