Vitamin D pp 337-356 | Cite as

Extrarenal Production of 1,25-Dihydroxyvitamin D and Clinical Implications

  • John S. Adams
Part of the Nutrition and Health book series (NH)


This chapter addresses the pathophysiology and cellular biochemistry of dysregulated vitamin D metabolism that occurs in some patients with granuloma-forming and malignant lymphoproliferative disorders. The principal focus of discussion is the human granuloma-forming disease sarcoidosis. Of all of the human conditions associated with the extrarenal overproduction of an active vitamin D metabolite with consequent endogenous vitamin D intoxication, sarcoidosis is the most commonly recognized and most carefully studied. Hence the first part of the chapter reviews what is known about the mechanics and regulation of the vitamin D-metabolizing enzymes present in human inflammatory cells. This is followed by a discussion of the diagnosis, treatment, and prevention of hypercalcemia and hypercalciuria in patients suffering from endogenous vitamin D intoxication. The concluding portion of the chapter addresses the issue of why active vitamin D metabolites are made in these diseases. There is now consensus agreement among investigators in the vitamin D and immunology fields that macrophage-derived vitamin D metabolites can play an important role in the modulation of the local human immune response in these diseases. The reader is referred to other chapters in the text that discuss in detail some of the noncalcemic (Chapter 13) and nongenomic (Chapter 12) actions of vitamin D metabolites and analogs (Chapter 25) that are particularly relevant to the issue of the immunomodulatory effects of vitamin Ds in human disease (i.e., cancer and psoriasis).


Nitric Oxide Nitric Oxide Active Vitamin Extrarenal Production Pulmonary Alveolar Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sharma OP. Vitamin D, calcium, and sarcoidosis. Chest 1996; 109:535–539.Google Scholar
  2. 2.
    Harrell GT, Fisher S. Blood chemical changes in Boeck’s sarcoid. J Clin Invest 1939; 18: 687–693.PubMedCrossRefGoogle Scholar
  3. 3.
    Henneman PH, Dempsey EF, Carrol EJ, Albright F. The causes of hypercalcemia in sarcoid and its treatment with cortisone. J Clin Invest 1956; 35: 1229–1242.PubMedCrossRefGoogle Scholar
  4. 4.
    Taylor RL, Lynch HJ Jr., Wysor WG. Seasonal influence of sunlight on the hypercalcemia of sarcoidosis. Am J Med 1963; 35: 67–89.CrossRefGoogle Scholar
  5. 5.
    Dent CE, Flynn FV, Nabarro JDN. Hypercalcemia and impairment of renal function in generalized sarcoidosis. Br Med J 1953; 2: 808–810.PubMedCrossRefGoogle Scholar
  6. 6.
    Hendrix JZ. The remission of hypercalcemia and hypercalciuria in systemic sarcoidosis by vitamin D depletion. Clin Res 1963; 11: 220–225.Google Scholar
  7. 7.
    Bell NH, Gill JR Jr, Barter FC. Abnormal calcium absorption in sarcoidosis: evidence for increased sensitivity to vitamin D Am J Med 1964; 36: 500–513.Google Scholar
  8. 8.
    Holick MF, Schnoes THK, DeLuca HF, Suda T, Cousins RJ. Isolation and identification of 1,25dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. J NIH Res 1992; 4: 88–96.Google Scholar
  9. 9.
    Bell NH. Vitamin D-endocrine system. J Clin Invest 1985; 76: 1–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Hughes MF, Baylink DJ, Jones PG, Haussler MR. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1a,25-dihydroxyvitamin D2/D3. J Clin Invest 1976; 58: 61–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Clemens TL, Hendy GN, Graham RF. A radioimmunoassay for 1,25-dihydroxycholecalciferol. Clin Sci Mol Med 1978; 54: 329–332.PubMedGoogle Scholar
  12. 12.
    Gray TK, McAdoo T. Radioimmunoassay for 1,25-dihydroxyvitamin D3. In: Vitamin D: Basic Research and Its Clinical Application. Norman AW, Schaefer K, von-Herrath D, eds. Berlin: de Gruyter, 1979; 763–767.Google Scholar
  13. 13.
    Bouillon R, DeMoor P, Baggiolini EG, Uskokovic MR. A radioimmunoassay for 1,25-dihydroxycholecalciferol. Clin Chem 1980; 26: 562–567.PubMedGoogle Scholar
  14. 14.
    Holick MF. The use and interpretation of assays for vitamin D and its metabolites. J Nutr 1990; 120: 1464–1469.PubMedGoogle Scholar
  15. 15.
    Bell NH, Stern PH, Pantzer E, Sinha TK, DeLuca. Evidence that increased circulating 1,25-dihydroxyvitamin D is the probable cause for abnormal calcium metabolism in sarcoidosis. J Clin Invest 1979; 64: 218–225.PubMedCrossRefGoogle Scholar
  16. 16.
    Papapoulos SE, Clemens TL, Fraher LJ, Lewin IG, Sandler LM, O’Riordan JL.1,25-Dihydroxycholecalciferol in the pathogenesis of the hypercalcemia of sarcoid. Lancet 1979; 1: 627–630.PubMedCrossRefGoogle Scholar
  17. 17.
