Vitamin D pp 317-336 | Cite as

Molecular Defects in the Vitamin D Receptor Associated with Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets

  • Peter J. Malloy
  • David Feldman
Part of the Nutrition and Health book series (NH)


Hereditary vitamin D-resistant rickets (HVDRR), also known as vitamin D-dependent rickets type II, is a rare genetic disease caused by end-organ resistance to vitamin D. The active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], elicits hormonal action through the vitamin D receptor (VDR), a member of the steroid-thyroid-retinoid family of nuclear transcription factors. In target cells the activated 1,25(OH)2D3-VDR complex regulates the expression of specific genes that give rise to the biologic response of the hormone. In HVDRR, target organ resistance to vitamin D has been shown to be caused by a heterogeneous group of defects in the VDR resulting from a variety of mutations in the VDR gene that cause the receptor to be nonfunctional or that decrease the activity of the receptor. In this chapter, we describe the clinical syndrome and the molecular defects in the VDR that give rise to HVDRR.


Human Vitamin Resistant Rickets Rickets Type Intravenous Calcium Infusion Hereditary Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks MH, Bell NH, Love L, Stern PH, Orfei E, Queener SF, Hamstra AJ, DeLuca HF. VitaminD-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med 1978; 298: 996–999.PubMedCrossRefGoogle Scholar
  2. 2.
    Marx SJ, Spiegel AM, Brown EM, Gardner DG, Downs RW Jr, Attie M, Hamstra AJ, DeLuca HF. A familial syndrome of decrease in sensitivity to 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 1978; 47: 1303–1310.PubMedCrossRefGoogle Scholar
  3. 3.
    Balsan S, Garabedian M, Lieberherr M, Gueris J, Ulmann A. Serum 1,25-dihydroxyvitamin D concentrations in two different types of pseudo-deficiency rickets. In: Vitamin D: Basic Research and Its Clinical Application. Fourth Workshop on Vitamin D. Norman AW, Bouillon R, Thomasset M, eds. New York: Walter de Gruyter, 1979; 1143–1149.Google Scholar
  4. 4.
    Rosen JF, Fleischman AR, Finberg L, Hamstra A, DeLuca HF. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatr 1979; 94: 729–735.PubMedCrossRefGoogle Scholar
  5. 5.
    Zerwekh JE, Glass K, Jowsey J, Pak CY. An unique form of osteomalacia associated with end organ refractoriness to 1,25-dihydroxyvitamin D and apparent defective synthesis of 25-hydroxyvitamin D. J Clin Endocrinol Metab 1979; 49: 171–175.PubMedCrossRefGoogle Scholar
  6. 6.
    Fujita T, Nomura M, Okajima S, Furuya H. Adult-onset vitamin D-resistant osteomalacia with the unresponsiveness to parathyroid hormone. J Clin Endocrinol Metab 1980; 50: 927–931.PubMedCrossRefGoogle Scholar
  7. 7.
    Liberman UA, Samuel R, Halabe A, Kauli R, Edelstein S, Weisman Y, Papapoulos SE, Clemens TL, Fraher LJ, O’Riordan JL. End-organ resistance to 1,25-dihydroxycholecalciferol. Lancet 1980; 1: 504–506.PubMedCrossRefGoogle Scholar
  8. 8.
    Sockalosky JJ, Ulstrom RA, DeLuca HF, Brown DM. Vitamin D-resistant rickets: end-organ unresponsiveness to 1,25(OH)2D3. J Pediatr 1980; 96: 701–703.PubMedCrossRefGoogle Scholar
  9. 9.
    Tsuchiya Y, Matsuo N, Cho H, Kumagai M, Yasaka A, Suda T, Orimo H, Shiraki M. An unusual form of vitamin D-dependent rickets in a child: alopecia and marked end-organ hyposensitivity to biologically active vitamin D. J Clin Endocrinol Metab 1980; 51: 685–690.PubMedCrossRefGoogle Scholar
  10. 10.
