Mineral Nutrition

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


If water is the environmental factor that most strongly constrains terrestrial productivity, then nutrients are an important additional factor. The productivity of virtually all natural ecosystems, even arid ecosystems, responds to addition of one or more nutrients, which indicates widespread nutrient limitation. Species differ widely in their ability to acquire nutrients from the soil. Some plants can take up iron, phosphate, or other ions from a calcareous soil from which other species cannot extract enough nutrients to persist. In other soils, the concentration of aluminum, heavy metals, or sodium chloride may reach toxic levels, but some species have genetic adaptations that enable them to survive in such environments. This does not mean that metallophytes need high concentrations of heavy metals or that halophytes require high salt concentrations to survive. These species perform well in the absence of these adverse conditions.


Root Hair Rock Phosphate Mineral Nutrition Mean Residence Time Nitrate Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Adams, M.A. & Pate, J.S. (1992) Availability of organic and inorganic forms of phosphorus to lupins(Lupinus spp.). Plant Soil 145:107–113.CrossRefGoogle Scholar
  2. Aerts, R. (1989) Nitrogen use efficiency in relation to nitrogen availability and plant community composition. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 285–297.Google Scholar
  3. Aerts, R. (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397.Google Scholar
  4. Aerts, R. (1995) The advantages of being evergreen. Trends Ecol. Evol. 10:402–407.PubMedCrossRefGoogle Scholar
  5. Aerts, R. (1996) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 84:597–608.CrossRefGoogle Scholar
  6. Andrews, M. (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ. 9:511–519.Google Scholar
  7. Albuzzio, A. & Ferrari, G. (1989) Modulation of the molecular size of humic substances by organic acids of the root exudates. Plant Soil 113:237–241.CrossRefGoogle Scholar
  8. Arianoutsou, M., Rundel, P.W., & Berry, W.L. (1993) Serpentine endemics as biological indicators of soil elemental concentrations. In: Plants as biomonitors, B. Markert (ed). VCH Weinheim, New York, pp. 179–189.Google Scholar
  9. Armstrong, W. (1982) Waterlogged soils. In: Environment and plant ecology, J.R. Etherington (ed). John Wiley & Sons, New York, pp. 290–330.Google Scholar
  10. Aslam, M., Travis, R.L., & Rains, D.W. (1996) Evidence for substrate induction of a nitrate efflux system in barley roots. Plant Physiol. 112:1167–1175.PubMedGoogle Scholar
  11. Atkin, O.K. (1996) Reassessing the nitrogen relations of arctic plants: A mini-review. Plant Cell Environ. 19:695–704.CrossRefGoogle Scholar
  12. Ball, M.C. (1988) Ecophysiology of mangroves. Trees 2:129–142.CrossRefGoogle Scholar
  13. Barber, S.A. (1984) Soil nutrient bioavailability. John Wiley & Sons, New York.Google Scholar
  14. Barkla, B.J., Zingarelli, L., Blumwald, E., & Smith, A.C. (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plantMesembryanthemum crystallinum. Plant Physiol. 109:549–556.PubMedGoogle Scholar
  15. Bates, T.R. & Lynch, J.P. (1996) Stimulation of root hair elongation inArabidopsis thaliana by low phosphorus availability. Plant Cell Environ. 19:529–538.CrossRefGoogle Scholar
  16. Berendse, F. & Aerts, R. (1987) Nitrogen-use efficiency: A biologically meaningful definition? Funct. Ecol. 1:293–296.Google Scholar
  17. Berendse, F. & Elberse, W.T. (1989) Competition and nutrient losses from the plant. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 269–284.Google Scholar
  18. Bienfait, H.F. (1985) Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J. Bioenerget. Biomembr. 17:73–83.CrossRefGoogle Scholar
  19. Bloom, A.J., Sukrapanna, S.S., & Warner, R.L. (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99:1294–1301.PubMedCrossRefGoogle Scholar
  20. Boerner, R.E.J. (1985) Foliar nutrient dynamics, growth, and nutrient use efficiency ofHamamelis virginiana in three forest microsites. Can. J. Bot. 63:1476–1481.CrossRefGoogle Scholar
  21. Bolan, N.S., Hedley, M.J., & White, R.E. (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134:53–63.CrossRefGoogle Scholar
  22. Borstlap, A.C. (1983) The use of model-fitting in the interpretation of “dual” uptake isotherms. Plant Cell Environ. 6:407–416.CrossRefGoogle Scholar
  23. Brouwer, R. (1962) Nutritive influences on the distribution of dry matter in the plant. Neth. J. Agric. Sci.10:399–408.Google Scholar
  24. Brune, A., Urbach, W., Dietz, K.-J. (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ. 17:153–162.CrossRefGoogle Scholar