    Stern PH, Olazabal J, Bell NH. Evidence for abnormal regulation of circulating 1,25-dihydroxyvitamin D in patients with sarcoidosis. J Clin Invest 1980; 66: 852–855.PubMedCrossRefGoogle Scholar
  18. 18.
    Barbour GL, Coburn JW, Slatopolsky E, et al. Hypercalcemia in an anephric patient with sarcoidosis. N Engl J Med 1981; 305: 440–443.PubMedCrossRefGoogle Scholar
  19. 19.
    Adams JS, Sharma OP, Gacad MA, Singer FR. Metabolism of 25-hydroxyvitamin D3 by cultured alveolar macrophages in sarcoidosis. J Clin Invest 1983; 72: 1856–1860.PubMedCrossRefGoogle Scholar
  20. 20.
    Adams JS, Singer FR, Gacad MA, et al. Isolation and structural identification of 1,25-dihydroxyvitamin D3 produced by cultured alveolar macrophages in sarcoidosis. J Clin Endocrinol Metab 1985; 60: 960–966.PubMedCrossRefGoogle Scholar
  21. 21.
    James DG, Neville E, Siltzbach LE, et al. A worldwide review of sarcoidosis. Ann NY Acad Sci 1976; 278: 321–334.PubMedCrossRefGoogle Scholar
  22. 22.
    Studdy PR, Bird R, Neville E, James DG. Biochemical findings in sarcoidosis. J Clin Pathol 1980; 33: 528–533.PubMedCrossRefGoogle Scholar
  23. 23.
    Meyrier A, Valeyre D, Bouillon R, Paillard F, Battesti JP, Georges R. Resorptive versus absorptive hypercalciuria in sarcoidosis. Q J Med 1985; 54: 269–281.PubMedGoogle Scholar
  24. 24.
    Rizzato G, Montemurro L, Fraioli P. Bone mineral content in sarcoidosis. Semin Respir Med 1992; 13: 411–423.CrossRefGoogle Scholar
  25. 25.
    Anderson J, Dent CE, Harper C, Philpot GR. Effect of cortisone on calcium metabolism in sarcoidosis with hypercalcemia. Lancet 1954; 2: 720–724.CrossRefGoogle Scholar
  26. 26.
    Vergnon GM, Chappard D, Mounier D, et. al. Phosphocalcic metabolism, bone quantitative histomorphometry and clinical activity in 10 cases of sarcoidosis. In: Sarcoidosis and Other Granuloma-tous Disorders. Grassi C, Rizzato G, Pozzi E, eds. Amsterdam: Elsevier, 1988; 499–502.Google Scholar
  27. 27.
    Fallon MD, Perry HM III, Teitelbaum SL. Skeletal sarcoidosis with osteopenia. Metab Bone Dis Res 1981; 3: 171–174.CrossRefGoogle Scholar
  28. 28.
    Bell NH. Endocrine complications of sarcoidosis. Endocrinol Metab Clin North Am 1991; 20: 645–654.PubMedGoogle Scholar
  29. 29.
    Basile, JN, Leil Y, Shary J, Bell NH. Increased calcium intake does not suppress circulating 1,25dihydroxyvitamin D in normocalcemic patients with sarcoidosis. J Clin Invest 1993; 91: 1396–1398.PubMedCrossRefGoogle Scholar
  30. 30.
    Sandler LM, Winearls CG, Fraher LJ, Clemens TL, Smith R, O’Riordan JLH. Studies of the hypercalcemia of sarcoidosis. Q J Med 1984; 53: 165–180.PubMedGoogle Scholar
  31. 31.
    Papapoulos SE, Clemens TL, Fraher LJ. Dihydroxycholecalciferol in the pathogenesis of the hypercalcemia of sarcoid. Lancet 1979; 1: 627–630.PubMedCrossRefGoogle Scholar
  32. 32.
    Cronin CC, Dinneen SF, O’Mahony MS, Bredin CP, O’Sullivan DJ. Precipitation of hypercalcaemia in sarcoidosis by foreign sun holidays: report of four cases. Postgrad Med J 1990; 66: 307–309.PubMedCrossRefGoogle Scholar
  33. 33.
    Singer FR, Adams JS. Abnormal calcium homeostasis in sarcoidosis. N Engl J Med 1986; 315: 755, 756.Google Scholar
  34. 34.
    Adams JS, Gacad MA, Anders A, Endres DB, Sharma DP. Biochemical indicators of disordered vitamin D and calcium homeostasis in sarcoidosis. Sarcoidosis 1986; 3: 1–6.PubMedGoogle Scholar
  35. 35.
    Insogna KL, Dreyer BE, Mitnich M, Ellison AF, Broadus A. Enhanced production of 1,25-dihydroxyvitamin D in sarcoidosis. J Clin Endocrinol Metab 1988; 66: 72–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Shulman LE, Schoenrich E, Harvey A. The effects of adrenocorticotropic hormone (ACTH) and cortisone on sarcoidosis. Bull John Hopkins Hosp 1952; 91: 371–415.PubMedGoogle Scholar
  37. 37.
    O’Leary TJ, Jones G, Yip A, Lohnes D, Cohanim M, Yendt ER. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med 1986; 315: 727–730.PubMedCrossRefGoogle Scholar
  38. 38.
