Skip to main content

Abstract

If water is the environmental factor that most strongly constrains terrestrial productivity, then nutrients are an important additional factor. The productivity of virtually all natural ecosystems, even arid ecosystems, responds to addition of one or more nutrients, which indicates widespread nutrient limitation. Species differ widely in their ability to acquire nutrients from the soil. Some plants can take up iron, phosphate, or other ions from a calcareous soil from which other species cannot extract enough nutrients to persist. In other soils, the concentration of aluminum, heavy metals, or sodium chloride may reach toxic levels, but some species have genetic adaptations that enable them to survive in such environments. This does not mean that metallophytes need high concentrations of heavy metals or that halophytes require high salt concentrations to survive. These species perform well in the absence of these adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  • Adams, M.A. & Pate, J.S. (1992) Availability of organic and inorganic forms of phosphorus to lupins(Lupinus spp.). Plant Soil 145:107–113.

    Article  Google Scholar 

  • Aerts, R. (1989) Nitrogen use efficiency in relation to nitrogen availability and plant community composition. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 285–297.

    Google Scholar 

  • Aerts, R. (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397.

    Google Scholar 

  • Aerts, R. (1995) The advantages of being evergreen. Trends Ecol. Evol. 10:402–407.

    Article  PubMed  CAS  Google Scholar 

  • Aerts, R. (1996) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 84:597–608.

    Article  Google Scholar 

  • Andrews, M. (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ. 9:511–519.

    CAS  Google Scholar 

  • Albuzzio, A. & Ferrari, G. (1989) Modulation of the molecular size of humic substances by organic acids of the root exudates. Plant Soil 113:237–241.

    Article  Google Scholar 

  • Arianoutsou, M., Rundel, P.W., & Berry, W.L. (1993) Serpentine endemics as biological indicators of soil elemental concentrations. In: Plants as biomonitors, B. Markert (ed). VCH Weinheim, New York, pp. 179–189.

    Google Scholar 

  • Armstrong, W. (1982) Waterlogged soils. In: Environment and plant ecology, J.R. Etherington (ed). John Wiley & Sons, New York, pp. 290–330.

    Google Scholar 

  • Aslam, M., Travis, R.L., & Rains, D.W. (1996) Evidence for substrate induction of a nitrate efflux system in barley roots. Plant Physiol. 112:1167–1175.

    PubMed  CAS  Google Scholar 

  • Atkin, O.K. (1996) Reassessing the nitrogen relations of arctic plants: A mini-review. Plant Cell Environ. 19:695–704.

    Article  Google Scholar 

  • Ball, M.C. (1988) Ecophysiology of mangroves. Trees 2:129–142.

    Article  Google Scholar 

  • Barber, S.A. (1984) Soil nutrient bioavailability. John Wiley & Sons, New York.

    Google Scholar 

  • Barkla, B.J., Zingarelli, L., Blumwald, E., & Smith, A.C. (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plantMesembryanthemum crystallinum. Plant Physiol. 109:549–556.

    PubMed  CAS  Google Scholar 

  • Bates, T.R. & Lynch, J.P. (1996) Stimulation of root hair elongation inArabidopsis thaliana by low phosphorus availability. Plant Cell Environ. 19:529–538.

    Article  CAS  Google Scholar 

  • Berendse, F. & Aerts, R. (1987) Nitrogen-use efficiency: A biologically meaningful definition? Funct. Ecol. 1:293–296.

    Google Scholar 

  • Berendse, F. & Elberse, W.T. (1989) Competition and nutrient losses from the plant. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 269–284.

    Google Scholar 

  • Bienfait, H.F. (1985) Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J. Bioenerget. Biomembr. 17:73–83.

    Article  CAS  Google Scholar 

  • Bloom, A.J., Sukrapanna, S.S., & Warner, R.L. (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99:1294–1301.

    Article  PubMed  CAS  Google Scholar 

  • Boerner, R.E.J. (1985) Foliar nutrient dynamics, growth, and nutrient use efficiency ofHamamelis virginiana in three forest microsites. Can. J. Bot. 63:1476–1481.

    Article  Google Scholar 

  • Bolan, N.S., Hedley, M.J., & White, R.E. (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134:53–63.

    Article  CAS  Google Scholar 

  • Borstlap, A.C. (1983) The use of model-fitting in the interpretation of “dual” uptake isotherms. Plant Cell Environ. 6:407–416.

    Article  Google Scholar 

  • Brouwer, R. (1962) Nutritive influences on the distribution of dry matter in the plant. Neth. J. Agric. Sci.10:399–408.

    Google Scholar 

  • Brune, A., Urbach, W., Dietz, K.-J. (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ. 17:153–162.

    Article  CAS  Google Scholar 

  • Cakmak, I., Sari, N., Marschner, H., Ekiz, H., Kalayci, M., Yilmaz, A., & Braun, H.J. (1996) Phytosiderophore release in bread wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189.

    Article  CAS  Google Scholar 

  • Campbell, W.H. (1996) Nitrate reductase biochemistry comes of age. Plant Physiol. 111:355–361.

    PubMed  CAS  Google Scholar 

  • Chapin III, F.S. (1974) Morphological and physiological mechanisms of temperature compensation in phosphate absorption along a latitudinal gradient. Ecology 55:1180–1198.