  25. Cakmak, I., Sari, N., Marschner, H., Ekiz, H., Kalayci, M., Yilmaz, A., & Braun, H.J. (1996) Phytosiderophore release in bread wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189.CrossRefGoogle Scholar
  26. Campbell, W.H. (1996) Nitrate reductase biochemistry comes of age. Plant Physiol. 111:355–361.PubMedGoogle Scholar
  27. Chapin III, F.S. (1974) Morphological and physiological mechanisms of temperature compensation in phosphate absorption along a latitudinal gradient. Ecology 55:1180–1198.CrossRefGoogle Scholar
  28. Chapin III, F.S. (1980) The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:233–260.CrossRefGoogle Scholar
  29. Chapin III, F.S. (1988) Ecological aspects of plant mineral nutrition. Adv. Min. Nutr. 3:161–191.Google Scholar
  30. Chapin III, F.S. (1991) Effects of multiple environmental stresses on nutrient availability and use. In: Response of plants to multiple stresses, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 67–88.CrossRefGoogle Scholar
  31. Chapin III, F.S. & Bloom, A. (1976) Phosphate absorption: Adaptation of tundra graminoids to a low temperature, low phosphorus environment. Oikos 27:111–121.CrossRefGoogle Scholar
  32. Chapin III, F.S., Fetcher, N., Kielland, K., Everett, K.R., & Linkins, A.E. (1988) Productivity and nutrient cycling of Alaskan tundra: Enchancement by flowing soil water. Ecology 69:693–702.CrossRefGoogle Scholar
  33. Chapin III, F.S., Moilanen, L., & Kielland, K. (1993) Preferential use of organic nitrogen for growth by non-mycorrhizal arctic sedge. Nature 361:150–153.CrossRefGoogle Scholar
  34. Chapin III, F.S. & Slack, M. (1979) Effect of defoliation upon root growth, phosphate absorption, and respiration in nutrient-limited tundra graminoids. Oecologia 42:67–79.Google Scholar
  35. Chapin III, F.S. & Kedrowski, R.A. (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–391.CrossRefGoogle Scholar
  36. Chapin III, F.S. & Moilanen, L. (1991) Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709–715.CrossRefGoogle Scholar
  37. Chapin III, F.S., Johnson, D.A., & McKendrick, J.D. (1980) Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: Implications for herbivory. J. Ecol. 68:189–209.CrossRefGoogle Scholar
  38. Chapin III, F.S., Moilanen, L., & Kielland, K. (1993) Preferential use of organic nitrogen for growth by nonmycorrhizal arctic sedge. Nature 361:150–153.CrossRefGoogle Scholar
  39. Clarholm, M. (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17:181–187.CrossRefGoogle Scholar
  40. Clarkson, D.T. (1981) Nutrient interception and transport by root systems. In: Physiological factors limiting plant productivity, C.B. Johnson (ed). Butterworths, London, pp. 307–314.Google Scholar
  41. Clarkson, D.T. (1985) Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant Physiol. 36:77–115.CrossRefGoogle Scholar
  42. Clarkson, D.T. (1996) Root structure and sites of ion uptake. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki, (eds). Marcel Dekker, Inc., New York, pp. 483–510.Google Scholar
  43. Clarkson, D.T., Lüttge, U., & Kuiper, P.J.C. (1986) Mineral nutrition: Sources of nutrients for land plants from outside the pedosphere. Prog. Bot. 48:80–96.CrossRefGoogle Scholar
  44. Clement, C.R., Hopper, M.J., Jones, L.H.P., & Leafe, E.L. (1978) The uptake of nitrate byLolium perenne from flowing nutrient solution. II. Effect of light, defoliation, and relationship to CO2 flux. J. Exp. Bot. 29:1173–1183.CrossRefGoogle Scholar
  45. De Boer, A.H. (1985) Xylem/symplast ion exchange: Mechanism and function in salt-tolerance and growth. PhD Thesis, University of Groningen, Groningen, the Netherlands.Google Scholar
  46. De Boer, A.H. & Wegner, L.H. (1997) Regulatory mechanisms of ion channels in xylem parenchyma cells. J. Exp. Bot. 48:441–449.PubMedCrossRefGoogle Scholar
  47. Deina, S., Gessa, C., Manunza, B., Marchetti, M., & Usai, M. (1992) Mechanism and stoichiometry of the redox reaction between iron(III) and caffeic acid. Plant Soil 145:287–294.CrossRefGoogle Scholar
  48. del Arco, J.M., Escudero, A., & Garrido, M.V. (1991) Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72:701–708.CrossRefGoogle Scholar
  49. Delhaize, E. & Ryan, P.R. (1995) Aluminium toxicity and tolerance in plants. Plant Physiol. 107:315–321.PubMedGoogle Scholar
  50. Delhaize, E., Ryan, P.R., & Randall (1993) Aluminium tolerance in wheat(Triticum aestivum L.). II. Aluminiumstimulated excretion of malic acid from root apices. Plant Physiol. 103:695–702.PubMedGoogle Scholar
  51. Demars, B.G. & Boerner, R.E.J. (1997) Foliar nutrient dynamics and resorption in naturalizedLonicera maackii (Caprifoliaceae) populations in Hhio, USA. Am. J. Bot. 84:112–117.CrossRefGoogle Scholar
  52. De Silva, D.L.R., Hetherington, A.M., & Mansfield, T.A. (1996) Where does all the calcium go? Evidence of an important regulatory role for trichomes in two calcicoles. Plant Cell. Environ. 19:880–886.CrossRefGoogle Scholar