    Barre PE, Gascon-Barre M, Meakins JL, Goltzman D. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis. Am J Med 1987; 82: 1259–1262.PubMedCrossRefGoogle Scholar
  39. 39.
    Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med 1989; 111: 437, 438.Google Scholar
  40. 40.
    Adams JS, Gacad MA. Characterization of la-hydroxylation of vitamin D3 sterols by cultured macrophages from patients with sarcoidosis. J Exp Med 1985; 161: 755–765.PubMedCrossRefGoogle Scholar
  41. 41.
    Shany S, Ren S-Y, Arbelle JE, Clemens TL, Adams JS. Subcellular localization of the 25hydroxyvitamin D3–1-hydroxylase and partial purification from the chick myelomonocytic cell line HD-11. J Bone Miner Res 1993; 8: 269–276.PubMedCrossRefGoogle Scholar
  42. 42.
    Adams JS, Ren S-Y, Arbelle JE, Horiuchi N, Gray RW, Clemens TL, Shany S. Regulated production and intracrine action of 1,25-dihydroxyvitamin D3 in chick myelomonocytic cell line HD-11. Endocrinology 1994; 134: 2567–2573.PubMedCrossRefGoogle Scholar
  43. 43.
    Reichel H, Koeffler HP, Norman AW. Synthesis in vitro of 1,25-dihydroxyvitamin D3 and 24,25dihydroxyvitamin D3 by interferon-gamma-stimulated normal human bone marrow and alveolar macrophages. J Biol Chem 1987; 262:10, 931–10, 937.Google Scholar
  44. 44.
    Reichel H, Koeffler HP, Barbers R, Norman AW. Regulation of 1,25-dihydroxyvitamin D3 production by cultured alveolar macrophages from normal human donors and patients with pulmonary sarcoidosis. J Clin Endocrinol Metab 1987; 65: 1201–1209.PubMedCrossRefGoogle Scholar
  45. 45.
    Fraser DR. Regulation of the metabolism of vitamin D. Physiol Rev 1980; 60: 551–613.PubMedGoogle Scholar
  46. 46.
    Nesbitt T, Drezner MK. Insulin-like growth factor-1 regulation of renal 25-hydroxyvitamin D-1hydroxylase activity. Endocrinology 1993; 132: 133–138.PubMedCrossRefGoogle Scholar
  47. 47.
    Henry HH. 25(OH)D3 metabolism in kidney cell cultures: lack of a direct effect of estradiol. Am J Physiol 1981; 240:E119–E124.Google Scholar
  48. 48.
    Adams ND, Garthwaite TL, Gray RW. The interrelationship among prolactin, 1,25-dihydroxyvitamin D and parathyroid hormone in humans. J Clin Endocrinol Metab 1979; 49: 628–630.PubMedCrossRefGoogle Scholar
  49. Kumar R, Merimee TJ, Silva P, Epstein FH. The effect of chronic excess or deficiency of growth hormone on plasma 1,25-dihydroxyvitamin D levels in man. In: Vitamin D, Basic Research and Its Clinical Application. Norman AW, Schaefer K, von Herrath D, eds. Berlin: de Gruyter, 1979; 1005–1009.Google Scholar
  50. 50.
    Brixen K, Nielsen HK, Bouillon R, Flyvbjerg A, Mosekilde L. Effects of short-term growth hormone treatment on PTH, calcitriol, thyroid hormones, insulin and glucagon. Acta Endocrinol 1992; 127: 331–336.PubMedGoogle Scholar
  51. 51.
    Henry HL. Vitamin D hydroxylases. J Cell Biochem 1992; 49: 4–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Ohyama Y, Noshiro M, Okuda K. Cloning and expression of cDNA encoding 25-hydroxyvitamin D3–24-hydroxylase. FEBS Lett 1991; 278: 195–198.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen K, Goto H, DeLuca HF. Isolation and expression of human 1,25-dihydroxyvitamin D3 24hydroxylase cDNA. J Bone Miner Res 1992; 7: S148.Google Scholar
  54. 54.
    Chen KS, Prahl JM, DeLuca HF. Isolation and expression of human 1,25-dihydroxyvitamin D3–24hydroxylase. Proc Natl Acad Sci USA 1993; 90: 4543–4547.PubMedCrossRefGoogle Scholar
  55. 55.
    Ismail R, Elaroussi MA, DeLuca HF. Regulation of chicken kidney vitamin D3 24-hydroxylase mRNA by 1,25-dihydoxyvitamin D3 and parathyroid hormone. J Bone Miner Res 1993; 8: 5208.Google Scholar
  56. 56.
    Uchida M, Shinki T, Ohyama Y, Noshiro M, Okda K, Suda T. Protein kinase C upregulates la,25dihydroxyvitamin D3 induced expression of the 24-hydroxylase gene. J Bone Miner Res 1993; 8: 5171.Google Scholar
  57. 57.
    Chen ML, Boltz MA, Armbrecht HJ. Effects of 1,25-dihydroxyvitamin D3 and phorbol ester on 25hydroxyvitamin D3–24-hydroxylase cytochrome P-450 messenger ribonucleic acid levels in primary cultures of rat renal cells. Endocrinology 1993; 132: 1782–1788.PubMedCrossRefGoogle Scholar
  58. 58.
    Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3–24-hydroxylase. Arch Biochem Biophys 1975; 171: 521–526.CrossRefGoogle Scholar
  59. Henry H, Luntao EM. Further studies on the regulation of 25-OH-D metabolism in kidney cell cultures. In: Vitamin D; Chemical, Biochemical and Clinical Update. Norman AW, Schaefer K, Grigoleit HG, von-Herrath D, eds. Berlin: de Gruyter, 1985; 505–514.Google Scholar
  60. 60.
    Henry HL. Regulation of the hydroxylation of 25-hydroxyvitamin D3 in vivo and in primary cultures of chick kidney cells. J Biol Chem 1979; 254: 2722–2729.PubMedGoogle Scholar
  61. 61.
    Adams JS, Gacad MA, Singer FR, Sharma OP. Production of 1,25-dihydroxyvitamin D3 by pulmonary alveolar macrophages from patients with sarcoidosis. NY Acad Sci 1986; 465: 587–594.CrossRefGoogle Scholar
  62. 62.
    Adams JS. Hypercalcemia and hypercalciuria. Sem Respir Med 1992; 13: 402–410.CrossRefGoogle Scholar
  63. 63.
    Hunninghake GW. Role of alveolar macrophage-and lung T cell-derived mediators in pulmonary sarcoidosis. Ann NY Acad Sci 1986; 465: 82–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Adams JS, Gacad MA, Diz MM, Nadler JL. A role for endogenous arachidonate metabolites in the regulated expression of the 25-hydroxyvitamin D-1-hydroxylation reaction in cultured alveolar macrophages from patients with sarcoidosis. J Clin Endocrinol Metab 1990; 70: 595–600.PubMedCrossRefGoogle Scholar
  65. 65.
    Celada A, Schreiber RD. Role of protein kinase C and intracellular calcium mobilization in the induction of macrophage tumoricidal activity by interferon-gamma. J Immunol 1986; 137: 2373–2379.PubMedGoogle Scholar
  66. 66.
    Wightman PD, Humes JL, Davies P, Bonney RJ. Identification of two phospholipase A2 activities in resident mouse peritoneal macrophages. Biochem J 1981; 195: 427.PubMedGoogle Scholar
  67. 67.
    Wightman PD, Dahlgren M, Bonney RS. Protein kinase activation of phospholipase A2 in sonicates of mouse peritoneal macrophages. J Biol Chem 1982; 257: 6650.PubMedGoogle Scholar
  68. 68.
    Schumann RR, Leong SR, Flaggs GW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ. Structure and function of LPS binding protein. Science 1990; 249: 1429–1431.PubMedCrossRefGoogle Scholar
  69. 69.
    Marletta, MA. Nitric oxide synthase: aspects concerning structure and catalysis. Cell 1994; 78: 927–930.PubMedCrossRefGoogle Scholar
  70. 70.
    Nathan C, Xie Q-W. Nitric oxide synthases: roles, tolls, and controls. Cell 1994; 78: 915–918.PubMedCrossRefGoogle Scholar
  71. 71.
    Adams, JS, Ren SY, Arbelle JE, Clemens TL, Shany S. A role for nitric oxide in the regulated expression of the 25-hydroxyvitamin D-1-hydroxylation reaction in the chick myelomonocytic cell line HD-11. Endocrinology 1994; 134: 499–502.PubMedCrossRefGoogle Scholar
  72. 72.
    Adams JS, Ren S-Y, Arbelle J, Shany S, Gacad MA. Coordinate regulation of nitric oxide and 1,25dihydroxyvitamin D production in the avian myelomonocytic cell line HD-11. Endocrinology 1995; 136: 2262–2269.PubMedCrossRefGoogle Scholar
  73. 73.
    Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci USA 1992; 89: 6711–6715.PubMedCrossRefGoogle Scholar
  74. 74.
    Valance P, Collier J. Biology and clinical relevance of nitric oxide. Br Med J 1994; 309: 453–457.CrossRefGoogle Scholar
  75. 75.
    Leone AM, Palmer RMJ, Knowles RG, Francis PL, Ashton DS, Moncada S. Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. J Biol Chem 1991; 266:23, 790–23, 795.Google Scholar
  76. 76.
    Chartrain NA, Geller DA, Koty PP, Sitrin NF, Nussler AK, Hoffman EP, Billiar TR, Hutchinson NI, Mudgett JS. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 1994; 269: 6765–6772.PubMedGoogle Scholar
  77. 77.
    Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898–1902.PubMedCrossRefGoogle Scholar
  78. 78.
    Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–936.PubMedCrossRefGoogle Scholar
  79. 79.
    Adams, JS. Extrarenal production and action of active vitamin D metabolites in human lymphoproliferative diseases. In: Vitamin D. Feldman D, Glorieux FH, Pike JW, eds. San Diego: Academic, 1997, pp. 903–922.Google Scholar
  80. 80.
    Adams JS, Ren S-Y. Autoregulation of 1,25-dihydroxyvitamin D synthesis in macrophage mitochondria by nitric oxide. Endocrinology 1996; 137: 4514–4517.PubMedCrossRefGoogle Scholar
  81. 81.
    Griscavage JM, Rogers NE, Sherman MP, Ignarro LJ. Inducible nitric oxide synthase from a rat alveolar macrophage cell line is inhibited by nitric oxide. J Immunol 1993; 151: 6329–6337.PubMedGoogle Scholar
  82. 82.