    Article  CAS  Google Scholar 

  • Chapin III, F.S. (1980) The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:233–260.

    Article  CAS  Google Scholar 

  • Chapin III, F.S. (1988) Ecological aspects of plant mineral nutrition. Adv. Min. Nutr. 3:161–191.

    Google Scholar 

  • Chapin III, F.S. (1991) Effects of multiple environmental stresses on nutrient availability and use. In: Response of plants to multiple stresses, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 67–88.

    Chapter  Google Scholar 

  • Chapin III, F.S. & Bloom, A. (1976) Phosphate absorption: Adaptation of tundra graminoids to a low temperature, low phosphorus environment. Oikos 27:111–121.

    Article  CAS  Google Scholar 

  • Chapin III, F.S., Fetcher, N., Kielland, K., Everett, K.R., & Linkins, A.E. (1988) Productivity and nutrient cycling of Alaskan tundra: Enchancement by flowing soil water. Ecology 69:693–702.

    Article  Google Scholar 

  • Chapin III, F.S., Moilanen, L., & Kielland, K. (1993) Preferential use of organic nitrogen for growth by non-mycorrhizal arctic sedge. Nature 361:150–153.

    Article  CAS  Google Scholar 

  • Chapin III, F.S. & Slack, M. (1979) Effect of defoliation upon root growth, phosphate absorption, and respiration in nutrient-limited tundra graminoids. Oecologia 42:67–79.

    Google Scholar 

  • Chapin III, F.S. & Kedrowski, R.A. (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–391.

    Article  CAS  Google Scholar 

  • Chapin III, F.S. & Moilanen, L. (1991) Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709–715.

    Article  Google Scholar 

  • Chapin III, F.S., Johnson, D.A., & McKendrick, J.D. (1980) Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: Implications for herbivory. J. Ecol. 68:189–209.

    Article  CAS  Google Scholar 

  • Chapin III, F.S., Moilanen, L., & Kielland, K. (1993) Preferential use of organic nitrogen for growth by nonmycorrhizal arctic sedge. Nature 361:150–153.

    Article  CAS  Google Scholar 

  • Clarholm, M. (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17:181–187.

    Article  CAS  Google Scholar 

  • Clarkson, D.T. (1981) Nutrient interception and transport by root systems. In: Physiological factors limiting plant productivity, C.B. Johnson (ed). Butterworths, London, pp. 307–314.

    Google Scholar 

  • Clarkson, D.T. (1985) Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant Physiol. 36:77–115.

    Article  CAS  Google Scholar 

  • Clarkson, D.T. (1996) Root structure and sites of ion uptake. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki, (eds). Marcel Dekker, Inc., New York, pp. 483–510.

    Google Scholar 

  • Clarkson, D.T., Lüttge, U., & Kuiper, P.J.C. (1986) Mineral nutrition: Sources of nutrients for land plants from outside the pedosphere. Prog. Bot. 48:80–96.

    Article  CAS  Google Scholar 

  • Clement, C.R., Hopper, M.J., Jones, L.H.P., & Leafe, E.L. (1978) The uptake of nitrate byLolium perenne from flowing nutrient solution. II. Effect of light, defoliation, and relationship to CO2 flux. J. Exp. Bot. 29:1173–1183.

    Article  CAS  Google Scholar 

  • De Boer, A.H. (1985) Xylem/symplast ion exchange: Mechanism and function in salt-tolerance and growth. PhD Thesis, University of Groningen, Groningen, the Netherlands.

    Google Scholar 

  • De Boer, A.H. & Wegner, L.H. (1997) Regulatory mechanisms of ion channels in xylem parenchyma cells. J. Exp. Bot. 48:441–449.

    Article  PubMed  Google Scholar 

  • Deina, S., Gessa, C., Manunza, B., Marchetti, M., & Usai, M. (1992) Mechanism and stoichiometry of the redox reaction between iron(III) and caffeic acid. Plant Soil 145:287–294.

    Article  Google Scholar 

  • del Arco, J.M., Escudero, A., & Garrido, M.V. (1991) Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72:701–708.

    Article  Google Scholar 

  • Delhaize, E. & Ryan, P.R. (1995) Aluminium toxicity and tolerance in plants. Plant Physiol. 107:315–321.

    PubMed  CAS  Google Scholar 

  • Delhaize, E., Ryan, P.R., & Randall (1993) Aluminium tolerance in wheat(Triticum aestivum L.). II. Aluminiumstimulated excretion of malic acid from root apices. Plant Physiol. 103:695–702.

    PubMed  CAS  Google Scholar 

  • Demars, B.G. & Boerner, R.E.J. (1997) Foliar nutrient dynamics and resorption in naturalizedLonicera maackii (Caprifoliaceae) populations in Hhio, USA. Am. J. Bot. 84:112–117.

    Article  Google Scholar 

  • De Silva, D.L.R., Hetherington, A.M., & Mansfield, T.A. (1996) Where does all the calcium go? Evidence of an important regulatory role for trichomes in two calcicoles. Plant Cell. Environ. 19:880–886.

    Article  Google Scholar 

  • De Vos, C.H.R., Vooijs, R., Schat, H., & Ernst, W.H.O. (1989) Copper-induced damage to the permeability barrier in roots ofSilene cucubalus. J. Plant Physiol. 135:165–169.

    Google Scholar 

  • Diaz, S.A., Grime, J.P., Harris, J., & McPherson, E. (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617.

