Advertisement

Leaf Energy Budgets: Effects of Radiation and Temperature

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons

Abstract

Temperature is a major environmental factor that determines plant distribution. Temperature affects virtually all plant processes, ranging from enzymatically catalyzed reactions and membrane transport to physical processes such as transpiration and the volatilization of specific compounds. Species differ in the activation energy of particular reactions and, consequently, in the temperature responses of most physiological processes (e.g., photosynthesis, respiration, biosynthesis). Given the pivotal role of temperature in the ecophysiology of plants, it is critical to understand the factors that determine plant temperature. Air temperature in the habitat provides a gross approximation of plant temperature. Air temperature in a plant’s microclimate, however, may differ from standard air temperature, and the actual temperature of a plant organ often deviates substantially from that of the surrounding air.

Keywords

Leaf Temperature Plant Cell Environ Xanthophyll Cycle Frost Tolerance Convective Heat Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Campbell, G.S. (1981) Fundamentals of radiation and temperature relations. In: Encyclopedia of plant physiology, Vol 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 11–40.Google Scholar
  2. Chien, J.C. & Sussex, I.M. (1996) Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L). Heynh. Plant Physiol. 111: 1321–1328.CrossRefGoogle Scholar
  3. Ehleringer, J. (1983) Characterization of a glabrate Encelia farinosa mutant: Morphology, ecophysiology, and field observations. Oecologia 57: 303–310.CrossRefGoogle Scholar
  4. Ehleringer, J. (1984) Ecology and ecophysiology of leaf pubescence in North American desert plants. In: Biology and chemistry of plant trichomes, E. Rodrigues, P.L. Healy, & I. Mehta (eds). Plenum Press, New York, pp. 113–132.Google Scholar
  5. Ehleringer, J.R. (1988) Changes in leaf characteristics of species along elevational gradients on the wasatch front, Utah. Am. J. Bot. 75: 680–689.CrossRefGoogle Scholar
  6. Ehleringer, J.R. & Björkman, O. (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36: 151–162.CrossRefGoogle Scholar
  7. Ehleringer, J.R. & Cook, C.S. (1990) Characteristics of Encelia species differing in leaf reflectance and transpiration rate under common garden conditions. Oecologia 82: 484–489.CrossRefGoogle Scholar
  8. Ehleringer, J.R. & Forseth, I. (1980) Solar tracking by plants. Science 210: 1094–1098.PubMedCrossRefGoogle Scholar
  9. Ehleringer, J.R. & Mooney, H.A. (1978) Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia 37: 183–200.CrossRefGoogle Scholar
  10. Ehleringer, J., Mooney, H.A., Gulmon, S.L., & Rundel, P. (1980) Orientation and its consequences for Copiapoa (Cactaceae) in the Atacama desert. Oecologia 46: 63–67.CrossRefGoogle Scholar
  11. Gamon, J.A. & Pearcy, R.W. (1989) Leaf movement, stress avaiodance and photosynthesis in Vitis californica. Oecologia 79: 475–481.CrossRefGoogle Scholar
  12. Gates, D.M. (1965) Energy, plants, and ecology. Ecology 46: 1–13.CrossRefGoogle Scholar
  13. Grace, J.B. (1983) Plant-atmosphere relationships. Chapman & Hall, London.CrossRefGoogle Scholar
  14. Jones, M.B. (1985) Plant microclimate. In: Techniques in bioproductivity and photosynthesis, 2nd edition, J. Coombs, D.O. Hall, S.P. Long, & J.M.O. Scurlock (eds). Pergamon Press, Oxford, pp. 26–40.Google Scholar
  15. Jurik, T.W., Zhang, H., & Pleasants, J.M. (1990) Ecophysiological consequences of non-random leaf orientation in the prairie compass plant, Silphium laciniatum. Oecologia 82: 180–186.CrossRefGoogle Scholar