    Beer S, Tieder M, Kohelet D, Liberman OA, Vure E, Bar-Joseph G, Gabizon D, Borochowitz ZU, Varon W, Modai D. Vitamin D resistant rickets with alopecia: a form of end organ resistance to 1,25dihydroxyvitamin D. Clin Endocrinol 1981; 14: 395–402.CrossRefGoogle Scholar
  11. 11.
    Eil C, Liberman UA, Rosen JF, Marx SJ. A cellular defect in hereditary vitamin-D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med 1981; 304: 1588–1591.PubMedCrossRefGoogle Scholar
  12. 12.
    Kudoh T, Kumagai T, Uetsuji N, Tsugawa S, Oyanagi K, Chiba Y, Minami R, Nakao T. Vitamin D dependent rickets: decreased sensitivity to 1,25-dihydroxyvitamin D. Eur J Pediatr 1981; 137: 307–311.PubMedCrossRefGoogle Scholar
  13. 13.
    Feldman D, Chen T, Cone C, Hirst M, Shani S, Benderli A, Hochberg Z. Vitamin D resistant rickets with alopecia: cultured skin fibroblasts exhibit defective cytoplasmic receptors and unresponsiveness to 1,25(OH)2D3. J Clin Endocrinol Metab 1982; 55: 1020–1022.PubMedCrossRefGoogle Scholar
  14. 14.
    Balsan S, Garabedian M, Liberman UA, Eil C, Bourdeau A, Guillozo H, Grimberg R, Le Deunff MJ, Lieberherr M, Guimbaud P, Broyer M, Marx SJ. Rickets and alopecia with resistance to 1,25dihydroxyvitamin D: two different clinical courses with two different cellular defects. J Clin Endocrinol Metab 1983; 57: 803–811.PubMedCrossRefGoogle Scholar
  15. 15.
    Clemens TL, Adams JS, Horiuchi N, Gilchrest BA, Cho H, Tsuchiya Y, Matsuo N, Suda T, Holick MF. Interaction of 1,25-dihydroxyvitamin-D3 with keratinocytes and fibroblasts from skin of normal subjects and a subject with vitamin-D-dependent rickets, type II: a model for study of the mode of action of 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab 1983; 56: 824–830.PubMedCrossRefGoogle Scholar
  16. 16.
    Griffin JE, Zerwekh JE. Impaired stimulation of 25-hydroxyvitamin D-24-hydroxylase in fibroblasts from a patient with vitamin D-dependent rickets, type II. A form of receptor-positive resistance to 1,25-dihydroxyvitamin D3. J Clin Invest 1983; 72: 1190–1199.PubMedCrossRefGoogle Scholar
  17. 17.
    Liberman UA, Eil C, Marx SJ. Resistance to 1,25(OH)2D3: association with heterogeneous defects in cultured skin fibroblasts. J Clin Invest 1983; 71: 192–200.PubMedCrossRefGoogle Scholar
  18. 18.
    Liberman UA, Eil C, Holst P, Rosen JF, Marx SJ. Hereditary resistance to 1,25-dihydroxyvitamin D: defective function of receptors for 1,25-dihydroxyvitamin D in cells cultured from bone. J Clin Endocrinol Metab 1983; 57: 958–962.PubMedCrossRefGoogle Scholar
  19. 19.
    Adams JS, Gacad MA, Singer FR. Specific internalization and action of 1,25-dihydroxyvitamin D3 in cultured dermal fibroblasts from patients with X-linked hypophosphatemia. J Clin Endocrinol Metab 1984; 59: 556–560.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen TL, Hirst MA, Cone CM, Hochberg Z, Tietze HU, Feldman D. 1,25-Dihydroxyvitamin D resistance, rickets, and alopecia: analysis of receptors and bioresponse in cultured fibroblasts from patients and parents. J Clin Endocrinol Metab 1984; 59: 383–388.PubMedCrossRefGoogle Scholar
  21. 21.
    Hochberg Z, Benderli A, Levy J, Vardi P, Weisman Y, Chen T, Feldman D. 1,25-Dihydroxyvitamin D resistance, rickets, and alopecia. Am J Med 1984; 77: 805–811.PubMedCrossRefGoogle Scholar
  22. 22.