    Article  CAS  Google Scholar 

  • Dinkelaker, B., Römheld, V., & Marschner, H. (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin. Plant Cell Environ. 12:285–292.

    Article  CAS  Google Scholar 

  • Dinkelaker, B., Hengeler, C., & Marschner, H. (1995) Distribution and function of proteoid roots and other root clusters. Bot. Acta 108:183–200.

    Google Scholar 

  • Drew, M.C. (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 75:479–490.

    Article  CAS  Google Scholar 

  • Drew, M.C. & Saker, L.R. (1978) Nutrient supply and the growth of the seminal root system in barley. III. Compensatory increase in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot. 29:435–451.

    Article  CAS  Google Scholar 

  • Drew, M.C., Saker, L.R., & Ashley, T.W. (1973) Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J. Exp. Bot. 24:1189–1202.

    Article  CAS  Google Scholar 

  • Erskine, P.D., Stewart, G.R., Schmidt, S., Turnbull, M.H., Unkovich, M.H., & Pate, J.S. (1996) Water availability-a physiological constraint on nitrate utilization in plants of Australian semi-arid mulga woodlands. Plant Cell Environ. 19:1149–1159.

    Article  CAS  Google Scholar 

  • Esau, K. (1977) Anatomy of seed plants. 2nd edition. John Wiley & Sons, New York.

    Google Scholar 

  • Eviner, V.T. & Chapin III, F.S. (1997) Plant-microbial interactions. Nature 385:26–27.

    Article  CAS  Google Scholar 

  • Flowers, T.J., Troke, P.F., & Yeo, A.R. (1977) The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28:89–121.

    Article  CAS  Google Scholar 

  • Gardner, W.K. & Boundy, K.A. (1983) The acquisition of phosphorus byLupinus albus L.: 4 The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil 70:391–402.

    Article  CAS  Google Scholar 

  • Gardner, W.K., Parbery, D.G., & Barber, D.A. (1981) Proteoid root morphology and function inLupinus albus. Plant Soil 60:143–147.

    Article  CAS  Google Scholar 

  • Gardner, W.K., Parbery, D.G., & Barber, D.A. (1982) The acquisition of phosphorus byLupinus albus L. I. Some characteristics of the soil/root interface. Plant Soil 67:19–32.

    Article  Google Scholar 

  • Garten, C.T. Jr. (1976) Correlations between concentrations of elements in plants. Nature 261:686–688.

    Article  CAS  Google Scholar 

  • Gersani, M. & Sachs, T. (1992) Development correlations between roots in heterogeneous environments. Plant Cell Environ. 15:463–469.

    Article  Google Scholar 

  • Godbold, D.L., Horst, W.J., Marschner, H., & Collins, J.C. (1983) Effect of high zinc concentrations on root growth and zinc uptake in two ecotypes ofDeschampsia caespitosa differing in zinc tolerance. In: Root ecology and its practical application, W. Böhm, L. Kutschera, & E. Lichtentegger (eds). Bundesanstalt für alpenländische Landwirtscaft, Gumpenstein, pp. 165–172.

    Google Scholar 

  • Guerinot, M.L. & Yi, Y. (1994) Iron: Nutritious, noxious, and not readily available. Plant Physiol. 104:815–820.

    PubMed  CAS  Google Scholar 

  • Gutierrez, F.R. & Whitford, W.G. (1987) Chihuahuan desert annuals: Importance of water and nitrogen. Ecology 68:2032–2045.

    Article  Google Scholar 

  • Hairiah, K., Stulen, I., & Kuiper, P.J.C. (1990) Aluminium tolerance of the velvet beansMucuna pruriens var.utilis and M.deeringiana. I. Effects of aluminium on growth and mineral composition. In: Plant nutritionPhysiology and applications, M.L. van Beusichem (ed). Kluwer Academic Publishers, Dordrecht, pp. 365–374.

    Chapter  Google Scholar 

  • Harper, S.M., Edwards, D.G., Kerven, G.L., & Asher, C.J. (1995) Effects of organic acid fractions extracted fromEucalyptus camaldulensis leaves on root elongation of maize(Zea mays) in the presence and absence of aluminium. Plant Soil 171:189–192.

    Article  CAS  Google Scholar 

  • Harrison, A.F. & Helliwell, D.R. (1979) A bioassay for comparing phosphorus availability in soils. J. Appl. Ecol. 16:497–505.

    Article  CAS  Google Scholar 

  • Häussling, M. & Marschner, H. (1989) Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce(Picea abies (L.) Karst.) trees. Biol. Fertil. Soils 8:128–133.

    Article  Google Scholar 

  • Hedin, L.O., Granat, L., Likens, G.E., Buishand, A., Galloway, J.N., Butler, T.J., & Rodhe, H. (1994) Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367:351–354.

    Article  CAS  Google Scholar 

  • Higginbotham, N., Etherton, B., & Foster, R.J. (1967) Mineral ion contents and cell transmembrane electropotentials of pea and oat seedling tissue. Plant Physiol. 43:37–46.

    Article  Google Scholar 

  • Hobbie, S.E. (1992) Effects of plant species on nutrient cycling. Trends Ecol. Evolu. 7:336–339.