  53. De Vos, C.H.R., Vooijs, R., Schat, H., & Ernst, W.H.O. (1989) Copper-induced damage to the permeability barrier in roots ofSilene cucubalus. J. Plant Physiol. 135:165–169.Google Scholar
  54. Diaz, S.A., Grime, J.P., Harris, J., & McPherson, E. (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617.CrossRefGoogle Scholar
  55. Dinkelaker, B., Römheld, V., & Marschner, H. (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin. Plant Cell Environ. 12:285–292.CrossRefGoogle Scholar
  56. Dinkelaker, B., Hengeler, C., & Marschner, H. (1995) Distribution and function of proteoid roots and other root clusters. Bot. Acta 108:183–200.Google Scholar
  57. Drew, M.C. (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 75:479–490.CrossRefGoogle Scholar
  58. Drew, M.C. & Saker, L.R. (1978) Nutrient supply and the growth of the seminal root system in barley. III. Compensatory increase in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot. 29:435–451.CrossRefGoogle Scholar
  59. Drew, M.C., Saker, L.R., & Ashley, T.W. (1973) Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J. Exp. Bot. 24:1189–1202.CrossRefGoogle Scholar
  60. Erskine, P.D., Stewart, G.R., Schmidt, S., Turnbull, M.H., Unkovich, M.H., & Pate, J.S. (1996) Water availability-a physiological constraint on nitrate utilization in plants of Australian semi-arid mulga woodlands. Plant Cell Environ. 19:1149–1159.CrossRefGoogle Scholar
  61. Esau, K. (1977) Anatomy of seed plants. 2nd edition. John Wiley & Sons, New York.Google Scholar
  62. Eviner, V.T. & Chapin III, F.S. (1997) Plant-microbial interactions. Nature 385:26–27.CrossRefGoogle Scholar
  63. Flowers, T.J., Troke, P.F., & Yeo, A.R. (1977) The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28:89–121.CrossRefGoogle Scholar
  64. Gardner, W.K. & Boundy, K.A. (1983) The acquisition of phosphorus byLupinus albus L.: 4 The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil 70:391–402.CrossRefGoogle Scholar
  65. Gardner, W.K., Parbery, D.G., & Barber, D.A. (1981) Proteoid root morphology and function inLupinus albus. Plant Soil 60:143–147.CrossRefGoogle Scholar
  66. Gardner, W.K., Parbery, D.G., & Barber, D.A. (1982) The acquisition of phosphorus byLupinus albus L. I. Some characteristics of the soil/root interface. Plant Soil 67:19–32.CrossRefGoogle Scholar
  67. Garten, C.T. Jr. (1976) Correlations between concentrations of elements in plants. Nature 261:686–688.CrossRefGoogle Scholar
  68. Gersani, M. & Sachs, T. (1992) Development correlations between roots in heterogeneous environments. Plant Cell Environ. 15:463–469.CrossRefGoogle Scholar
  69. Godbold, D.L., Horst, W.J., Marschner, H., & Collins, J.C. (1983) Effect of high zinc concentrations on root growth and zinc uptake in two ecotypes ofDeschampsia caespitosa differing in zinc tolerance. In: Root ecology and its practical application, W. Böhm, L. Kutschera, & E. Lichtentegger (eds). Bundesanstalt für alpenländische Landwirtscaft, Gumpenstein, pp. 165–172.Google Scholar
  70. Guerinot, M.L. & Yi, Y. (1994) Iron: Nutritious, noxious, and not readily available. Plant Physiol. 104:815–820.PubMedGoogle Scholar
  71. Gutierrez, F.R. & Whitford, W.G. (1987) Chihuahuan desert annuals: Importance of water and nitrogen. Ecology 68:2032–2045.CrossRefGoogle Scholar
  72. Hairiah, K., Stulen, I., & Kuiper, P.J.C. (1990) Aluminium tolerance of the velvet beansMucuna pruriens var.utilis and M.deeringiana. I. Effects of aluminium on growth and mineral composition. In: Plant nutritionPhysiology and applications, M.L. van Beusichem (ed). Kluwer Academic Publishers, Dordrecht, pp. 365–374.CrossRefGoogle Scholar
  73. Harper, S.M., Edwards, D.G., Kerven, G.L., & Asher, C.J. (1995) Effects of organic acid fractions extracted fromEucalyptus camaldulensis leaves on root elongation of maize(Zea mays) in the presence and absence of aluminium. Plant Soil 171:189–192.CrossRefGoogle Scholar
  74. Harrison, A.F. & Helliwell, D.R. (1979) A bioassay for comparing phosphorus availability in soils. J. Appl. Ecol. 16:497–505.CrossRefGoogle Scholar
  75. Häussling, M. & Marschner, H. (1989) Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce(Picea abies (L.) Karst.) trees. Biol. Fertil. Soils 8:128–133.CrossRefGoogle Scholar
  76. Hedin, L.O., Granat, L., Likens, G.E., Buishand, A., Galloway, J.N., Butler, T.J., & Rodhe, H. (1994) Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367:351–354.CrossRefGoogle Scholar
  77. Higginbotham, N., Etherton, B., & Foster, R.J. (1967) Mineral ion contents and cell transmembrane electropotentials of pea and oat seedling tissue. Plant Physiol. 43:37–46.CrossRefGoogle Scholar
  78. Hobbie, S.E. (1992) Effects of plant species on nutrient cycling. Trends Ecol. Evolu. 7:336–339.CrossRefGoogle Scholar