    Khatsenko OG, Gross SS, Rifkind AB, Vane JR. Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci USA 1993; 90:11, 147–11, 151.Google Scholar
  83. 83.
    Griscavage JM, Fukuto JM, Komori Y, Ignarro LJ. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. J Biol Chem 1994; 269:21, 644–21, 649.Google Scholar
  84. 84.
    Stadler J, Trockfeld J, Schmalix WA, Brill T, Siewert JR, Greim, Doehmer J. Inhibition of cytochromes P450–1A by nitric oxide. Proc Natl Acad Sci USA 1994; 91: 3559–3563.Google Scholar
  85. 85.
    Morris SM, Jr, Billiar TR. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 1994; 266: E829 - E839.PubMedGoogle Scholar
  86. 86.
    Van Voorhis BJ, Dunn MS, Snyder GD, Weiner CP. Nitric oxide: an autocine regulator of human granulosa-luteal cell steroidogenesis. Endocrinology 1994; 135: 1799–1806.PubMedCrossRefGoogle Scholar
  87. 87.
    Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996; 381: 571–580.PubMedCrossRefGoogle Scholar
  88. 88.
    Polla BS, Healy AM, Wojno WC, Krane SM. Hormone la,25-dihydroxyvitamin D3 modulates heat shock response in monocytes. Am J Physiol 1987; 252: C640 - C649.PubMedGoogle Scholar
  89. 89.
    Gacad MA, LeBon TR, Chen H., Arbelle JE, Adams JS. Functional characterization and purification of an intracellular vitamin D binding protein in vitamin D resistant New World primate cells: amino acid sequence homology with proteins in the hsp-70 family. J Biol Chem 1997; 272: 8433–8440.PubMedCrossRefGoogle Scholar
  90. 90.
    Berthold J, Bauer MF, Schneider H-C, Klaus C, Dietmeier K, Neupert W, Brunner M. The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system. Cell 1995; 81: 1085–1093.PubMedCrossRefGoogle Scholar
  91. 91.
    Need AG, Phillips PJ. Hypercalcaemia associated with tuberculosis. Br Med J 1980; 280: 831.PubMedCrossRefGoogle Scholar
  92. 92.
    Felsenfeld AJ, Drezner MK, Llach F. Hypercalcemia and elevated calcitriol in a maintenance dialysis patient with tuberculosis. Arch Intern Med 1986; 146: 1941–1945.PubMedCrossRefGoogle Scholar
  93. 93.
    Gkonos PJ, London R, Hendler ED. Hypercalcemia and elevated 1,25-dihydroxyvitamin D levels in a patient with end-stage renal disease and active tuberculosis. N Engl J Med 1984; 311: 1683–1685.PubMedCrossRefGoogle Scholar
  94. 94.
    Epstein S, Stern PH, Bell NH, Dowdeswell I, Turner RT. Evidence for abnormal regulation of circulating la,25-dihydroxyvitamin D in patients with pulmonary tuberculosis and normal calcium metabolism. Calcif Tissue Int 1984; 36: 541–544.PubMedCrossRefGoogle Scholar
  95. 95.
    Bell NH, Shary J, Shaw S, Turner RT. Hypercalcemia associated with increased circulating 1,25dihydroxyvitamin D in a patient with pulmonary tuberculosis Calcif Tissue Int 1985; 37: 588–591.Google Scholar
  96. 96.
    Cadranel J, Garabedian M, Milleron B, Guillozo H, Akoun G, Hance AJ. 1,25(OH)2D3 production by T lymphocytes and alveolar macrophages recovered by lavage from normocalcemic patients with tuberculosis. J Clin Invest 1990; 85: 1588–1593.PubMedCrossRefGoogle Scholar
  97. 97.
    Cadranel JL, Garabedian M, Milleron B, Guillozzo H, Valeyre D, Paillard F, Akoun G, Hance AJ. Vitamin D metabolism by alveolar immune cells in tuberculosis: correlation with calcium metabolism and clinical manifestations. Eur Res J 1994; 7: 1103–1110.Google Scholar
  98. 98.
    Isaacs RD, Nicholson GI, Holdaway IM. Miliary tuberculosis with hypercalcaemia and raised vitamin D concentrations. Thorax 1987; 42: 555, 556.Google Scholar
  99. 99.
    Shai F, Baker RK, Addrizzo JR, Wallach S. Hypercalcemia in mycobacterial infection. J Clin Endocrinol Metab 1972; 34: 251–256.PubMedCrossRefGoogle Scholar
  100. 100.
    Braman SS Goldman AL, Schwarz MI. Steroid-responsive hypercalcemia in disseminated bone tuberculosis. Arch Intern Med 1973; 90: 327, 328.Google Scholar
  101. 101.
    Hoffman VH, Korzeniowski OM. Leprosy, hypercalcemia, and elevated serum calcitriol levels. Ann Intern Med 1986; 105: 890, 891.Google Scholar
  102. 102.
    Ryzen E, Rea TH, Singer FR. Hypercalcemia and abnormal 1,25-dihydroxyvitamin D concentrations in leprosy. Am J Med 1988; 84: 325–329.PubMedCrossRefGoogle Scholar
  103. 103.