    Article  CAS  Google Scholar 

  • Horst, W.J. & Waschkies, C. (1987) Phosphatversorgerung von Sommerweizen(Triticum aestivum L.) in Mischkultur mit Weiszer Lupine(Lupinus albus L.). Z. PflanzenernShr. Bodenk. 150:1–8.

    Article  Google Scholar 

  • Hoffland, E. (1991) Mobilization of rock phosphate by rape(Brassica napus). PhD Thesis, Wageningen Agricultural University, Wageningen, the Netherlands.

    Google Scholar 

  • Hoffland, E., Findenegg, G.R., & Nelemans, J.A. (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113:161–165.

    Article  CAS  Google Scholar 

  • Hoffland, E., Bloemhof, H.S., Leffelaar, P.A., Findenegg, G.R., & Nelemans, J.A. (1990a) Simulation of nutrient uptake by a growing root system considering increasing root density and inter-root competition. Plant Soil 124:149–155.

    Article  CAS  Google Scholar 

  • Hoffland, E., Findenegg, G.R., Leffelaar, P.A., & Nelemans, J.A. (1990b). Use of a simulation model to quantify the amount of phosphate released from rock phosphate by rape. Transactions of the 14th International Congress of Soil Science (Kyoto) II, pp. 170–175.

    Google Scholar 

  • Huang, C.X. & Van Steveninck, R.F.M. (1989) Maintenance of low Cl-concentrations in mesophyll cells of leaf blades of barely seedlings exposed to salt stress. Plant Physiol. 90:1440–1443.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J.W., Pellet, D.M., Papernik, L.A., & Kochian, L.V. (1996) Aluminium interactions with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminium-sensitive and -resistant wheat cultivars. Plant Physiol. 110:561–569.

    Article  PubMed  CAS  Google Scholar 

  • Huang, N.-C., Chiang, C.-S., Crawford, N.M., & Tsay, Y.F. (1996)Chll encodes a component of the low-affinity nitrate uptake system inArabidopsis and shows cell type-specific expression in roots. Plant Cell 8:2183–2191.

    PubMed  CAS  Google Scholar 

  • Hübel, F. & Beck, F. (1993) In-situ determination of the Prelations around the primary root of maize with respect to inorganic and phytate-P. Plant Soil 157:1–9.

    Google Scholar 

  • Huber, S.C., Bachman, M., & Huber, J.L. (1996) Post-translational regulation of nitrate reductase activity: A role for Ca and 14–3–3 proteins. Trend Plant Sci. 1:432–438.

    Article  Google Scholar 

  • Hungate, B.A. (1998) Ecosystem responses to rising atmospheric CO2: Feedbacks through the nitrogen cycle. In: Interactions of elevated CO2 and environmental stress, J. Seeman & Y. Luo (eds). Academic Press, San Diego, in press.

    Google Scholar 

  • Ingestad, T. (1979) Nitrogen stress in birch seedlings II. N, P, Ca and Mg nutrition. Physiol. Plant. 52:454–466.

    Article  Google Scholar 

  • Ingestad, T. & Ågren, G.I. (1988) Nutrient uptake and allocation at steady-state nutrition. Physiol. Plant. 72:450–459.

    Article  CAS  Google Scholar 

  • Israel, D.W. (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 84:835–840.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, P.J., Delhaize, E., & Kuske, C.R. (1992) Biosynthesis and metabolic roles of cadystins (γ-EC)nG and their precursors inDatura innoxia. Plant Soil 146:281–289.

    Article  CAS  Google Scholar 

  • Jenny, H. (1980) The soil resources. Origin and behavior. Springer-Verlag, New York.

    Book  Google Scholar 

  • Johnson, J.F., Allan, D.L., & Vance, C.P. (1994) Phosphorus stress-induced proteoid roots show altered metabolism inLupinus albus. Plant Physiol. 104:657–665.

    PubMed  CAS  Google Scholar 

  • Johnson, J.F., Allan, D.L., Vance, C.P., & Weiblen, G. (1996a) Root carbon dioxide fixation by phosphorusdeficientLupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiol. 112: 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J.F., Vance, C.P., & Allan, D.L. (1996b) Phosphorus deficiency inLupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol. 112:31–41.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M.N., Reynolds, R.C., & Likens, G.E. (1972) Atmospheric sulfur: Its effect on the chemical weathering of New England. Science 177:514–515.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D.L. & Kochian, L.V. (1996) Aluminium inhibition of the inositol, 1,4,5-triphosphate signal transduction pathway in wheat roots: A role in aluminium toxicity. Plant Cell 7:1913–1922.

    Google Scholar 

  • Jones, D.L., Darrah, P.R., & Kochian, L.V. (1996a) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in iron uptake. Plant Soil 180:57–66.

    Article  CAS  Google Scholar 

  • Jones, D.L., Prabowo, A.M., & Kochian, L.V. (1996b) Kinetics of malate transport and decomposition in acid soils and isolated bacterial populations: The effects of microorganisms on root exudation of malate under Al stress. Plant Soil 182:239–247.

    CAS  Google Scholar 

  • Jungk, A.O. (1996) Dynamics of nutrient movement at the soil-root interface. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki, (eds). Marcel Dekker, Inc., New York, pp. 529–556.

    Google Scholar 

  • Kaiser, W.M. & Huber, S.C. (1994) Posttranslational regulation of nitrate reductase in higher plants. Plant Physiol. 106:817–821.