  79. Horst, W.J. & Waschkies, C. (1987) Phosphatversorgerung von Sommerweizen(Triticum aestivum L.) in Mischkultur mit Weiszer Lupine(Lupinus albus L.). Z. PflanzenernShr. Bodenk. 150:1–8.CrossRefGoogle Scholar
  80. Hoffland, E. (1991) Mobilization of rock phosphate by rape(Brassica napus). PhD Thesis, Wageningen Agricultural University, Wageningen, the Netherlands.Google Scholar
  81. Hoffland, E., Findenegg, G.R., & Nelemans, J.A. (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113:161–165.CrossRefGoogle Scholar
  82. Hoffland, E., Bloemhof, H.S., Leffelaar, P.A., Findenegg, G.R., & Nelemans, J.A. (1990a) Simulation of nutrient uptake by a growing root system considering increasing root density and inter-root competition. Plant Soil 124:149–155.CrossRefGoogle Scholar
  83. Hoffland, E., Findenegg, G.R., Leffelaar, P.A., & Nelemans, J.A. (1990b). Use of a simulation model to quantify the amount of phosphate released from rock phosphate by rape. Transactions of the 14th International Congress of Soil Science (Kyoto) II, pp. 170–175.Google Scholar
  84. Huang, C.X. & Van Steveninck, R.F.M. (1989) Maintenance of low Cl-concentrations in mesophyll cells of leaf blades of barely seedlings exposed to salt stress. Plant Physiol. 90:1440–1443.PubMedCrossRefGoogle Scholar
  85. Huang, J.W., Pellet, D.M., Papernik, L.A., & Kochian, L.V. (1996) Aluminium interactions with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminium-sensitive and -resistant wheat cultivars. Plant Physiol. 110:561–569.PubMedCrossRefGoogle Scholar
  86. Huang, N.-C., Chiang, C.-S., Crawford, N.M., & Tsay, Y.F. (1996)Chll encodes a component of the low-affinity nitrate uptake system inArabidopsis and shows cell type-specific expression in roots. Plant Cell 8:2183–2191.PubMedGoogle Scholar
  87. Hübel, F. & Beck, F. (1993) In-situ determination of the Prelations around the primary root of maize with respect to inorganic and phytate-P. Plant Soil 157:1–9.Google Scholar
  88. Huber, S.C., Bachman, M., & Huber, J.L. (1996) Post-translational regulation of nitrate reductase activity: A role for Ca and 14–3–3 proteins. Trend Plant Sci. 1:432–438.CrossRefGoogle Scholar
  89. Hungate, B.A. (1998) Ecosystem responses to rising atmospheric CO2: Feedbacks through the nitrogen cycle. In: Interactions of elevated CO2 and environmental stress, J. Seeman & Y. Luo (eds). Academic Press, San Diego, in press.Google Scholar
  90. Ingestad, T. (1979) Nitrogen stress in birch seedlings II. N, P, Ca and Mg nutrition. Physiol. Plant. 52:454–466.CrossRefGoogle Scholar
  91. Ingestad, T. & Ågren, G.I. (1988) Nutrient uptake and allocation at steady-state nutrition. Physiol. Plant. 72:450–459.CrossRefGoogle Scholar
  92. Israel, D.W. (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 84:835–840.PubMedCrossRefGoogle Scholar
  93. Jackson, P.J., Delhaize, E., & Kuske, C.R. (1992) Biosynthesis and metabolic roles of cadystins (γ-EC)nG and their precursors inDatura innoxia. Plant Soil 146:281–289.CrossRefGoogle Scholar
  94. Jenny, H. (1980) The soil resources. Origin and behavior. Springer-Verlag, New York.CrossRefGoogle Scholar
  95. Johnson, J.F., Allan, D.L., & Vance, C.P. (1994) Phosphorus stress-induced proteoid roots show altered metabolism inLupinus albus. Plant Physiol. 104:657–665.PubMedGoogle Scholar
  96. Johnson, J.F., Allan, D.L., Vance, C.P., & Weiblen, G. (1996a) Root carbon dioxide fixation by phosphorusdeficientLupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiol. 112: 19–30.PubMedCrossRefGoogle Scholar
  97. Johnson, J.F., Vance, C.P., & Allan, D.L. (1996b) Phosphorus deficiency inLupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol. 112:31–41.PubMedCrossRefGoogle Scholar
  98. Johnson, M.N., Reynolds, R.C., & Likens, G.E. (1972) Atmospheric sulfur: Its effect on the chemical weathering of New England. Science 177:514–515.PubMedCrossRefGoogle Scholar
  99. Jones, D.L. & Kochian, L.V. (1996) Aluminium inhibition of the inositol, 1,4,5-triphosphate signal transduction pathway in wheat roots: A role in aluminium toxicity. Plant Cell 7:1913–1922.Google Scholar
  100. Jones, D.L., Darrah, P.R., & Kochian, L.V. (1996a) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in iron uptake. Plant Soil 180:57–66.CrossRefGoogle Scholar
  101. Jones, D.L., Prabowo, A.M., & Kochian, L.V. (1996b) Kinetics of malate transport and decomposition in acid soils and isolated bacterial populations: The effects of microorganisms on root exudation of malate under Al stress. Plant Soil 182:239–247.Google Scholar
  102. Jungk, A.O. (1996) Dynamics of nutrient movement at the soil-root interface. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki, (eds). Marcel Dekker, Inc., New York, pp. 529–556.Google Scholar