  16. Kao, W.-Y. & Forseth, I.N. (1992) Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ. 15: 703–710.CrossRefGoogle Scholar
  17. Kjellberg, B., Karlsson, S., & Kerstensson, I. (1982) Effects of heliotropic movements of flowers of Dryas octopetala L. on gynoecium temperature and seed development. Oecologia 54: 10–13.CrossRefGoogle Scholar
  18. Körner, C. (1983) Influence of plant physiognomie on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecologica 4: 117–124.Google Scholar
  19. Meinzer, F. & Goldstein, G. (1985) Some consequences of leaf pubescence in the andean giant rosett plant Espeletia timotensis. Ecology 66: 512–520.CrossRefGoogle Scholar
  20. Mooney, H.A., Ehleringer, J.R., & Björkman, O. (1977) The energy balance of leaves of the evergreen shrub Atriplex hymenelytra. Oecologia 29: 301–310.CrossRefGoogle Scholar
  21. Nobel, P.S. (1983) Biophysical plant physiology and ecology. W.H. Freeman and Co., San Francisco.Google Scholar
  22. Salisbury, F.B. & Spomer, G.G. (1964) Leaf temperatures of alpine plants in the field. Planta 60: 497–505.CrossRefGoogle Scholar
  23. Schulze, E.-D., Eller, B.M., Thomas, D.A., Von Willert, D.J., & Brinckmann, E. (1980) Leaf temperatures and energy balance of Welwitschia mirabilis in its natural habitat. Oecologia 44: 258–262.CrossRefGoogle Scholar
  24. Schwartz, A., Gilboa, S., & Koller, D. (1987) Photonastic control of leaflet orientation in Melilotus indicus (Fabaceae). Plant Physiol. 84: 318–323.PubMedCrossRefGoogle Scholar
  25. Smith, W.K. & Geller, G.N. (1980) Leaf and environmental parameters influencing transpiration: Theory and field measurements. Oecologia 46: 308–313.Google Scholar
  26. Stoutjesdijk, P. & Barkmman, J.J. (1987) Microclimate, vegetation and fauna. Opulus Press, Upsala.Google Scholar
  27. Bartels, D. & Nelson, D. (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ. 17: 659–667.CrossRefGoogle Scholar
  28. Caldwell, M.M. (1981) Plant responses to solar ultraviolet radiation. In: Encyclopedia of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 169–197.Google Scholar
  29. Crowe, J.H., Carpenter, J.F., Crowe, L.M., & Anchordoguy, T.J. (1990) Are freezing and dehydration similar stress factors? A comparison of modes of interaction of different biomolecules. Cryobiol. 27: 219–231.CrossRefGoogle Scholar
  30. Day, T.A. (1993) Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants. Oecologia 95: 542–550.Google Scholar
  31. Day, T.A., Martin, G., & Vogelmann, T.C. (1993) Penetration of UV-B radiation in foliage: evidence that he epidermis behaves as a non-uniform filter. Plant Cell Environ. 16: 735–741.CrossRefGoogle Scholar
  32. Day, T.A., Howells, B.W., & Rice, W.J. (1994) Ultraviolet absorption and epidermal-transmittance in foliage. Physiol. Plant. 92: 207–218.CrossRefGoogle Scholar
  33. Henkov, L., Strid, A., Berglund, T., Rydstrom, J., & Ohlsson, A.B. (1996) Alteration of gene expression in Pisum sativum tissue cultures caused by the free radicalgenerating agent 2,2′-azobis (2-aminopropane) dihydrochloride. Physiol. Plant. 96: 6–12.CrossRefGoogle Scholar
  34. Hidema, J., Kumagai, T., Sutherland, J.C., & Sutherland, B.M. (1997) Ultraviolet B-sensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair. Plant Physiol. 113: 39–44.PubMedGoogle Scholar
  35. Hon, W.-C., Griffith, M., Chong, P., & Yang, D.S.C. (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) Leaves. Plant Physiol. 104: 971–980.PubMedGoogle Scholar