    PubMed  CAS  Google Scholar 

  • Keerthisinghe, G., Hocking, P., Ryan, P.R., & Delhaize, E. (1998). Proteoid roots of lupin(Lupinus albus L.): Effect of phosphorus supply on formation and spatial variation in citrate efflux and enzyme activity. Plant Cell Environ., in press.

    Google Scholar 

  • Keltjens, W.G. & Tan, K. (1993) Interactions between aluminium, magnesium and calcium with different monocotyledonous and dicotyledonous plant species Plant Soil 155/156:485–488.

    Article  Google Scholar 

  • Kielland, K. (1994) Amino acid absorption by Arctic plants: Implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383.

    Article  Google Scholar 

  • Killingbeck, K.T. (1996) Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727.

    Article  Google Scholar 

  • King, B.J., Siddiqui, N.Y., Ruth, T.J., Warner, R.L., & Glass, A.D.M. (1993) Feedback regulation of nitrate influx in barley roots by nitrate, nitrite, and ammonium. Plant Physiol. 102:1279–1286.

    PubMed  CAS  Google Scholar 

  • Kinraide, T.B. (1993) Aluminium enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. Physiol. Plant. 88:619–625.

    Article  CAS  Google Scholar 

  • Kochian, L. (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:237–260.

    Article  CAS  Google Scholar 

  • Koerselman, W. & Meuleman, A.F.M. (1996) The vegetation N : P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33:1441–1450.

    Article  Google Scholar 

  • Krämer, U., Cotter-Howels, J.D., Charnock, J.M., Baker, A.J.M., & Smith, J.A. (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638.

    Article  Google Scholar 

  • Kroehler, C.J. & Linkins, A.E. (1991) The absorption of inorganic phosphate from32P-labelled inositol hexaphosphate byEriophorum vaginatum. Oecologia 85:424–428.

    Article  Google Scholar 

  • Kronzucker, H.J., Siddiqui, M.Y., & Glass, A.D.M. (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61.

    Article  CAS  Google Scholar 

  • Krupa, Z., Oquist, G., & Huner, N.P.A. (1993) The effect of cadmium on photosynthesis ofPhaseolus vulgaris-a fluorescence analysis. Physiol. Plant. 88:626–630.

    Article  CAS  Google Scholar 

  • Kuiper, P.J.C. (1968) Ion transport characteristics of grape root lipids in relation to chloride transport. Physiol. Plant. 65:245–250.

    Google Scholar 

  • Lacan, D. & Durand, N. (1994) Na+ and K+ transport in excised soybean roots. Physiol. Plant. 93:132–138.

    Article  Google Scholar 

  • Lamont, B. (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot. Rev. 48:597–689.

    Article  CAS  Google Scholar 

  • Lamont, B. (1993) Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia. Plant Soil 155 / 156:269–272.

    Article  Google Scholar 

  • Lasat, M.M., Baker, A.J.M., & Kochian, L.V. (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species ofThlaspi. Plant Physiol. 112:1715–1722.

    PubMed  CAS  Google Scholar 

  • LeNoble, M.E., Blevins, D.G., Sharp, R.E., & Cumbie, B.G. (1996a) Prevention of aluminium toxicity with supple mental boron. I. Maintenance of root elongation and cellular structure. Plant Cell Environ. 19:1132–1142.

    Article  CAS  Google Scholar 

  • LeNoble, M.E., Blevins, D.G., & Miles, R.J. (1996b) Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, highaluminium subsoil. Plant Cell Environ. 19:1143–1148.

    Article  CAS  Google Scholar 

  • Li, X.Z. & Oaks, A. (1993) Induction and turnover of nitrate reductase inZea mays. Influence of NO3 -. Plant Physiol. 102:1251–1257.

    PubMed  CAS  Google Scholar 

  • Lipton, D.S., Blanchar, R.W., & Blevins, D.G. (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressedMedicago sativa L. seedlings. Plant Physiol. 85:315–317.

    Article  PubMed  CAS  Google Scholar 

  • Lolkema, P.C., Doornhof, M., & Ernst, W.H.O. (1986) Interaction between a copper-tolerant and a copper-sensitive population ofSilene cucubalus. Physiol. Plant. 67:654–658.

    Article  CAS  Google Scholar 

  • Loneragan, J.F. (1968) Nutrient requirements of plants. Nature 220:1307–1308.

    Article  PubMed  CAS  Google Scholar 

  • Loveless, A.R. (1961) A nutritional interpretation of sclerophylly based on differences in chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25:168–184.

    CAS  Google Scholar 

  • Ma, J.F. & Nomoto, K. (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mucigeneic acids as phytosiderophores. Physiol. Plant. 97:609–617.

    Article  CAS  Google Scholar 

  • Macfie, S.M. & Taylor, G.J. (1992) The effect of excess manganese on photosynthetic rate and concentration of chlorophyll inTriticum aestivum grown in solution culture. Physiol. Plant. 85:467–475.

    Article  CAS  Google Scholar 

  • Macklon, A.E.S., Mackie-Dawson, L.A., Sim, A., Shand, C.A., & Lilly, A. (1994) Soil P resources, plant growth and rooting characteristics in nutrient poor upland grasslands. Plant Soil 163:257–266.