  103. Kaiser, W.M. & Huber, S.C. (1994) Posttranslational regulation of nitrate reductase in higher plants. Plant Physiol. 106:817–821.PubMedGoogle Scholar
  104. Keerthisinghe, G., Hocking, P., Ryan, P.R., & Delhaize, E. (1998). Proteoid roots of lupin(Lupinus albus L.): Effect of phosphorus supply on formation and spatial variation in citrate efflux and enzyme activity. Plant Cell Environ., in press.Google Scholar
  105. Keltjens, W.G. & Tan, K. (1993) Interactions between aluminium, magnesium and calcium with different monocotyledonous and dicotyledonous plant species Plant Soil 155/156:485–488.CrossRefGoogle Scholar
  106. Kielland, K. (1994) Amino acid absorption by Arctic plants: Implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383.CrossRefGoogle Scholar
  107. Killingbeck, K.T. (1996) Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727.CrossRefGoogle Scholar
  108. King, B.J., Siddiqui, N.Y., Ruth, T.J., Warner, R.L., & Glass, A.D.M. (1993) Feedback regulation of nitrate influx in barley roots by nitrate, nitrite, and ammonium. Plant Physiol. 102:1279–1286.PubMedGoogle Scholar
  109. Kinraide, T.B. (1993) Aluminium enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. Physiol. Plant. 88:619–625.CrossRefGoogle Scholar
  110. Kochian, L. (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:237–260.CrossRefGoogle Scholar
  111. Koerselman, W. & Meuleman, A.F.M. (1996) The vegetation N : P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33:1441–1450.CrossRefGoogle Scholar
  112. Krämer, U., Cotter-Howels, J.D., Charnock, J.M., Baker, A.J.M., & Smith, J.A. (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638.CrossRefGoogle Scholar
  113. Kroehler, C.J. & Linkins, A.E. (1991) The absorption of inorganic phosphate from32P-labelled inositol hexaphosphate byEriophorum vaginatum. Oecologia 85:424–428.CrossRefGoogle Scholar
  114. Kronzucker, H.J., Siddiqui, M.Y., & Glass, A.D.M. (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61.CrossRefGoogle Scholar
  115. Krupa, Z., Oquist, G., & Huner, N.P.A. (1993) The effect of cadmium on photosynthesis ofPhaseolus vulgaris-a fluorescence analysis. Physiol. Plant. 88:626–630.CrossRefGoogle Scholar
  116. Kuiper, P.J.C. (1968) Ion transport characteristics of grape root lipids in relation to chloride transport. Physiol. Plant. 65:245–250.Google Scholar
  117. Lacan, D. & Durand, N. (1994) Na+ and K+ transport in excised soybean roots. Physiol. Plant. 93:132–138.CrossRefGoogle Scholar
  118. Lamont, B. (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot. Rev. 48:597–689.CrossRefGoogle Scholar
  119. Lamont, B. (1993) Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia. Plant Soil 155 / 156:269–272.CrossRefGoogle Scholar
  120. Lasat, M.M., Baker, A.J.M., & Kochian, L.V. (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species ofThlaspi. Plant Physiol. 112:1715–1722.PubMedGoogle Scholar
  121. LeNoble, M.E., Blevins, D.G., Sharp, R.E., & Cumbie, B.G. (1996a) Prevention of aluminium toxicity with supple mental boron. I. Maintenance of root elongation and cellular structure. Plant Cell Environ. 19:1132–1142.CrossRefGoogle Scholar
  122. LeNoble, M.E., Blevins, D.G., & Miles, R.J. (1996b) Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, highaluminium subsoil. Plant Cell Environ. 19:1143–1148.CrossRefGoogle Scholar
  123. Li, X.Z. & Oaks, A. (1993) Induction and turnover of nitrate reductase inZea mays. Influence of NO3 -. Plant Physiol. 102:1251–1257.PubMedGoogle Scholar
  124. Lipton, D.S., Blanchar, R.W., & Blevins, D.G. (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressedMedicago sativa L. seedlings. Plant Physiol. 85:315–317.PubMedCrossRefGoogle Scholar
  125. Lolkema, P.C., Doornhof, M., & Ernst, W.H.O. (1986) Interaction between a copper-tolerant and a copper-sensitive population ofSilene cucubalus. Physiol. Plant. 67:654–658.CrossRefGoogle Scholar
  126. Loneragan, J.F. (1968) Nutrient requirements of plants. Nature 220:1307–1308.PubMedCrossRefGoogle Scholar
  127. Loveless, A.R. (1961) A nutritional interpretation of sclerophylly based on differences in chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25:168–184.Google Scholar
  128. Ma, J.F. & Nomoto, K. (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mucigeneic acids as phytosiderophores. Physiol. Plant. 97:609–617.CrossRefGoogle Scholar
  129. Macfie, S.M. & Taylor, G.J. (1992) The effect of excess manganese on photosynthetic rate and concentration of chlorophyll inTriticum aestivum grown in solution culture. Physiol. Plant. 85:467–475.CrossRefGoogle Scholar
  130. Macklon, A.E.S., Mackie-Dawson, L.A., Sim, A., Shand, C.A., & Lilly, A. (1994) Soil P resources, plant growth and rooting characteristics in nutrient poor upland grasslands. Plant Soil 163:257–266.CrossRefGoogle Scholar