    Gamblin GT, Liberman UA, Eil C, Downs RWJ, Degrange DA, Marx Si. Vitamin D dependent rickets type II: defective induction of 25-hydroxyvitamin D3–24-hydroxylase by 1,25-dihydroxyvitamin D3 in cultured skin fibroblasts. J Clin Invest 1985; 75: 954–960.PubMedCrossRefGoogle Scholar
  23. 23.
    Hirst MA, Hochman HI, Feldman D. Vitamin D resistance and alopecia: a kindred with normal 1,25dihydroxyvitamin D binding, but decreased receptor affinity for deoxyribonucleic acid. J Clin Endocrinol Metab 1985; 60: 490–495.PubMedCrossRefGoogle Scholar
  24. 24.
    Hochberg Z, Gilhar A, Haim S, Friedman-Birnbaum R, Levy J, Benderly A. Calcitriol-resistant rickets with alopecia. Arch Dermatol 1985; 121: 646, 647.Google Scholar
  25. 25.
    Koren R, Ravid A, Liberman UA, Hochberg Z, Weisman Y, Novogrodsky A. Defective binding and function of 1,25-dihydroxyvitamin D3 receptors in peripheral mononuclear cells of patients with end-organ resistance to 1,25-dihydroxyvitamin D. J Clin Invest 1985; 76: 2012–2015.PubMedCrossRefGoogle Scholar
  26. 26.
    Castells S, Greig F, Fusi MA, Finberg L, Yasumura S, Liberman UA, Eil C, Marx SJ. Severely deficient binding of 1,25-dihydroxyvitamin D to its receptors in a patient responsive to high doses of this hormone. J Clin Endocrinol Metab 1986; 63: 252–256.PubMedCrossRefGoogle Scholar
  27. 27.
    Fraher LJ, Karmali R, Hinde FR, Hendy GN, Jani H, Nicholson L, Grant D, O’Riordan JL. Vitamin D-dependent rickets type II: extreme end organ resistance to 1,25-dihydroxy vitamin D3 in a patient without alopecia. Eur J Pediatr 1986; 145: 389–395.PubMedCrossRefGoogle Scholar
  28. 28.
    Liberman UA, Eil C, Marx SJ. Receptor-positive hereditary resistance to 1,25-dihydroxyvitamin D. chromatography of receptor complexes on deoxyribonucleic acid-cellulose shows two classes of mutation. J Clin Endocrinol Metab 1986; 62: 122–126.PubMedCrossRefGoogle Scholar
  29. 29.
    Liberman UA, Eil C, Marx SJ. Clinical features of hereditary resistance to 1,25-dihydroxyvitamin D (hereditary hypocalcemic vitamin D resistant rickets type II). Adv Exp Med Biol 1986; 196: 391–406.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakati N, Woodhouse NJY, Niles N, Harfi H, de Grange DA, Marx S. Hereditary resistance to 1,25dihydroxyvitamin D: clinical and radiological improvement during high-dose oral calcium therapy. Horm Res 1986; 24: 280–287.PubMedCrossRefGoogle Scholar
  31. 31.
    Takeda E, Kuroda Y, Saijo T, Toshima K, Naito E, Kobashi H, Iwakuni Y, Miyao M. Rapid diagnosis of vitamin D-dependent rickets type II by use of phytohemagglutinin-stimulated lymphocytes. Clin Chim Acta 1986; 155: 245–250.PubMedCrossRefGoogle Scholar
  32. 32.
    Laufer D, Benderly A, Hochberg Z. Dental pathology in calcitirol resistant rickets. J Oral Med 1987; 42: 272–275.Google Scholar
  33. 33.
    Nagler A, Merchav S, Fabian I, Tatarsky I, Hochberg Z. Myeloid progenitors from the bone marrow of patients with vitamin D resistant rickets (type II) fail to respond to 1,25(OH)2D3. Br J Haematol 1987; 67: 267–271.PubMedCrossRefGoogle Scholar
  34. 34.
    Takeda E, Kuroda Y, Saijo T, Naito E, Kobashi H, Yokota I, Miyao M. 1 Alpha-hydroxyvitamin D3 treatment of three patients with 1,25-dihydroxyvitamin D-receptor-defect rickets and alopecia. Pediatrics 1987; 80: 97–101.PubMedGoogle Scholar
  35. 35.