    Article  CAS  Google Scholar 

  • Marschner, H. (1983) General introduction to the mineral nutrition of plants. In: Encyclopedia of plant physiology, N.S., Vol 15A, A. Läuchli & R.L. Bieleski (eds). Springer-Verlag, Berlin, pp. 5–60.

    Google Scholar 

  • Marschner, H. (1991a) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki, (eds). Marcel Decker, Inc., New York, pp. 503–528.

    Google Scholar 

  • Marschner, H. (1991b) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20.

    CAS  Google Scholar 

  • Marschner, H. (1995) Mineral nutrition of higher plants. 2nd edition. Academic Press, London.

    Google Scholar 

  • Marschner, H. & Römheld, V. (1996) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Decker, Inc., New York, pp. 557–580.

    Google Scholar 

  • Martins-Louçao, M. & Cruz, C. (1998) The role of nitrogen source in carbon balance. In: Modes of nitrogen nutrition in higher plants, H.S. Srivastava (ed). Associated Publishing Company, in press.

    Google Scholar 

  • McNaughton, S.J. & ChapinIII, F.S. (1985) Effects of phosphorus nutrition and defoliation on C4 graminoids from the Serengeti Plains. Ecology 66:1617–1629.

    Article  Google Scholar 

  • Meerts, P. (1997) Foliar macronutrient concentrations of forest understorey species in relation to Ellenberg’s indices and potential relative growth rate. Plant Soil 189:257–265.

    Article  CAS  Google Scholar 

  • Mistrik, I. & Ullrich, C.I. (1996) Mechanism of anion uptake in plant roots: Quantitative evaluation of H+ / NO3 - and H+/H2PO4 - stoichiometries. Plant Physiol. Biochem. 34:621–627.

    Google Scholar 

  • Murphy, A. & Taiz, L. (1995) Comparison of metallothionein gene expression and nonprotein thiols in tenArabidopsis ecotypes. Plant Physiol. 109:945–954.

    Article  PubMed  CAS  Google Scholar 

  • Nair, V.D. & Prenzel, J. (1978) Calculations of equilibrium concentration of mono- and polynuclear hydroxyaluminium species at different pH and total aluminium concentrations. Z. PflanzenernShr. Bodenk. 141:741–751.

    Article  CAS  Google Scholar 

  • Nambiar, I.K.S. (1987) Do nutrients retranslocate from fine roots? Can. J. For. Res. 17:913–918.

    Article  Google Scholar 

  • Nambiar, I.K.S. & Fife, D.N. (1987) Growth and nutrient retranslocation in needles of radiata pine in relation to nitrogen supply. Ann. Bot. 60:147–156.

    Google Scholar 

  • Oland, K. (1963) Changes in the content of dry matter and major nutrient elements of apple foliage during senescence and abscission. Physiol. Plant. 16:682–694.

    Article  CAS  Google Scholar 

  • Oscarson, P., Ingemarsson, B., af Ugglas, M., & Larsson, C.-M. (1987) Short-term studies of NO3 - uptake inPisum using13N03-. Planta 170:550–555.

    Article  CAS  Google Scholar 

  • Paul, E.A. & Clark, F.E. (1989) Soil microbiology and biochemistry. Academic Press, San Diego.

    Google Scholar 

  • Pitman, M.G. & Lüttge, U (1983) The ionic environment and plant ionic relations. In: Encyclopedia of plant physiology, N.S., Vol 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 5–34.

    Google Scholar 

  • Pons, T.L., Van der Werf, A., & Lambers, H. (1994) Photosynthetic nitrogen use efficiency of inherently slow- and fast-growing species: Possible explanations for observed differences. In: A whole-plant perspective of carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, pp. 61–77.

    Google Scholar 

  • Poorter, H., Remkes, C., & Lambers, H. (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Phvsiol. 94:621–627.

    Article  CAS  Google Scholar 

  • Popp, M. (1995) Salt resistance in herbaceous halophytes and mangroves. Prog. Bot. 56:416–429.

    Article  CAS  Google Scholar 

  • Powell, C.L. (1974) Effect of P-fertilizer on root morphology and P-uptake ofCarex coriacea. Plant Soil 41:661–667.

    Article  Google Scholar 

  • Pugnaire, F.I. & Chapin III, F.S. (1993) Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74:124–129.

    Article  Google Scholar 

  • Raaimakers, T.H.M.J. (1995) Growth of tropical rainforest trees as dependent on P-availability. Tree saplings differing in regeneration strategy and their adaptations to a low phosphorus environment in Guyana. PhD Thesis, Utrecht University, Utrecht, the Netherlands.

    Google Scholar 

  • Rauser, W.E. (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol. 109:1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Redfield, A.C. (1958) The biological control of chemical factors in the environment. Am. Scient. 46:205–221.

    CAS  Google Scholar 

  • Reich, P.B., Walters, M.B., & Ellsworth, D.S. (1992) Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62:365–392.

    Article  Google Scholar 

  • Reich, P.B., Ellsworth, D.S., & Uhl, C. (1995) Leaf carbon and nutrient assimilation and conservation in species of differening succesional status in an oligotrophic Amazonian forest. Funct. Ecol. 9:65–76.

    Article  Google Scholar 

  • Rengel, Z. (1992a) The role of calcium in salt toxicity. Plant Cell Environ. 15:625–632.