  36. Irigoyen, J.J., Perez de Juan, J., & Sanchez-Diaz, M. (1996) Drought enhances chilling tolerance in a chillingsensitive maize (Zea mays) variety. New Phytol. 134;53–59.CrossRefGoogle Scholar
  37. Jabs, T., Dietrich, R.A., & Dangl, J.L. (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856.PubMedCrossRefGoogle Scholar
  38. Kader, J.-C. (1997) Lipid-transfer proteins: A puzzling family of plant proteins. Trends Plant Sci 2: 66–70.CrossRefGoogle Scholar
  39. Karabourniotis, G., Papadopoulos, K., Papamarkou, M., & Manetas, Y. (1992) Ultraviolet-B radiation absorbing capacity of leaf hairs. Physiol. Plant. 86: 414–418.CrossRefGoogle Scholar
  40. Körner, C. & Diemer, M. (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct. Ecol. 1: 179–194.CrossRefGoogle Scholar
  41. Marentes, E., Griffiths, M., Mlynarz, A., & Brush, R.A. (1993) Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiol. Plant. 87: 499–507.CrossRefGoogle Scholar
  42. Ogren, E. (1997) Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiol. 17: 47–51.PubMedCrossRefGoogle Scholar
  43. Ögren, E., Nilsson, T., & Sundblad, L.-G. (1997) Relationships between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings overwintering at raised temperatures: Indications of different sensitivities of spruce and pine. Plant Cell Environ. 20: 247–253.CrossRefGoogle Scholar
  44. Ormrod, D.P., Landry, L.G., & Conklin, P.L. (1995) Shortterm UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants. Physiol. Plant. 93: 602–610.CrossRefGoogle Scholar
  45. Sakai, A. & Larcher, W. (1987) Frost survival of plants. Responses and adaptation to freezing stress. SpringerVerlag, Berlin.CrossRefGoogle Scholar
  46. Sakai, A. & Yoshida, S. (1968) The role of sugar and related compounds in variation of freezing resistance. Cryobiol. 5: 160–174.CrossRefGoogle Scholar
  47. Sharkey, T.D. (1996) Emission of low molecular mass hydrocarbons from plants. Trends Plant Sci. 1: 78–82.CrossRefGoogle Scholar
  48. Sharkey, T.D. (1997) Isoprene production in trees. In: Trees — contributions to modern tree physiology, H. Rennenberg, W. Eschrich, & H. Ziegler (eds). Backhuys, Leiden, pp. 111–120.Google Scholar
  49. Sheahan, J.J. (1996) Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 83: 679–686.CrossRefGoogle Scholar
  50. Sieg, F., Schröder, W., Schmitt, J.M., & Hincha, D.K. (1996) Purification and characterization of a cryoprotective protein (cryoprotectin) from the leaves of coldacclimated cabbage. Plant Physiol. 111: 215–221.PubMedGoogle Scholar
  51. Stapleton, A.E. & Walbot, V. (1994) Flavonoids protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol. 105: 881–889.PubMedCrossRefGoogle Scholar
  52. Stapleton, A.E., Thornber, C.S., & Walbot, V. (1997) UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): Developmental and cellular heterogeneity of damage and repair. Plant Cell Environ. 20: 279–290.CrossRefGoogle Scholar
  53. Van de Staaij, J.W.M., Lenssen, G.M., Stroetenga, M., & Rozema, J. (1993) The combined effects of elevated CO2 and UV-B radiation on growth characteristics of Elymus athericus (=E. pycnathus). Vegetatio 104/105: 433–439.CrossRefGoogle Scholar
  54. Wildi, B. & Luetz, C. (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ. 19: 138–146.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hans Lambers
    • 1
    • 2
  • F. Stuart ChapinIII
    • 3
  • Thijs L. Pons
    • 1
  1. 1.Department of Plant Ecology and Evolutionary BiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Plant Sciences, Faculty of AgricultureUniversity of Western AustraliaNedlandsAustralia
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA

Personalised recommendations