    Kantarijian HM, Saad MF, Estey EH, Sellin RV, Samaan NA. Hypercalcemia in disseminated candidiasis. Am J Med 1983; 74: 721–724.CrossRefGoogle Scholar
  104. 104.
    Walker JV, Baran D, Yakub YN, Freeman RB. Histoplasmosis with hypercalcemia, renal failure, and papillary necrosis. Confusion with sarcoidosis. JAMA 1977; 237: 1350–1352.PubMedCrossRefGoogle Scholar
  105. 105.
    Parker MS, Dokoh S, Woolfenden JM, Buchsbaum HW. Hypercalcemia in coccidioidomycosis. Am J Med 1984; 76: 341–343.PubMedCrossRefGoogle Scholar
  106. 106.
    Ahmed B, Jaspan JB. Case report: hypercalcemia in a patient with AIDS and Pneumocystis carinii pneumonia. Am J Med Sci 1993; 306: 313–316.PubMedCrossRefGoogle Scholar
  107. 107.
    Kozeny G, Barbato A, Bansal VK, Vertuno LL, Hano JE. Hypercalcemia associated with silicone-induced granulomas. N Engl J Med 1984; 311: 1103–1105.PubMedCrossRefGoogle Scholar
  108. 108.
    Stoeckle JD, Hardy HL, Weber AL. Chronic beryllium disease. Long-term follow-up of sixty cases and selective review of the literature. Am J Med 1969; 46: 545–561.PubMedCrossRefGoogle Scholar
  109. 109.
    Cook JS, Stone MS, Hansen JR. Hypercalcemia in association with subcutaneous fat necrosis of the newborn: studies of calcium-regulating hormones. Pediatrics 1992; 90: 93–96.PubMedGoogle Scholar
  110. 110.
    Zaloga GP, Eil C, Medbery CA. Humoral hypercalcemia in Hodgkin’s disease. Arch Intern Med 1995; 145: 155–157.CrossRefGoogle Scholar
  111. 111.
    Rosenthal N, Insogna KL, Godsall JW. Elevations in circulating 1,25-dihydroxyvitamin D3 in three patients with lymphoma-associated hypercalcemia. J Clin Endocrinol Metab 1985; 60: 29–33.PubMedCrossRefGoogle Scholar
  112. 112.
    Davies M, Mawer EB, Hayes ME, Lumb GA. Abnormal vitamin D metabolism in Hodgkin’s lymphoma. Lancet 1985; 1: 1186–1188.PubMedCrossRefGoogle Scholar
  113. 113.
    Adams JS, Fernandez M, Endres DB, Gill PS, Rasheed S, Singer FR. Hypercalcemia, hypercalciuria, and elevated serum 1,25-dihydroxyvitamin D concentrations in patients with AIDS- and non-AIDSassociated lymphoma. Blood 1979; 73: 235–239.Google Scholar
  114. 114.
    Schienman SJ, Kelberman MW, Tatum AH, Zamkoff KW. Hypercalcemia with excess serum 1,25dihydroxyvitamin D in lymphomatoid granulomatosis/angiocentric lymphoma. Am J Med Sci 1991; 301: 178–181.CrossRefGoogle Scholar
  115. 115.
    Jurney TH. Hypercalcemia in a patient with eosinophilic granuloma. Am J Med 1984; 76: 527, 528.Google Scholar
  116. 116.
    Edelson GW, Talpos GB, Bone HG III. Hypercalcemia associated with Wegener’s granulomatosis and hyperparathyroidism: etiology and management. Am J Nephrol 1993; 13: 275–277.PubMedCrossRefGoogle Scholar
  117. 117.
    Seymour JF, Gagel RF. Calcitriol: the major humoral mediator of hypercalcemia in Hodgkin’s lymphomas. Blood 1993; 82: 1383–1394.PubMedGoogle Scholar
  118. 118.
    Seymour JF, Gagel RF, Hagemeister FB, Dimopoulos MA, Cabanillas F. Calcitriol production in hypercalcemic and normoclacemic patients with non-Hodgkin lymphoma. Ann Intern Med 1994; 121: 633–640.PubMedGoogle Scholar
  119. 119.
    Davies M, Hayes ME, Liu Yin JA, Berry JL, Mawer EB. Abnormal synthesis of 1,25-dihydroxyvitamin D in patients with malignant lymphoma. J Clin Endocrinol Metab 1994; 78: 1202–1207.PubMedCrossRefGoogle Scholar
  120. 120.
    Fetchick DA, Bertolini DR, Sarin PS. Production of 1,25-dihydroxyvitamin D3 by human T cell lymphotrophic virus-I-transformed lymphocytes. J Clin Invest 1986; 78: 592–596.PubMedCrossRefGoogle Scholar
  121. 121.
    Mawer EB, Hayes ME, Heys SE, Davies M, White A, Stewart MF, Smith GN. Constitutive synthesis of 1,25-dihydroxyvitamin D3 by a human small cell lung cancer cell line. J Clin Endocrinol Metab 1994; 79: 554–560.PubMedCrossRefGoogle Scholar
  122. 122.
    Hayes ME, Bayley D, Drayson M, Freemont AJ, Denton J, Davies M, Mawer EB. Metabolism of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3 by blood derived macrophages from a patient with alveolar rhabdomyosarcoma during short-term culture and la,25-dihydroxyvitamin D3 after long-term culture. J Steroid Biochem Mol Biol 1991; 38: 301–306.PubMedCrossRefGoogle Scholar
  123. 123.
    Holick MF, Adams JS. Vitamin D metabolism and biological function. In: Metabolic Bone Disease and Clinically Related Disorders. Avioli LV, Krane SM, eds. Philadelphia: WB Saunders, 1990; 155–195.Google Scholar
  124. 124.
    Feldman D. Imidazole derivatives as inhibitors of steroidogensis. Endocr Rev 1986; 7: 409–430.PubMedCrossRefGoogle Scholar
  125. 125.
    Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 1986; 63: 766–769.PubMedCrossRefGoogle Scholar
  126. 126.
    Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-(OH)2D3 and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab 1988; 66: 934–938.PubMedCrossRefGoogle Scholar
  127. 127.
    Saggese G, Bertelloni S, Baroncelli GI, DiNero G. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D levels in tuberculosis-associated hypercalcemia. Am J Dis Child 1993; 147: 270–273.PubMedGoogle Scholar
  128. 128.
    Pont A, Williams PL, Loose DS, Feldman D, Reitz RE, Bochra C, Stevens DA. Ketoconazole blocks adrenal steroid synthesis. Ann Intern Med 1992; 97: 370–372.Google Scholar
  129. 129.
    Adams JS, Lee G. Recovery of bone mineral density following exogenous vitamin D intoxication. Ann Intern Med 1997; 127: 203–206.PubMedGoogle Scholar
  130. 130.
    Tsoukas CD, Provvedini DM, Manolagas SC. 1,25-Dihydroxyvitamin D3: a novel immunoregulatory hormone. Science 1984; 224: 1438–1441.PubMedCrossRefGoogle Scholar
  131. 131.
    Abe E, Miyaura C, Sakagamih H, Takeda M, Kouno K, Yamazaki T, Yoshikias S, Suda T. Differentiation of mouse myeloid leukemia cells induced by 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1981; 78: 4990–4999.PubMedCrossRefGoogle Scholar
  132. 132.
    Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-Dihydroxyvitamin D3 receptors in human leukocytes. Science 1983; 221: 1181, 1182.Google Scholar
  133. 133.
    Bhalla AK, Amento EP, Clemens TL, Holick MF, Krane SM. Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells. J Clin Endocrinol Metab 1983; 57: 1308–1310.PubMedCrossRefGoogle Scholar
  134. 134.
    Rigby W. The immunobiology of vitamin D. Immunol Today 1988; 9: 54–58.PubMedCrossRefGoogle Scholar
  135. 135.
    Hewison M. Vitamin D and the immune system. J Endocrinol 1992; 132: 173–175.PubMedCrossRefGoogle Scholar
  136. 136.
    Fagan DL, Prehn JL, Jordan SC, Adams JS. The human myelomonocytic cell line U937 as a model for studying alterations in monokine gene expression by 1,25-dihydroxyvitamin D Mol Endocrinol 1991; 5: 179–186.Google Scholar
  137. 137.
    Prehn JL, Fagan DL, Jordan SC, Adams JS. Potentiation of lipopolysaccharide-induced tumor necrosis factor-alpha expression by 1,25-dihydroxyvitamin D3. Blood 1992; 80: 2811–2816.PubMedGoogle Scholar
  138. 138.
    Bar-Shavit Z, Teitelbaum SL, Reitsma P, Hall A, Pegg LE, Trial J, Kahn AJ. Induction of monocytic differentiation and bone resorption by 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1983; 80: 5907–5910.PubMedCrossRefGoogle Scholar
  139. 139.
    Lemire JM, Adams JS, Kermani-Arab V, Bakke AC, Sakai R, Jordan SC. 1,25-Dihydroxyvitamin D suppresses human T helper-inducer lymphocyte activity in vitro. J Immunol 1985; 134: 219–224.Google Scholar
  140. 140.
    Bhalla AK, Amento EP, Krane SM. Differential effects of 1,25-dihydroxyvitamin D3 on human lymphocytes and monocyte/macrophages: inhibition of interleukin-2 and augmentation of interleukin-1 production. Cell Immunol 1986; 98: 311–22.PubMedCrossRefGoogle Scholar
  141. 141.
    Ucla C, Roux-Lombard P, Dayer J-M, Mach B. IFN-y drastically modifies the regulation of IL-1 genes by endotoxin in U937 cells. J Clin Invest 1990; 85: 185–191.PubMedCrossRefGoogle Scholar
  142. 142.
    Morel PA, Manolagas SC, Provvedini DM, Wegmann DR, Chiller JM. Interferon-gamma-induced IA expression in WEHI-3 cells is enhanced by the presence of 1,25-dihydroxyvitamin D3 J Immunol 1986; 136: 2181–2186.Google Scholar
  143. 143.
    Rook GAW, Steele J, Fraher L, Barker S, Karmali R, O’Riordan J, Stanford J. Vitamin D3, gamma-interferon, and control of proliferation of mycobacterium tuberculosis by human monocytes. Immunology 1986; 57: 159–163.PubMedGoogle Scholar
  144. 144.
    Cohen MS, Mesler DE, Snipes RG, Gray TK. 1,25-Dihydroxyvitamin D3 activates secretion of hydrogen peroxide by human monocytes. J Immunol 1986; 136: 1049–1053.PubMedGoogle Scholar
  145. 145.
    Jordan SC, Lemire JM, Koeffler PK, Sakai R, Adams JS. Immunoregulatory and prodifferentiating effect of 1,25-dihydroxyvitamin D In: Nutrient Modulation of the Immune Response. New York: Marcel Dekker, 1992; 3–29.Google Scholar
  146. 146.
    Tsoukas CD, Provvedini DM, Manolagas SC. 1,25-dihydroxyvitamin D3, a novel immunoregulatory hormone. Science 1984; 224: 1438–1440.PubMedCrossRefGoogle Scholar
  147. 147.
    Manolagas SC, Provvedini DM, Murray EJ, Tsoukas CD, Deftos Li. The antiproliferative effect of calcitriol on human peripheral blood mononuclear cells. J Clin Endocrinol Metab 1986; 63: 394–400.PubMedCrossRefGoogle Scholar
  148. 148.
    Rigby WF, Noelle RJ, Krause K, Fanger MW. The effects of 1,25-dihydroxyvitamin D3 on human T lymphocyte activation and proliferation. J Immunol 1985; 135: 2279–2286.PubMedGoogle Scholar
  149. 149.
    Nun JD, Katz DR, Barker S, Fraher Li, Hewison M, Hendy GN, O’Riordan JL. Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3. Immunol 1986; 59: 479–484.Google Scholar
  150. 150.
    Haq AU. 1,25-Dihydroxyvitamin D3 (calcitriol) suppresses IL-2 induced murine thymocyte proliferation. Thymus 1986; 8: 295–306.PubMedGoogle Scholar
  151. 151.
    Lemire JM, Adams JS, Sakai R, Jordan SC. 1,25-Dihydroxyvitamin D suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest 1984; 74: 857–861.CrossRefGoogle Scholar
  152. 152.
    Rigby WFC, Denome S, Fanger MW. Regulation of lymphokine production and human T lymphocyte activation by 1,25-(OH)2D3. J Clin Invest 1987; 79: 1659–1664.PubMedCrossRefGoogle Scholar
  153. 153.
    Lemire JM, Adams JS. 1,25-Dihydroxyvitamin D inhibits delayed-type hypersensitivity mediated by T-cell clones inducing experimental autoimmune encephalomyelitis. J Bone Miner Res 1992; 7: 171–178.PubMedCrossRefGoogle Scholar
  154. 154.
    Lemire JM, Archer DC, Beck L, Spiegelberg HL Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Thl functions. J Nutr 1995; 125: 1704S - 1708S.PubMedGoogle Scholar
  155. 155.
    Lemire JM. Immunomodulatory actions of 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 1995; 53: 599–602.PubMedCrossRefGoogle Scholar
  156. 156.
    Barnes PF, Modlin RL, Bikle DD, Adams JS. Transpleural gradient of 1,25-dihydroxyvitamin D in tuberculous pleuritis. J Clin Invest 1989; 83: 1527–1532.PubMedCrossRefGoogle Scholar
  157. 157.
    Adams JS, Modlin RL, Diz MM, Barnes PF. Potentiation of the macrophage 25-hydroxyvitamin D1-hydroxylation reaction by human tuberculous pleural effusion fluid. J Clin Endocrinol Metab 1989; 69: 457–460.PubMedCrossRefGoogle Scholar
  158. 158.
    Rook GAW, Taverne J, Leveton C, Steele J. The role of gamma-interferon, vitamin D3 metabolites and tumour necrosis factor in the pathogenesis of tuberculosis. Immunology 1987; 62: 229–234.PubMedGoogle Scholar
  159. 159.
    Rook GAW. The role of vitamin D in tuberculosis. Am Rev Respir Dis 1988; 138: 768–770.PubMedCrossRefGoogle Scholar
  160. 160.
    Mawer EB, Hayes ME, Still PE, Davies M, Lumb GA, Palit J, Holt PJL. Evidence for nonrenal synthesis of 1,25-dihydroxyvitamin D in patients with inflammatory arthritis. J Bone Miner Res 1988; 6: 733–739.CrossRefGoogle Scholar
  161. 161.
    Hayes ME, Bayley D, Still P, Palit J, Denton J, Freemont AJ, Cooper RG, Mawer EB. Differential metabolism of 25-hydroxyvitamin D3 by cultured synovial fluid macrophages and fibroblast-like cells from patients with arthritis. Ann Rheum Dis 1992; 51: 220–226.PubMedCrossRefGoogle Scholar
  162. 162.
    Hayes ME, O’Donoghue DJ, Ballardie FW, Mawer EB. Peritonitis induces the synthesis of 1a,25dihydroxyvitamin D3 in macrophages from CAPD patients. FEBS 1987; 220: 307–310.CrossRefGoogle Scholar
  163. 163.
    Shany S, Rapoport J, Zuili I, Gavriel A, Lavi N, Chaimovitz C. Metabolism of 25-OH-vitamin D3 by peritoneal macrophages from CAPD patients. Kid Int 1991; 39: 1005–1011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • John S. Adams

There are no affiliations available

Personalised recommendations