  131. Marschner, H. (1983) General introduction to the mineral nutrition of plants. In: Encyclopedia of plant physiology, N.S., Vol 15A, A. Läuchli & R.L. Bieleski (eds). Springer-Verlag, Berlin, pp. 5–60.Google Scholar
  132. Marschner, H. (1991a) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki, (eds). Marcel Decker, Inc., New York, pp. 503–528.Google Scholar
  133. Marschner, H. (1991b) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20.Google Scholar
  134. Marschner, H. (1995) Mineral nutrition of higher plants. 2nd edition. Academic Press, London.Google Scholar
  135. Marschner, H. & Römheld, V. (1996) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Decker, Inc., New York, pp. 557–580.Google Scholar
  136. Martins-Louçao, M. & Cruz, C. (1998) The role of nitrogen source in carbon balance. In: Modes of nitrogen nutrition in higher plants, H.S. Srivastava (ed). Associated Publishing Company, in press.Google Scholar
  137. McNaughton, S.J. & ChapinIII, F.S. (1985) Effects of phosphorus nutrition and defoliation on C4 graminoids from the Serengeti Plains. Ecology 66:1617–1629.CrossRefGoogle Scholar
  138. Meerts, P. (1997) Foliar macronutrient concentrations of forest understorey species in relation to Ellenberg’s indices and potential relative growth rate. Plant Soil 189:257–265.CrossRefGoogle Scholar
  139. Mistrik, I. & Ullrich, C.I. (1996) Mechanism of anion uptake in plant roots: Quantitative evaluation of H+ / NO3 - and H+/H2PO4 - stoichiometries. Plant Physiol. Biochem. 34:621–627.Google Scholar
  140. Murphy, A. & Taiz, L. (1995) Comparison of metallothionein gene expression and nonprotein thiols in tenArabidopsis ecotypes. Plant Physiol. 109:945–954.PubMedCrossRefGoogle Scholar
  141. Nair, V.D. & Prenzel, J. (1978) Calculations of equilibrium concentration of mono- and polynuclear hydroxyaluminium species at different pH and total aluminium concentrations. Z. PflanzenernShr. Bodenk. 141:741–751.CrossRefGoogle Scholar
  142. Nambiar, I.K.S. (1987) Do nutrients retranslocate from fine roots? Can. J. For. Res. 17:913–918.CrossRefGoogle Scholar
  143. Nambiar, I.K.S. & Fife, D.N. (1987) Growth and nutrient retranslocation in needles of radiata pine in relation to nitrogen supply. Ann. Bot. 60:147–156.Google Scholar
  144. Oland, K. (1963) Changes in the content of dry matter and major nutrient elements of apple foliage during senescence and abscission. Physiol. Plant. 16:682–694.CrossRefGoogle Scholar
  145. Oscarson, P., Ingemarsson, B., af Ugglas, M., & Larsson, C.-M. (1987) Short-term studies of NO3 - uptake inPisum using13N03-. Planta 170:550–555.CrossRefGoogle Scholar
  146. Paul, E.A. & Clark, F.E. (1989) Soil microbiology and biochemistry. Academic Press, San Diego.Google Scholar
  147. Pitman, M.G. & Lüttge, U (1983) The ionic environment and plant ionic relations. In: Encyclopedia of plant physiology, N.S., Vol 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 5–34.Google Scholar
  148. Pons, T.L., Van der Werf, A., & Lambers, H. (1994) Photosynthetic nitrogen use efficiency of inherently slow- and fast-growing species: Possible explanations for observed differences. In: A whole-plant perspective of carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, pp. 61–77.Google Scholar
  149. Poorter, H., Remkes, C., & Lambers, H. (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Phvsiol. 94:621–627.CrossRefGoogle Scholar
  150. Popp, M. (1995) Salt resistance in herbaceous halophytes and mangroves. Prog. Bot. 56:416–429.CrossRefGoogle Scholar
  151. Powell, C.L. (1974) Effect of P-fertilizer on root morphology and P-uptake ofCarex coriacea. Plant Soil 41:661–667.CrossRefGoogle Scholar
  152. Pugnaire, F.I. & Chapin III, F.S. (1993) Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74:124–129.CrossRefGoogle Scholar
  153. Raaimakers, T.H.M.J. (1995) Growth of tropical rainforest trees as dependent on P-availability. Tree saplings differing in regeneration strategy and their adaptations to a low phosphorus environment in Guyana. PhD Thesis, Utrecht University, Utrecht, the Netherlands.Google Scholar
  154. Rauser, W.E. (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol. 109:1141–1149.PubMedCrossRefGoogle Scholar
  155. Redfield, A.C. (1958) The biological control of chemical factors in the environment. Am. Scient. 46:205–221.Google Scholar
  156. Reich, P.B., Walters, M.B., & Ellsworth, D.S. (1992) Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62:365–392.CrossRefGoogle Scholar
  157. Reich, P.B., Ellsworth, D.S., & Uhl, C. (1995) Leaf carbon and nutrient assimilation and conservation in species of differening succesional status in an oligotrophic Amazonian forest. Funct. Ecol. 9:65–76.CrossRefGoogle Scholar
  158. Rengel, Z. (1992a) The role of calcium in salt toxicity. Plant Cell Environ. 15:625–632.CrossRefGoogle Scholar
  159. Rengel, Z. (1992b) Disturbance of cell Ca2+ homeostasis as a primary trigger of Al toxicity syndrome. Plant Cell Environ. 15:931–938.CrossRefGoogle Scholar
  160. Reuss, J.O. & Johnson, D.W. (1986) Acid Deposition and the Acidification of Soils and Waters. Springer-Verlag, New York.CrossRefGoogle Scholar
  161. Reynolds, H.L. & D’Antonio, C. (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen. Opinion. Plant Soil 185:75–97.CrossRefGoogle Scholar
  162. Richardson, A.E. (1994) Soil microorganisms and phosphorus availability. In: Soil Biota. Management in sustainable farming systems, C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta, & P.R. Grace (eds). CSIRO, East Melbourne, pp. 50–62.Google Scholar
  163. Robinson, D. (1994) The responses of plants to nonuniform supplies of nutrients. New Phyol. 127:635–674.CrossRefGoogle Scholar
  164. Robinson, D. (1996) Variation, co-ordination and compensation in root systems in relation to soil variabbility. Plant Soil 187:57–66.CrossRefGoogle Scholar
  165. Römheld, V. (1987) Different strategies for iron acquisition in higher plants. Physiol. Plant. 70:231–234.CrossRefGoogle Scholar
  166. Ryan, P.R. & Kochian, L.V. (1993) Aluminium differentially inhibits calcium uptake into the root apex of nearisogenic lines of wheat. A possible mechanism of toxicity. Plant Physiol. 102:975–982.PubMedGoogle Scholar
  167. Ryan, P.R., Kinraide, T.B., & Kochian, L.V. (1994) A13+Ca2+ interactions in aluminium rhizotoxicity. I. Inhibition of root growth is not caused by reduction of calcium uptake. Planta 192:98–103.Google Scholar
  168. Ryan, P.R., Delhaize, E., & Randall, P.J. (1995) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust. J. Plant Physiol. 22:531–536.CrossRefGoogle Scholar
  169. Salt, D.E. & Rauser, W.E. (1995) MGATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107:1293–1301.PubMedGoogle Scholar
  170. Salt, D.E., Blaylock, M., Kumar, P.B.A.N., Dushenkov, V., Ensley, B.D., Chet, I., & Raskin, I. (1995a) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474.PubMedCrossRefGoogle Scholar
  171. Salt, D.E., Prince, R.C., Pickering, I.J., & Raskin, I. (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109:1427–1433.PubMedGoogle Scholar
  172. Scholz, G., Becker, R., Pich, A., & Stephan, U. W.(1992) Nicotinamine-a common constituent of strategies I and II of iron acquisition by plants: A review. J. Plant Nutr. 15:1647–1665.CrossRefGoogle Scholar
  173. Shaver, G.R. & Chapin III, F.S. (1991) Production: Biomass relationships and element cycling in contrasting arctic vegetation types. Ecol. Monogr. 61:1–31.CrossRefGoogle Scholar
  174. Shone, M.G.T., Clarkson, D.T., & Sanderson, J. (1969) The absorption and translocation of sodium by maize seedlings. Planta 86:301–314.CrossRefGoogle Scholar
  175. Shriner, D.S. & Johnston Jr., J.W. (1985) Acid rain interactions with leaf surfaces: A review. In: Acid deposition: Environmental, economic, and policy Issues, D.D. Adams & W.P Page (eds). Plenum Publishing Corporation, New York, pp. 241–253.CrossRefGoogle Scholar
  176. Siddiqi, M.Y., Glass, A.D.M., & Ruth, T.J. & Rufty, T.W. (1990) Studies of the nitrate uptake system in barley. I. Kinetics of13NO3 - influx. Plant Physiol. 93:1426–1432.PubMedCrossRefGoogle Scholar
  177. Siddiqi, M.Y., Glass, A.D.M., & Ruth, T.J. (1991) Studies of the uptake of nitrate in barley. III. Compartmentation of NO3-. J. Exp. Bot. 42:1455–1463.CrossRefGoogle Scholar
  178. Smart, C.J., Garvin, D.F., Prince, J.P., Lucas, W.J., & Kochian, L.V. (1996) The molecular basis of potassium nutrition. Plant Soil 187:81–89.CrossRefGoogle Scholar
  179. Smirnoff, N. & Stewart, G.R. (1985) Nitrate assimilation and translocation by higher plants: Comparative physiology and ecological consequences. Physiol. Plant. 64:133–140.CrossRefGoogle Scholar
  180. Smirnoff, N., Todd, P., & Stewart, G.R. (1984) The occurrence of nitrate reduction in the leaves of woody plants. Ann. Bot. 54:363–374.Google Scholar
  181. Smith, F.W., Ealing, P.M., Hawkesford, M.J., & Clarkson, D.T. (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc. Natl. Acad. Sci. USA 92:9373–9377.PubMedCrossRefGoogle Scholar
  182. Stark, J.M. & Hart, S.C. (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous ecosystems. Nature 385:61–64.CrossRefGoogle Scholar
  183. Staal, M., Maathuis, F.J.M., Elzenga, T.J.M., Overbeek, J.H.M., & Prins, H.B.A. (1991) Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerantPlantago maritima and the salt-sensitivePlantago media. Physiol. Plant. 82:179–184.CrossRefGoogle Scholar
  184. Stark, J.M. & Hart, S.C. (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous ecosystems. Nature 385:61–64.CrossRefGoogle Scholar
  185. Ström, L., Olsson, T., & Tyler, G. (1994) Differences between calcifuge and acidifuge plants in root exudation of low-molecular organic acids. Plant Soil 167:239–245.CrossRefGoogle Scholar
  186. Tarafdar, J.C. & Jungk, A. (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fert. Soils 3:199–204.CrossRefGoogle Scholar
  187. Ter Steege, M. (1996) Regulation of nitrate uptake in a whole plant perspective. PhD thesis, University of Groningen, the Netherlands.Google Scholar
  188. Thomas, W.A. & Grigal, D.F. (1976) Phosphorus conservation by evergreenness of mountain laurel. Oikos 27:19–26.CrossRefGoogle Scholar
  189. Tilton, D.L. (1977) Seasonal growth and foliar nutrients ofLarix laricina in three wetland ecosystems. Can. J. Bot. 55:1291–1298.CrossRefGoogle Scholar
  190. Touraine, B., Clarkson, D.T., & Muller, B. (1994) Regulation of nitrate uptake at the whole plant level. In: A whole-plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, pp. 11–30.Google Scholar
  191. Trueman, L.J., Richardson, A., & Forde, B.G. (1996a) Molecular cloning of higher plant homologues of the high-affinity nitrate transporters ofChlamydomonas reinhardtii andAspergillus nidulans. Gene 175:223–231.PubMedCrossRefGoogle Scholar
  192. Trueman, L.J., Onyeocha, I., & Forde, B.G. (1996b) Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters. Plant Physiol. Biochem. 34:621–627.Google Scholar
  193. Tukey Jr., H.B. (1970) The leaching of substances from plants. Annu. Rev. Plant Physiol. 21:305–324.CrossRefGoogle Scholar
  194. Tyler, G. (1992) Inability to solubilized phosphate in limestone soil-key factors controlling calcifuge habit of plants. Plant Soil 145:65–70.CrossRefGoogle Scholar
  195. Tyler, G. (1994) A new approach to understanding the calcifuge habit of plants. Ann. Bot. 73:327–330.CrossRefGoogle Scholar
  196. Tyler, G. (1996) Soil chemical limitations to growth and development ofVeronica officinalisficinalis L. andCarex pilulifera L. Plant Soil 184:281–289.CrossRefGoogle Scholar
  197. Ullrich, W.R. (1992) Transport of nitrate and ammonium through plant membranes. In: Nitrogen metabolism of plants, K. Mengel & D.J. Pilbeam (eds). Clarendon Press, Oxford, U.K., pp. 121–137.Google Scholar
  198. Van Assche, F. & Clijsters, H. (1984) Substitution in vivo of Ma2+ by Zn2+ in Rubisco-0O2-Me2+ complexes as a result of toxic zinc nutrition toPhaseolus vulgaris L. Arch. Internat. Physiol. Biochim. 92:V18-V19.Google Scholar
  199. Van der Werf, A.K., Visser, A.J., Schieving, F., & Lambers, H. (1993) Evidence for optimal partitioning of biomass and nitrogen at a range of nitrogen availabilities for a fast- and slow-growing species. Funct. Ecol. 7:63–74.CrossRefGoogle Scholar
  200. Van Vuuren, M.M.I., Robinson, D., & Griffiths, B.S. (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in the soil. Plant Soil 178:185–192.CrossRefGoogle Scholar
  201. Verhoeven, J.T.A., Koerselman, W., & Meuleman, A.F.M. (1996) Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trend Ecol. Evol. 11:495–497.CrossRefGoogle Scholar
  202. Verkleij, J.A.C. & Schat, H. (1990) Mechanisms of metal tolerance in higher plants. In: Heavy metal tolerance in plants, A.J. Shaw (ed). CRC Press Inc., Boca Raton, pp. 179–193.Google Scholar
  203. Verry, E.S. & Timmons, D.R. (1976) Elements in leaves of a trembling aspen clone by crown position and season. Can. J. For. Res. 6:436–440.CrossRefGoogle Scholar
  204. Vitousek, P. (1982) Nutrient cycling and nutrient use efficiency. Am. Nat. 119:553–572.CrossRefGoogle Scholar
  205. Vitousek, P.M. & Howarth R.W. (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115.CrossRefGoogle Scholar
  206. Vögeli-Lange, R. & Wagner, G.J. (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92:1086–1093.PubMedCrossRefGoogle Scholar
  207. Walker, C.D., Graham, R.D., Madison, J.T., Cary, E.E., & Welch, R.M. (1995) Effects of Ni deficiency on some nitrogen metabolites in cowpea(Vigna unguiculata L. Walp). Plant Physiol. 79:474–479.CrossRefGoogle Scholar
  208. Woodward, R.A., Harper, K.T., & Tiedemann, A.R. (1984) An ecological consideration of the significance of cation-exchange capacity of roots of some Utah range plants. Plant Soil 79:169–180.CrossRefGoogle Scholar
  209. Zak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J.A., Fogel, R., & Randlett, D.A. (1993) Elevated CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hans Lambers
    • 1
    • 2
  • F. Stuart ChapinIII
    • 3
  • Thijs L. Pons
    • 1
  1. 1.Department of Plant Ecology and Evolutionary BiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Plant Sciences, Faculty of AgricultureUniversity of Western AustraliaNedlandsAustralia
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA

Personalised recommendations