    Bliziotes M, Yergey AL, Nanes MS, Muenzer J, Begley MG, Viera NE, Kher KK, Brandi ML, Marx SJ. Absent intestinal response to calciferols in hereditary resistance to 1,25-dihydroxyvitamin D: documentation and effective therapy with high dose intravenous calcium infusions. J Clin Endocrinol Metab 1988; 66: 294–300.PubMedCrossRefGoogle Scholar
  36. 36.
    Barsony J, McKoy W, DeGrange DA, Liberman UA, Marx SJ. Selective expression of a normal action of the 1,25-dihydroxyvitamin D3 receptor in human skin fibroblasts with hereditary severe defects in multiple actions of that receptor. J Clin Invest 1989; 83: 2093–2101.PubMedCrossRefGoogle Scholar
  37. 37.
    Malloy PJ, Hochberg Z, Pike JW, Feldman D. Abnormal binding of vitamin D receptors to deoxyribonucleic acid in a kindred with vitamin D-dependent rickets, type II. J Clin Endocrinol Metab 1989; 68: 263–269.PubMedCrossRefGoogle Scholar
  38. 38.
    Takeda E, Yokota I, Kawakami I, Hashimoto T, Kuroda Y, Arase S. Two siblings with vitamin-Ddependent rickets type II: no recurrence of rickets for 14 years after cessation of therapy. Eur J Pediatr 1989; 149: 54–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Koeffler HP, Bishop JE, Reichel H, Singer F, Nagler A, Tobler A, Walka M, Norman AW. Lymphocyte cell lines from vitamin D-dependent rickets type II show functional defects in the 1 alpha,25dihydroxyvitamin D3 receptor. Mol Cell Endocrinol 1990; 70: 1–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Takeda E, Yokota I, Ito M, Kobashi H, Saijo T, Kuroda Y. 25-Hydroxyvitamin D-24-hydroxylase in phytohemagglutinin-stimulated lymphocytes: intermediate bioresponse to 1,25-dihydroxyvitamin D3 of cells from parents of patients with vitamin D-dependent rickets type II. J Clin Endocrinol Metab 1990; 70: 1068–1074.PubMedCrossRefGoogle Scholar
  41. 41.
    Yokota I, Takeda E, Ito M, Kobashi H, Saijo T, Kuroda Y. Clinical and biochemical findings in parents of children with vitamin D-dependent rickets Type II. J Inherit Metab Dis 1991; 14: 231–240.PubMedCrossRefGoogle Scholar
  42. 42.
    Simonin G, Chabrol B, Moulene E, Bollini G, Strouc S, Mattei JF, Giraud F. Vitamin D-resistant rickets type II: apropos of 2 cases. Pediatrie 1992; 47: 817–820.PubMedGoogle Scholar
  43. 43.
    Lin JP, Uttley WS. Intra-atrial calcium infusions, growth, and development in end organ resistance to vitamin D. Arch Dis Child 1993; 69: 689–692.PubMedCrossRefGoogle Scholar
  44. 43a.
    Kitanaka S, Takeyama K, Murayama A, Sato T, Okumura K, Nogami M, Hasegawa Y, Niimi H, Yanagisawa J, Tanaka T, et al. Inactivating mutations in the 25-hydroxyvitamin D3 lalpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 1998; 338: 653–661.PubMedCrossRefGoogle Scholar
  45. 43b.
    Fu GK, Lin D, Zhang MY, Bikle DD, Shakleton CH, Miller WL, Portale AA. Cloning of human 25hydroxyvitamin D-lalpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol 1997; 11: 1961–1970.PubMedCrossRefGoogle Scholar
  46. 44.
    Pike JW, Sleator NM. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem Biophys Res Commun 1985; 131: 378–385.PubMedCrossRefGoogle Scholar
  47. 45.
    Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895.PubMedCrossRefGoogle Scholar
  48. 46.
    McDonnell DP, Scott RA, Kerner SA, O’Malley BW, Pike JW. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol 1989; 3: 635–644.PubMedCrossRefGoogle Scholar
  49. 47.
    Carson-Jurica MA, Schrader WT, O’Malley BW. Steroid receptor family: structure and functions. Endocr Rev 1990; 11: 201–220.PubMedCrossRefGoogle Scholar
  50. 48.
    Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 1995; 375: 203–211.PubMedCrossRefGoogle Scholar
  51. 49.
    Zilliacus J, Wright AP, Carlstedt-Duke J, Gustafsson JA. Structural determinants of DNA-binding specificity by steroid receptors. Mol Endocrinol 1995; 9: 389–400.PubMedCrossRefGoogle Scholar
  52. 50.
    Hsieh JC, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS, Shimizu Y, Shimizu N, Haussier MR. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc Natl Acad Sci USA 1991; 88: 9315–9319.PubMedCrossRefGoogle Scholar
  53. 51.
    Hsieh JC, Jurutka PW, Nakajima S, Galligan MA, Haussler CA, Shimizu Y, Shimizu N, Whitfield GK, Haussier MR. Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site. J Biol Chem 1993; 268:15, 118–15, 126.Google Scholar
  54. 52.
    Nakajima S, Hsieh JC, MacDonald PN, Galligan MA, Haussier CA, Whitfield GK, Haussier MR. The C-terminal region of the vitamin D receptor is essential to form a complex with a receptor auxiliary factor required for high affinity binding to the vitamin D-responsive element. Mol Endocrinol 1994; 8: 159–172.PubMedCrossRefGoogle Scholar
  55. 53.
    Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature 1995; 378: 690–697.PubMedCrossRefGoogle Scholar
  56. 54.
    Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 1995; 378: 681–689.PubMedCrossRefGoogle Scholar
  57. 55.
    Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 1995; 375: 377–382.PubMedCrossRefGoogle Scholar
  58. 56.
    Forman BM, Yang CR, Au M, Casanova J, Ghysdael J, Samuels HH. A domain containing leucinezipper-like motifs mediate novel in vivo interactions between the thyroid hormone and retinoic acid receptors. Mol Endocrinol 1989; 3: 1610–1626.PubMedCrossRefGoogle Scholar
  59. 57.
    Faraco JH, Morrison NA, Baker A, Shine J, Frossard PM. Apal dimorphism at the human vitamin D receptor gene locus. Nucleic Acids Res 1989; 17: 2150.Google Scholar
  60. 58.
    Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF. The Spl transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7. Genomics 1991; 11: 168–173.PubMedCrossRefGoogle Scholar
  61. 59.
    Labuda M, Fujiwara TM, Ross MV, Morgan K, Garcia-Heras J, Ledbetter DH, Hughes MR, Glorieux FH. Two hereditary defects related to vitamin D metabolism map to the same region of human chromosome 12q13–14. J Bone Miner Res 1992; 7: 1447–1453.PubMedCrossRefGoogle Scholar
  62. 60.
    Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O’Malley BW. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science 1988; 242: 1702–1705.PubMedCrossRefGoogle Scholar
  63. 61.
    Pike JW. Vitamin D3 receptors: structure and function in transcription. Annu Rev Nutr 1991; 11: 189–216.PubMedCrossRefGoogle Scholar
  64. 62.
    Pike JW. Molecular mechanisms of cellular response to the vitamin D3 hormone. In: Disorders of Bone and Mineral Metabolism. Coe FL, Favus MJ, eds. New York: Raven, 1992; 163–193.Google Scholar
  65. 62a.
    Miyamoto K, Kesterson RA, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S, Inoue Y, Morita K, Takeda E, Pike JW. Structural organization of the human vitamin D receptor chromosome gene and its promoter. Mol Endocrinol 1997; 11: 1165–1179.PubMedCrossRefGoogle Scholar
  66. 63.
    Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussier MR, Pike JW, Shine J, O’Malley BW. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 1988; 85: 3294–3298.PubMedCrossRefGoogle Scholar
  67. 64.
    Ritchie HH, Hughes MR, Thompson ET, Malloy PJ, Hochberg Z, Feldman D, Pike JW, O’Malley BW. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D3-resistant rickets in three families. Proc Natl Acad Sci USA 1989; 86: 9783–9787.PubMedCrossRefGoogle Scholar
  68. 65.
    Sone T, Scott RA, Hughes MR, Malloy PJ, Feldman D, O’Malley BW, Pike JW. Mutant vitamin D receptors which confer hereditary resistance to 1,25-dihydroxyvitamin D3 in humans are transcriptionally inactive in vitro. J Biol Chem 1989; 264:20, 230–20, 234.Google Scholar
  69. 66.
    Feldman D, Malloy PJ. Hereditary 1,25-dihydroxyvitamin D resistant rickets: molecular basis and implications for the role of 1,25(OH)2D3 in normal physiology. Mol Cell Endocrinol 1990; 72: C57–62.PubMedCrossRefGoogle Scholar
  70. 67.
    Hughes MR, Malloy PJ, O’Malley BW, Pike JW, Feldman D. Genetic defects of the 1,25-dihydroxyvitamin D3 receptor. J Recept Res 1991; 11: 699–716.PubMedGoogle Scholar
  71. 68.
    Malloy PJ, Hochberg Z, Tiosano D, Pike JW, Hughes MR, Feldman D. The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families. J Clin Invest 1990; 86: 2071–2079.PubMedCrossRefGoogle Scholar
  72. 69.
    Malloy PJ, Weisman Y, Feldman D. Hereditary 1 alpha,25-dihydroxyvitamin D-resistant rickets resulting from a mutation in the vitamin D receptor deoxyribonucleic acid-binding domain. J Clin Endocrinol Metab 1994; 78: 313–316.PubMedCrossRefGoogle Scholar
  73. 70.
    Sone T, Marx SJ, Liberman UA, Pike JW. A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3. Mol Endocrinol 1990; 4: 623–631.PubMedCrossRefGoogle Scholar
  74. 71.
    Saijo T, Ito M, Takeda E, Huq AH, Naito E, Yokota I, Sone T, Pike JW, Kuroda Y. A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection. Am J Hum Genet 1991; 49: 668–673.PubMedGoogle Scholar
  75. 72.
    Rut AR, Hewison M, Rowe P, Hughes M, Grant D, O’Riordan JLH. A novel mutation in the steroid binding region of the vitamin D receptor (VDR) gene in hereditary vitamin D resistant rickets (HVDRR). In: Vitamin D: Gene Regulation, Structure-Function Analysis, and Clinical Application. Eighth Workshop on Vitamin D. Norman AW, Bouillon R, Thomasset M, eds. New York: Walter de Gruyter, 1991; 94–95.Google Scholar
  76. 73.
    Yagi H, Ozono K, Miyake H, Nagashima K, Kuroume T, Pike JW. A new point mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor in a kindred with hereditary 1,25dihydroxyvitamin D-resistant rickets. J Clin Endocrinol Metab 1993; 76: 509–512.PubMedCrossRefGoogle Scholar
  77. 74.
    Kristjansson K, Rut AR, Hewison M, O’Riordan JL, Hughes MR. Two mutations in the hormone binding domain of the vitamin D receptor cause tissue resistance to 1,25 dihydroxyvitamin D3. J Clin Invest 1993; 92: 12–16.PubMedCrossRefGoogle Scholar
  78. 75.
    Wiese RJ, Goto H, Prahl JM, Marx SJ, Thomas M, al-Aqeel A, DeLuca HF. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol 1993; 90: 197–201.PubMedCrossRefGoogle Scholar
  79. 76.
    Rut AR, Hewison M, Kristjansson K, Luisi B, Hughes MR, O’Riordan JL. Two mutations causing vitamin D resistant rickets: modelling on the basis of steroid hormone receptor DNA-binding domain crystal structures. Clin Endocrinol 1994; 41: 581–590.CrossRefGoogle Scholar
  80. 77.
    Feldman D, Chen T, Hirst M, Colston K, Karasek M, Cone C. Demonstration of 1,25-dihydroxyvitamin D3 receptors in human skin biopsies. J Clin Endocrinol Metab 1980; 51: 1463–1465.PubMedCrossRefGoogle Scholar
  81. 78.
    Pike JW, Donaldson CA, Marion SL, Haussler MR. Development of hybridomas secreting monoclonal antibodies to the chicken intestinal 1 alpha,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA 1982; 79: 7719–7723.PubMedCrossRefGoogle Scholar
  82. 79.
    Pike JW, Marion SL, Donaldson CA, Haussler MR. Serum and monoclonal antibodies against the chick intestinal receptor for 1,25-dihydroxyvitamin D3. Generation by a preparation enriched in a 64,000-dalton protein. J Biol Chem 1983; 258: 1289–1296.PubMedGoogle Scholar
  83. 80.
    Pike JW. Monoclonal antibodies to chick intestinal receptors for 1,25-dihydroxyvitamin D3. Interaction and effects of binding on receptor function. J Biol Chem 1984; 259: 1167–1173.Google Scholar
  84. 81.
    Dokoh S, Haussler MR, Pike JW. Development of a radioligand immunoassay for 1,25-dihydroxycholecalciferol receptors utilizing monoclonal antibody. Biochem J 1984; 221: 129–136.PubMedGoogle Scholar
  85. 82.
    Pike JW, Dokoh S, Haussler MR, Liberman UA, Marx SJ, Eil C. Vitamin D3-resistant fibroblasts have immunoassayable 1,25-dihydroxyvitamin D3 receptors. Science 1984; 224: 879–881.PubMedCrossRefGoogle Scholar
  86. 83.
    McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 1987; 235: 1214–1217.PubMedCrossRefGoogle Scholar
  87. 84.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487–491.PubMedCrossRefGoogle Scholar
  88. 85.
    Lin NU-T, Malloy PJ, Sakati N, Al-Ashwal A, Feldman D. A novel mutation in the deoxyribnucleic acid-binding domain of the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D resistant rickets. J Clin Endocrinol Metab 1996; 81: 2564–2569.PubMedCrossRefGoogle Scholar
  89. 86.
    Malloy PJ, Hughes MR, Pike JW, Feldman D. Vitamin D receptor mutations and hereditary 1,25dihydroxyvitamin D resistant rickets. In: Vitamin D: Gene Regulation, Structure-Function Analysis, and Clinical Application. Eighth Workshop on Vitamin D. Norman AW, Bouillon R, Thomasset M, eds. New York: Walter de Gruyter, 1991; 116–124.Google Scholar
  90. 87.
    Thompson E, Kristjansson K, Hughes M. Molecular scanning methods for mutation detection: application to the 1,25-dihydroxyvitamin D receptor. Abstracts of the Eighth Workshop on Vitamin D, Paris, France, 1991, p. 6.Google Scholar
  91. 88.
    Van Maldergem L, Bachy A, Feldman D, Bouillon R, Maassen J, Dreyer M, Rey R, Holm C, Gillerot Y. Syndrome of lipoatrophic diabetes, vitamin D resistant rickets, and persistent müllerian ducts in a Turkish boy born to consanguineous parents. Am J Med Genet 1996; 64: 506–513.PubMedCrossRefGoogle Scholar
  92. 89.
    Malloy PJ, Eccleshall TR, Gross C, Van Maldergem L, Bouillon R, Feldman D Hereditary vitamin D resistant rickets caused by a novel mutation in the vitamin D receptor that results in decreased affinity for hormone and cellular hyporesponsiveness. J Clin Invest 1996.Google Scholar
  93. 90.
    Hewison M, Rut AR, Kristjansson K, Walker RE, Dillon MJ, Hughes MR, O’Riordan JL. Tissue resistance to 1,25-dihydroxyvitamin D without a mutation of the vitamin D receptor gene. Clin Endocrinol 1993; 39: 663–670.CrossRefGoogle Scholar
  94. 91.
    Marx SJ, Bliziotes MM, Nanes M. Analysis of the relation between alopecia and resistance to 1,25dihydroxyvitamin D. Clin Endocrinol 1986; 25: 373–381.CrossRefGoogle Scholar
  95. 92.
    Balsan S, Garabedian M, Larchet M, Gorski AM, Cournot G, Tau C, Bourdeau A, Silve C, Ricour C. Long-term nocturnal calcium infusions can cure rickets and promote normal mineralization in hereditary resistance to 1,25-dihydroxyvitamin D. J Clin Invest 1986; 77: 1661–1667.PubMedCrossRefGoogle Scholar
  96. 93.
    Weisman Y, Bab I, Gazit D, Spirer Z, Jaffe M, Hochberg Z. Long-term intracaval calcium infusion therapy in end-organ resistance to 1,25-dihydroxyvitamin D. Am J Med 1987; 83: 984–990.PubMedCrossRefGoogle Scholar
  97. 94.
    Hochberg Z, Tiosano D, Even L. Calcium therapy for calcitriol-resistant rickets. J Pediatr 1992; 121: 803–808.PubMedCrossRefGoogle Scholar
  98. 95.
    Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med 1989; 320: 980–991.PubMedCrossRefGoogle Scholar
  99. 96.
    Walters MR. Newly identified actions of the vitamin D endocrine system. Endocr Rev 1992; 13: 719–764.PubMedGoogle Scholar
  100. 97.
    Bikle DD. Clinical counterpoint: vitamin D: new actions, new analogs, new therapeutic potential. Endocr Rev 1992; 13: 765–784.PubMedGoogle Scholar
  101. 98.
    Darwish H, DeLuca HF. Vitamin D-regulated gene expression. Crit Rev Eukaryot Gene Expr 1993; 3: 89–116.PubMedGoogle Scholar
  102. 99.
    MacDonald PN, Dowd DR, Haussler MR. New insight into the structure and functions of the vitamin D receptor. Semin Nephrol 1994; 14: 101–118.PubMedGoogle Scholar
  103. 100.
    Manolagas SC, Yu XP, Girasole G, Bellido T. Vitamin D and the hematolymphopoietic tissue: a 1994 update. Semin Nephrol 1994; 14: 129–143.PubMedGoogle Scholar
  104. 101.
    Hochberg Z, Borochowitz Z, Benderli A, Vardi P, Oren S, Spirer Z, Heyman I, Weisman Y. Does 1,25-dihydroxyvitamin D participate in the regulation of hormone release from endocrine glands? J Clin Endocrinol Metab 1985; 60: 57–61.PubMedCrossRefGoogle Scholar
  105. 102.
    Even L, Weisman Y, Goldray D, Hochberg Z. Selective modulation by vitamin D of renal response to parathyroid hormone: a study in calcitriol-resistant rickets. J Clin Endocrinol Metab 1996; 81: 2836–2840.PubMedCrossRefGoogle Scholar
  106. 103.
    Etzioni A, Hochberg Z, Pollak S, Meshulam T, Zakut V, Tzehoval E, Keisari Y, Aviram I, Spirer Z, Benderly A, Weisman Y. Defective leukocyte fungicidal activity in end-organ resistance to 1,25dihydroxyvitamin D Pediatr Res 1989; 25: 276–279.PubMedCrossRefGoogle Scholar
  107. 104.
    Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol 1984; 246: E493–498.PubMedGoogle Scholar
  108. 105.
    Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science 1979; 206: 1188–1190.PubMedCrossRefGoogle Scholar
  109. 106.
    Colston K, Hirst M, Feldman D. Organ distribution of the cytoplasmic 1,25-dihydroxycholecalciferol receptor in various mouse tissues. Endocrinology 1980; 107: 1916–1922.PubMedCrossRefGoogle Scholar
  110. 107.
    Weisman Y, Jaccard N, Legum C, Spirer Z, Yedwab G, Even L, Edelstein S, Kaye AM, Hochberg Z. Prenatal diagnosis of vitamin D-dependent rickets, type II: response to 1,25-dihydroxyvitamin D in amniotic fluid cells and fetal tissues. J Clin Endocrinol Metab 1990; 71: 937–943.PubMedCrossRefGoogle Scholar
  111. 108.
    Weisman Y, Malloy PJ, Krishnan AV, Jaccard N, Feldman D, Hochberg Z. Prenatal diagnosis of calcitriol resistant rickets (CRR) by 1,25(OH)2D3 binding, 24-hydroxylase induction and RFLP analysis. Presented at the Ninth Workshop on Vitamin D, Orlando, FL, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Peter J. Malloy
  • David Feldman

There are no affiliations available

Personalised recommendations