    Article  CAS  Google Scholar 

  • Rengel, Z. (1992b) Disturbance of cell Ca2+ homeostasis as a primary trigger of Al toxicity syndrome. Plant Cell Environ. 15:931–938.

    Article  CAS  Google Scholar 

  • Reuss, J.O. & Johnson, D.W. (1986) Acid Deposition and the Acidification of Soils and Waters. Springer-Verlag, New York.

    Book  Google Scholar 

  • Reynolds, H.L. & D’Antonio, C. (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen. Opinion. Plant Soil 185:75–97.

    Article  CAS  Google Scholar 

  • Richardson, A.E. (1994) Soil microorganisms and phosphorus availability. In: Soil Biota. Management in sustainable farming systems, C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta, & P.R. Grace (eds). CSIRO, East Melbourne, pp. 50–62.

    Google Scholar 

  • Robinson, D. (1994) The responses of plants to nonuniform supplies of nutrients. New Phyol. 127:635–674.

    Article  CAS  Google Scholar 

  • Robinson, D. (1996) Variation, co-ordination and compensation in root systems in relation to soil variabbility. Plant Soil 187:57–66.

    Article  CAS  Google Scholar 

  • Römheld, V. (1987) Different strategies for iron acquisition in higher plants. Physiol. Plant. 70:231–234.

    Article  Google Scholar 

  • Ryan, P.R. & Kochian, L.V. (1993) Aluminium differentially inhibits calcium uptake into the root apex of nearisogenic lines of wheat. A possible mechanism of toxicity. Plant Physiol. 102:975–982.

    PubMed  CAS  Google Scholar 

  • Ryan, P.R., Kinraide, T.B., & Kochian, L.V. (1994) A13+Ca2+ interactions in aluminium rhizotoxicity. I. Inhibition of root growth is not caused by reduction of calcium uptake. Planta 192:98–103.

    CAS  Google Scholar 

  • Ryan, P.R., Delhaize, E., & Randall, P.J. (1995) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust. J. Plant Physiol. 22:531–536.

    Article  CAS  Google Scholar 

  • Salt, D.E. & Rauser, W.E. (1995) MGATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107:1293–1301.

    PubMed  CAS  Google Scholar 

  • Salt, D.E., Blaylock, M., Kumar, P.B.A.N., Dushenkov, V., Ensley, B.D., Chet, I., & Raskin, I. (1995a) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474.

    Article  PubMed  CAS  Google Scholar 

  • Salt, D.E., Prince, R.C., Pickering, I.J., & Raskin, I. (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109:1427–1433.

    PubMed  CAS  Google Scholar 

  • Scholz, G., Becker, R., Pich, A., & Stephan, U. W.(1992) Nicotinamine-a common constituent of strategies I and II of iron acquisition by plants: A review. J. Plant Nutr. 15:1647–1665.

    Article  CAS  Google Scholar 

  • Shaver, G.R. & Chapin III, F.S. (1991) Production: Biomass relationships and element cycling in contrasting arctic vegetation types. Ecol. Monogr. 61:1–31.

    Article  Google Scholar 

  • Shone, M.G.T., Clarkson, D.T., & Sanderson, J. (1969) The absorption and translocation of sodium by maize seedlings. Planta 86:301–314.

    Article  CAS  Google Scholar 

  • Shriner, D.S. & Johnston Jr., J.W. (1985) Acid rain interactions with leaf surfaces: A review. In: Acid deposition: Environmental, economic, and policy Issues, D.D. Adams & W.P Page (eds). Plenum Publishing Corporation, New York, pp. 241–253.

    Chapter  Google Scholar 

  • Siddiqi, M.Y., Glass, A.D.M., & Ruth, T.J. & Rufty, T.W. (1990) Studies of the nitrate uptake system in barley. I. Kinetics of13NO3 - influx. Plant Physiol. 93:1426–1432.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi, M.Y., Glass, A.D.M., & Ruth, T.J. (1991) Studies of the uptake of nitrate in barley. III. Compartmentation of NO3-. J. Exp. Bot. 42:1455–1463.

    Article  CAS  Google Scholar 

  • Smart, C.J., Garvin, D.F., Prince, J.P., Lucas, W.J., & Kochian, L.V. (1996) The molecular basis of potassium nutrition. Plant Soil 187:81–89.

    Article  CAS  Google Scholar 

  • Smirnoff, N. & Stewart, G.R. (1985) Nitrate assimilation and translocation by higher plants: Comparative physiology and ecological consequences. Physiol. Plant. 64:133–140.

    Article  CAS  Google Scholar 

  • Smirnoff, N., Todd, P., & Stewart, G.R. (1984) The occurrence of nitrate reduction in the leaves of woody plants. Ann. Bot. 54:363–374.

    CAS  Google Scholar 

  • Smith, F.W., Ealing, P.M., Hawkesford, M.J., & Clarkson, D.T. (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc. Natl. Acad. Sci. USA 92:9373–9377.

    Article  PubMed  CAS  Google Scholar 

  • Stark, J.M. & Hart, S.C. (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous ecosystems. Nature 385:61–64.

    Article  CAS  Google Scholar 

  • Staal, M., Maathuis, F.J.M., Elzenga, T.J.M., Overbeek, J.H.M., & Prins, H.B.A. (1991) Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerantPlantago maritima and the salt-sensitivePlantago media. Physiol. Plant. 82:179–184.

    Article  CAS  Google Scholar 

  • Stark, J.M. & Hart, S.C. (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous ecosystems. Nature 385:61–64.

    Article  CAS  Google Scholar 

  • Ström, L., Olsson, T., & Tyler, G. (1994) Differences between calcifuge and acidifuge plants in root exudation of low-molecular organic acids. Plant Soil 167:239–245.

    Article  Google Scholar 

  • Tarafdar, J.C. & Jungk, A. (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fert. Soils 3:199–204.

    Article  CAS  Google Scholar 

  • Ter Steege, M. (1996) Regulation of nitrate uptake in a whole plant perspective. PhD thesis, University of Groningen, the Netherlands.

    Google Scholar 

  • Thomas, W.A. & Grigal, D.F. (1976) Phosphorus conservation by evergreenness of mountain laurel. Oikos 27:19–26.

    Article  CAS  Google Scholar 

  • Tilton, D.L. (1977) Seasonal growth and foliar nutrients ofLarix laricina in three wetland ecosystems. Can. J. Bot. 55:1291–1298.

    Article  CAS  Google Scholar 

  • Touraine, B., Clarkson, D.T., & Muller, B. (1994) Regulation of nitrate uptake at the whole plant level. In: A whole-plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, pp. 11–30.

    Google Scholar 

  • Trueman, L.J., Richardson, A., & Forde, B.G. (1996a) Molecular cloning of higher plant homologues of the high-affinity nitrate transporters ofChlamydomonas reinhardtii andAspergillus nidulans. Gene 175:223–231.

    Article  PubMed  CAS  Google Scholar 

  • Trueman, L.J., Onyeocha, I., & Forde, B.G. (1996b) Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters. Plant Physiol. Biochem. 34:621–627.

    CAS  Google Scholar 

  • Tukey Jr., H.B. (1970) The leaching of substances from plants. Annu. Rev. Plant Physiol. 21:305–324.

    Article  CAS  Google Scholar 

  • Tyler, G. (1992) Inability to solubilized phosphate in limestone soil-key factors controlling calcifuge habit of plants. Plant Soil 145:65–70.

    Article  CAS  Google Scholar 

  • Tyler, G. (1994) A new approach to understanding the calcifuge habit of plants. Ann. Bot. 73:327–330.

    Article  Google Scholar 

  • Tyler, G. (1996) Soil chemical limitations to growth and development ofVeronica officinalisficinalis L. andCarex pilulifera L. Plant Soil 184:281–289.

    Article  CAS  Google Scholar 

  • Ullrich, W.R. (1992) Transport of nitrate and ammonium through plant membranes. In: Nitrogen metabolism of plants, K. Mengel & D.J. Pilbeam (eds). Clarendon Press, Oxford, U.K., pp. 121–137.

    Google Scholar 

  • Van Assche, F. & Clijsters, H. (1984) Substitution in vivo of Ma2+ by Zn2+ in Rubisco-0O2-Me2+ complexes as a result of toxic zinc nutrition toPhaseolus vulgaris L. Arch. Internat. Physiol. Biochim. 92:V18-V19.

    Google Scholar 

  • Van der Werf, A.K., Visser, A.J., Schieving, F., & Lambers, H. (1993) Evidence for optimal partitioning of biomass and nitrogen at a range of nitrogen availabilities for a fast- and slow-growing species. Funct. Ecol. 7:63–74.

    Article  Google Scholar 

  • Van Vuuren, M.M.I., Robinson, D., & Griffiths, B.S. (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in the soil. Plant Soil 178:185–192.

    Article  Google Scholar 

  • Verhoeven, J.T.A., Koerselman, W., & Meuleman, A.F.M. (1996) Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trend Ecol. Evol. 11:495–497.

    Article  Google Scholar 

  • Verkleij, J.A.C. & Schat, H. (1990) Mechanisms of metal tolerance in higher plants. In: Heavy metal tolerance in plants, A.J. Shaw (ed). CRC Press Inc., Boca Raton, pp. 179–193.

    Google Scholar 

  • Verry, E.S. & Timmons, D.R. (1976) Elements in leaves of a trembling aspen clone by crown position and season. Can. J. For. Res. 6:436–440.

    Article  CAS  Google Scholar 

  • Vitousek, P. (1982) Nutrient cycling and nutrient use efficiency. Am. Nat. 119:553–572.

    Article  Google Scholar 

  • Vitousek, P.M. & Howarth R.W. (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Vögeli-Lange, R. & Wagner, G.J. (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92:1086–1093.

    Article  PubMed  Google Scholar 

  • Walker, C.D., Graham, R.D., Madison, J.T., Cary, E.E., & Welch, R.M. (1995) Effects of Ni deficiency on some nitrogen metabolites in cowpea(Vigna unguiculata L. Walp). Plant Physiol. 79:474–479.

    Article  Google Scholar 

  • Woodward, R.A., Harper, K.T., & Tiedemann, A.R. (1984) An ecological consideration of the significance of cation-exchange capacity of roots of some Utah range plants. Plant Soil 79:169–180.

    Article  CAS  Google Scholar 

  • Zak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J.A., Fogel, R., & Randlett, D.A. (1993) Elevated CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (1998). Mineral Nutrition. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2855-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2855-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2857-6

  • Online ISBN: 978-1-4757-2855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics