Skip to main content

Plant Water Relations

  • Chapter
Plant Physiological Ecology

Abstract

Although water is the most abundant molecule on the earth’s surface, the availability of water is the factor that most strongly restricts terrestrial plant production on a global scale. Low water availability limits the productivity of many natural ecosystems, particularly in dry climates (Fig. 1). In addition, losses in crop yield due to water stress exceed losses due to all other biotic and environmental factors combined (Boyer 1985). Regions where rainfall is abundant and fairly evenly distributed over the growing season, such as in the wet tropics, have lush vegetation. Where summer droughts are frequent and severe, forests are replaced by grasslands, as in the Asian steppes and North American prairies. Further decrease in rainfall results in semidesert, with scattered shrubs, and finally deserts. Even the effects of temperature are partly exerted through water relations because rates of evaporation and transpiration are correlated with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  • Alamillo, J.M. & Bartels, D. (1996) Light and stage of development influence the expression of desiccationinduced genes in the resurrection plant Craterostigma plantagineum. Plant Cell Environ. 19: 300–310.

    Article  CAS  Google Scholar 

  • Assmann, S.M. & Zeiger, E. (1987) Guard cell bioenergetics. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 125–162.

    Google Scholar 

  • Baas, P. (1986) Ecological patterns in xylem anatomy. In: On the economy of plant form and function, T.J. Givnish (ed.). Cambridge University Press, Cambridge, pp. 327–352.

    Google Scholar 

  • Bartels, D. & Nelson, D. (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ. 17: 659–667.

    Article  CAS  Google Scholar 

  • Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D. & Salamini, F. (1990) Molecular cloning of abscisic acidmodulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. P1anta 181: 27–34.

    CAS  Google Scholar 

  • Bewley, J.D. & Krochko, J.E. (1982) Desiccation-tolerance In: Encyclopedia of plant physiology, N.S., Vol. 12B O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegle (eds). Springer-Verlag, Berlin, pp. 325–400.

    Google Scholar 

  • Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Eister, R., Salamini, F., & Bartels, D. (1993) The unusual sugacomposition in leaves of the resurrection plan Myrothamnus flabellifolia. Physiol. Plant. 87: 223–226.

    Article  CAS  Google Scholar 

  • Bohnert, H.J., Nelson, D.E., & Jensen, R.G. (1995) Adapta tions to environmental stresses. Plant Cell 7: 1099–111

    PubMed  CAS  Google Scholar 

  • Boyer, J.S. (1985) Water transport. Annu. Kev. Plant. Physiol. 36: 473–516.

    Article  Google Scholar 

  • Borchert, R. (1994) Soil and stem water storage determin phenology and distribution of tropical dry forest trees. Ecology 75: 1437–1449.

    Article  Google Scholar 

  • Bradford, K.J. & Hsiao, T.C. (1982) Physiological responses to moderate water stress. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobe, C.B. Osmond, & H. Ziegler (eds). Springer-Verla Berlin, pp. 263–324.

    Google Scholar 

  • Bray, E.A. (1993) Molecular responses to water deficit. Plant Physiol. 103: 1035–1040.

    PubMed  CAS  Google Scholar 

  • Bréda, N., Granier, A., Barataud, F., & Moyne, C. (1995) Soil water dynamics in an oak stand. I. Soil moistu water potential and water uptake by roots. Plant Soil 172: 17–27.

    Article  Google Scholar 

  • Bunce, J.A. (1997) Does transpiration control stomatal responses to water vapour pressure deficit? Plant Cell Environ. 19: 131–135.

    Article  Google Scholar 

  • Caldwell, M.M. & Richards, J.H. (1986) Competing root systems: Morphology and models of absorption. In: On the economy of plant form and function, T.J. Givnish (ed.). Cambridge University Press, Cambridge, pp. 251–273.

    Google Scholar 

  • Caldwell, M.M. & Richards, J.H. (1989) Hydraulic lift: Water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79: 1–5.

    Article  Google Scholar 

  • Cardon, Z.G. & Berry, J. (1992) Effects of O2 and CO2 concentration on the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora. Plant Physiol. 99: 1238–1244.

    Article  PubMed  CAS  Google Scholar 

  • Chiariello, N.R., Field, C.B., & Mooney, H.A. (1987) Midday wilting in a tropical pioneer tree. Funct. Ecol. 1: 3–11.

    Article  Google Scholar 

  • Chrispeels, M.J. & Agre, P. (1994) Aquaporins: Water channel proteins of plant and animal cells. Trends Biochem. Sci. 19: 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Correia, M.J., Pereira, J.S., Chaves, M.M., Rodrigues, M.L., & Pacheo, C.A. (1995) ABA xylem concentrations determine maximum daily leaf conductance of field grown Vitis vinifera L. plants. Plant Cell Environ. 18: 511–521.

    Article  CAS  Google Scholar 

  • Cowan, I.R. (1977) Water use in higher plants. In: Water. Planets, plants and people, A.K. McIntyre (ed.). Australian Academy of Science, Canberra, pp. 71–107.

    Google Scholar 

  • Dace, H., Sherwin, H.W., Illing, N., & Farrant, J.M. (1998) Use of metabolic inhibitors to elucidate mechanisms of recovery from desiccation stress in the resurrection plant Xerophyta humilis. Plant Growth Regul., in press.

    Google Scholar 

  • Daniels, M.J., Mirkov, T.E., & Chrispeels, M.J. (1994) The plasma membrane of Arabidopsis thaliana contains a mercurey-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol. 106: 1325–1333.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C. (1880) The power of movement in plants. John Murray, London.

    Google Scholar 

  • Darwin, F. (1898) Observations on stomata. Phil Trans. Royal Soc., Ser. B, 190: 531–621.

    Article  Google Scholar 

  • Davies, W.J., Tardieu, F., & Trejo, C.L. (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol. 104: 309–314.

    PubMed  CAS  Google Scholar 

  • Dawson, T.E. (1993) Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions. Oecologia 95: 565–574.

    Google Scholar 

  • de Pury, D.G.G. (1995) Scaling photosynthesis and water use from leaves to paddocks. PhD Thesis, Australian National University, Canberra, Australia (Chap. 3).

    Google Scholar 

  • Dixon, H.H. (1914) Transpiration and the ascent or sap in plants. MacMillan, London.

    Book  Google Scholar 

  • Ehleringer, J.R., Phillips, S.L., Schuster, W.S.F., & Sandquist, D.R. (1991) Differential utilization of summer rains by desert plants. Oecologia 75: 1–7.

    Google Scholar 

  • Ehleringer, J.R., Schulze, E.-D., Ziegler, H., Lange, O. L., Farquhar, G.D., & Cowan, I.R. (1985) Xylem-tapping mistletoes: Water or nutrient parasites? Science 227: 1479–1481.

    Article  PubMed  CAS  Google Scholar 

  • Ewers, F.W. & Fisher, J.B. (1991) Why vines have narrow stems: Histological trends in Bauhinia fassoglensis (Fabaceae). Oecologia 88: 233–237.

    Article  Google Scholar 

  • Ewers, F.W., Fisher, J.B., & Chiu, S.T. (1990) A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 84: 544–552.

    Google Scholar 

  • Fichtner, K. & Schulze, E.-D. (1990) Xylem water flow in tropical vines as measured by a steady state heating method. Oecologia 82: 355–361.

    Article  Google Scholar 

  • Flowers, T.J., Troke, P.F., & Yeo, A.R. (1977) The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–121.

    Article  CAS  Google Scholar 

  • Franks, P.J., Cowan, I.R., Tyerman, D., Cleary, A.L., Lloyd, J., & Farquhar, G.D. (1995) Guard cell pressure/ aperture characteristics measured with the pressure probe. Plant Cell Environ. 18: 795–800.

    Article  Google Scholar 

  • Franks, P.J., Cowan, I.R., & Farquhar, G.D. (1997) The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest species. Plant Cell Environ. 20: 142–145.

    Article  Google Scholar 

  • Fu, Q.A. & Ehleringer, J.R. (1989) Heliotropic leaf movements in common beans controlled by air temperature. Plant Physiol. 91: 1162–1167.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E.E. & Livingston, N.J. (1996) Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings. Plant Cell Environ. 19: 1091–1098.

    Article  Google Scholar 

  • Gaff, D.F. (1981) The biology of resurrection plants. In: The biology of Australian plants, J.S. Pate & A.J. McComb (eds). University of Western Australia Press, pp. 115–146.

    Google Scholar 

  • Gamon, J.A. & Pearcy, R.W. (1989) Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79: 475–481.

    Article  Google Scholar 

  • Gartner, B.L. (1995) Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Plant stems. Physiology and functional morphology, B.L. Gartner (ed.). Academic Press, San Diego, pp. 125–149.

    Google Scholar 

  • Hanson, A.D. & Hitz, W.D. (1982) Metabolic responses of mesophytes to plant water deficits. Annu. Rev. Plant. Physiol. 33: 163–203.

    Article  CAS  Google Scholar 

  • Harten, J.B. & Eickmeier, W.G. (1986) Enzyme dynamics of the resurrection plant Selaginella lepidophylla (Hook. & Grev.) spring during rehydration. Plant Physiol. 82: 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Hartung, W., Sauter, A., Turner, N.C., Fillery, I., & Heilmeier, H. (1996) Abscisic acid in soils: What is its function and which mechanisms influence its concentration? Plant Soil 184: 105–110.

    Article  CAS  Google Scholar 

  • Hedrich, R. & Schroeder, J.I. (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev. Plant Physiol. 40: 539–569.

    Google Scholar 

  • Hendrey, G.A.F. (1993) Evolutionary origins and natural functions of fructans-a climatological, biogeographic and mechanistic appraisal. New Phytol. 123: 3–14.

    Article  Google Scholar 

  • Hirasawa, T., Takahashi, H., Suge, H., & Ishihara, K. (1997) Water potential, turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea (Pisum sativum L.). Plant Cell Environ. 20: 381–386.

    Article  Google Scholar 

  • Holbrook, N.M. & Putz, F.E. (1996) From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant Cell Environ. 19: 631–642.

    Article  Google Scholar 

  • Holbrook, N.M., Burns, M.J., & Field, C.B. (1995) Negative xylem pressures in plants: A test of the balancingpressure technique. Science 270: 1193–1194.

    Article  CAS  Google Scholar 

  • Huang, B., North, G.B., & Nobel, P.S. (1993) Soil sheath, photosynthate distribution to roots, and rhizosphere water relations of Opuntia ficus-indica. Int. J. Plant Sci. 154: 425–431.

    Article  Google Scholar 

  • Ingram, J. & Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403.

    Article  PubMed  CAS  Google Scholar 

  • Kalapos, T., Van den Boogaard, R., & Lambers, H. (1996) Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant Soil 185: 137–149.

    Article  CAS  Google Scholar 

  • Kao, W.-Y. & Forseth, I.N. (1992) Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ. 15: 703–710.

    Article  CAS  Google Scholar 

  • Kern, J.S. (1995) Evaluation of soil water retention models based on basic soil physical properties. Soil Sci. Soc. Am. J. 59: 1134–1141.

    Article  CAS  Google Scholar 

  • Kerstiens, G. (1996) Signalling across the divide: A wider perspective of cuticular structure-function relationships. Trends Plant Sci. 1: 125–129.

    Article  Google Scholar 

  • Körner, C., Neumayer M., Pelaez Menendez-Riedl, S., & Smeets-Scheel, A. (1989) Functional morphology of mountain plants. Flora 182: 353–383.

    Google Scholar 

  • Kramer, P.J. (1969) Plant & soil water relationships. McGraw-Hill, New York.

    Google Scholar 

  • Lange, O.L., Lšch, R., Schulze, E.-D., & Kappen, L. (1971) Responses of stomata to changes in humidity. Planta 100: 76–86.

    Article  Google Scholar 

  • Lieth, H. (1975) Modelling the primary productivity of the world. In: Primary productivity of the biosphere, H. Lieth & R.H. Whittaker (eds). Springer-Verlag, Heidelberg, pp. 237–283.

    Chapter  Google Scholar 

  • Lo Gullo, M.A. & Salleo, S. (1988) Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytol. 108: 267–276.

    Article  Google Scholar 

  • Lo Gullo, M.A., Salleo, S., Piaceri, E.C., & Rosso, R. (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ. 18: 661–669.

    Article  Google Scholar 

  • Longstreth, D.J., Bolanos, J.A., & Goddard, R.H. (1985) Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides grown at two light intensities. Am. J. Bot. 72: 14–19.

    Article  Google Scholar 

  • Loveless, A.R. (1961) A nutritional interpretation of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 169–184.

    Google Scholar 

  • Loveless, A.R. (1962) Further evidence to support a nutritional interpretation of sclerophylly. Ann. Bot. 26: 551–561.

    Google Scholar 

  • MacRobbie, E.A.C. (1987) Ionic relations of guard cells. In: Stomatal Function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 125–162.

    Google Scholar 

  • Magnani, F. & Borghetti, M. (1995) Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica. Plant Cell Environ. 18: 689–696.

    Article  Google Scholar 

  • Mansfield, T.A. & McAinsh, M.R. (1995) Hormones as regulators of water balance. In: Plant hormones, P.J. Davies (ed). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Margolis, H., Oren, R., Whitehead, D., & Kaufmann, M.R. (1995) Leaf area dynamics of conifer forests. In: Ecophysiology of coniferous forests, W.K. Smith & T.M. Hinckley (eds). Academic Press, San Diego, pp. 181–223.

    Google Scholar 

  • Maxwell, C., Griffiths, H., Borland, A.M., Broadmeadow, M.S.J., & McDavid, C.R. (1992) Photoinhibitory responses of the epiphytic bromeliad Guzmania monostachia during the dry season in Trinidad maintain photochemical integrity under adverse conditions. Plant Cell Environ. 15: 37–47.

    Article  Google Scholar 

  • Maggio, A. & Joly, R.J. (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems. Evidence for a channel-mediated water pathway. Plant Physiol. 109: 331–335.

    PubMed  CAS  Google Scholar 

  • McCain, D.C., Croxdale, J., & Markley, J.L. (1993) The spatial distribution of chloroplast water in Acer platanoides sun and shade leaves. Plant Cell Environ. 16: 727–733.

    Article  Google Scholar 

  • McCully, M.E. & Canny, M.J. (1988) Pathways and processes of water and nutrient movement in roots. Plant Soil 111: 159–170.

    Article  CAS  Google Scholar 

  • Meidner, H. (1987) Three hundred years of research into stomata. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 7–27.

    Google Scholar 

  • Meidner, H. & Sheriff, D.W. (1976) Water and plants. Blackie, Glasgow.

    Google Scholar 

  • Milburn, J.A. (1997) Water flow in plants. Longman, London.

    Google Scholar 

  • Monteith, J.L. (1995) A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 18: 357–364.

    Article  Google Scholar 

  • Mooney, H.A. & Dunn, E.L. (1970) Photosynthetic systems of Mediterranean climate shrubs and trees of California and Chile. Am. Nat. 194: 447–453.

    Article  Google Scholar 

  • Mooney, H.A., Ehleringer, J., & Berry, J.A. (1976) High photosynthetic capacity of a winter annual in Death Valley. Science 194: 322–324.

    Article  PubMed  CAS  Google Scholar 

  • Mooney, H.A., Gulmon, S.L., Rundel, P.W., & Ehleringer, J. (1980) Further observations on the water relations of Prosopis tamarugo of the northern Atacama desert. Oecologia 44: 177–180.

    Article  Google Scholar 

  • Morison, J.I.L. (1987) Intercellular CO2 concentration and stomatal response to CO2. In: Stomatal function, E. Zeiger, G.D. Farquhar, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 229–251.

    Google Scholar 

  • Morison, J.I.L. (1993) Response of plants to CO2 under water limited conditions. Vegetatio 104/105: 193–209.

    Article  Google Scholar 

  • Morison, J.I.L. & Gifford, R.M. (1983) Stomatal sensitivity of carbon dioxide and humidity. A comparison of two C3 and two C4 grass species. Plant Physiol. 71: 789–796.

    Article  PubMed  CAS  Google Scholar 

  • Mott, K.A. & Parkhurst, D.F. (1991) Stomatal responses to humidity in air and helox. Plant Cell Environ. 14: 509–516.

    Article  Google Scholar 

  • Nabil, M. & Coudret, A. (1995) Effects of sodium chloride on growth, tissue elasticity and solute adjustments in two Acacia nilotica subspecies. Physiol. Plant. 93: 217–224.

    Article  CAS  Google Scholar 

  • Nobel, P.S. (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego.

    Google Scholar 

  • Nobel, P.S. (1996) Ecophysiology of roots of desert plants, with special emphasis on agaves and cacti. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, Inc., New York, pp. 823–858.

    Google Scholar 

  • Nobel, P.S., Zaragoza, L.J., & Smith, W.K. (1975) Relationship between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus. 55: 1067–1070.

    CAS  Google Scholar 

  • North, G.B. & Nobel, P.S. (1997) Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant Soil 191: 249–258.

    Article  CAS  Google Scholar 

  • Oertli, J.J. (1996) Transport of water in the rhizosphere and in roots. In: Plant roots: The hidden half. Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Decker, Inc., New York, pp. 607–633.

    Google Scholar 

  • Oliver, M.J. (1991) Influence of protoplastic water loss on the control of protein synthesis in the desiccationtolerant moss Tortula ruralis. Ramifications for a repairbased mechanism of desiccation tolerance. Plant Physiol. 97: 1501–1511.

    Article  PubMed  CAS  Google Scholar 

  • Oosterhuis, D.M., Walker, S., & Eastman, J. (1985) Soybean leaflet movement as an indicator of crop water stress. Crop. Sci. 25: 1101–1106.

    Article  Google Scholar 

  • Osmond, C.B., Winter, K., & Ziegler, H. (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of plant physiology, N.S. Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 479–547.

    Google Scholar 

  • Outlaw, W.H. Jr. (1995) Stomata and sucrose: A full circle. In: Carbon partitioning and source-sink interactions in plants, M.A. Madore & W.J. Lucas (eds). American Society of Plant Physiologists, Rockville, MD, pp. 56–67.

    Google Scholar 

  • Passioura, J.B. (1982) Water in the soil-plant-atmosphere continuum. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 5–33.

    Google Scholar 

  • Passioura, J.B. (1988a) Water transport in and to roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 245–265.

    Article  Google Scholar 

  • Passioura, J.B. (1988b) Root signals control leaf expansion in wheat seedlings growing in drying soil. Aust. J. Plant Physiol. 15: 687–693.

    Article  Google Scholar 

  • Passioura, J.B. (1988c) Responses to Dr P.J. Kramer’s article, “Changing concepts regarding plant water relations”. Plant Cell Environ. 11: 569–571.

    Article  Google Scholar 

  • Passioura, J.B. (1991) Soil structure and plant growth. Aust. J. Soil Res. 29: 717–728.

    Article  Google Scholar 

  • Pedersen, O. & Sand-Jensen, K. (1997) Transpiration does not control growth and nutrient supply in the amphibious plant Mentha aquatica. Plant Cell Environ. 20: 117–123.

    Article  CAS  Google Scholar 

  • Pelah, D., Wang, W., Altman, A., Shoseyov, O., & Bartels, D. (1997) Differential accumulation of water stressrelated proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol. Plant. 99: 153–159.

    Article  CAS  Google Scholar 

  • Peterson, C.A. (1989) Significance of the exodermis in root function. In: Structural and functional aspects of transport in roots, B.C. Loughman, O. Gasparikova, & J. Kolek (eds). Kluwer Academic Publishers, Dordrecht, pp. 35–40.

    Chapter  Google Scholar 

  • Peterson, C.A. & Enstone, D.E. (1996) Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant. 97: 592–598.

    Article  CAS  Google Scholar 

  • Piatkowski, D., Schneider, K., Salamini, F., & Bartels, D. (1990) Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol. 94: 1682–1688.

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits, E.A.H., Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.J., & Smeekens, S.J.M. (1995) Improved performance of transgenic fructanaccumulating tobacco under drought stress. Plant Physiol. 107: 125–130.

    PubMed  CAS  Google Scholar 

  • Pockman, W.T., Sperry, J.S., & O’Leary, J.W. (1995) Sustained and significant negative water pressure in xylem. Nature 378: 715–716.

    Article  CAS  Google Scholar 

  • Pollard, A. & Wyn Jones, R.G. (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144: 291–298.

    Article  CAS  Google Scholar 

  • Pollock, C.J. & Cairns, A.J. (1991) Fructan metabolism in grasses and cereals. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 42: 77–101.

    Article  CAS  Google Scholar 

  • Pritchard, J. (1994) The control of cell expansion in roots. New Phvtol. 127: 3–26.

    Article  CAS  Google Scholar 

  • Pütz, N. (1996) Development and function of contractile roots. In: Plant roots: The hidden half. Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Decker, Inc., New York. pp. 859–894.

    Google Scholar 

  • Richards, J.H. & Caldwell, M.M. (1987) Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73: 486–489.

    Article  Google Scholar 

  • Rundel, P.W. (1995) Adaptive significance of some morphological and physiological characteristics in Mediterranean plants: Facts and fallacies. In: Time scales of biological responses to water constraints. The case of Mediterranean Biota, J. Roy, J. Aronson, & F. di Castri (eds). SPB Academic Publishing, Amsterdam, pp. 119–139.

    Google Scholar 

  • Pyankov, V.I. (1993) The role of the photosynthetic apparatus in adaptation of plants to environment. PhD Thesis, Moscow, Institute of Plant Physiology.

    Google Scholar 

  • Raschke, K. (1987) Action of abscisic acid on guard cells. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (ed). Stanford University Press, Stanford, pp. 253–279.

    Google Scholar 

  • Robichaux, R.H. & Canfield, J.E. (1985) Tissue elastic properties of eight Hawaiian Dubautia species that differ in habitat and diploid chromosome number. Oecologia 66: 77–80.

    Article  Google Scholar 

  • Robichaux, R.H., Holsinger, K.E., & Morse, S.R. (1986) Turgor maintenance in Hawaiian Dubautia species: The role of variation in tissue osmotic and elastic properties. In: On the economy of plant form and function, T.J. Givnish (ed). Cambridge University Press, Cambridge, pp. 353–380.

    Google Scholar 

  • Rodriguez, M.L., Chaves, M.M., Wendler, R., David, M.M., Quick, W.P., Leegood, R.C., Stitt, M., & Pereira, J.S. (1993) Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Aust. J. Plant Physiol. 20: 309–321.

    Article  Google Scholar 

  • Satter, R.L. & Galston, A.W. (1981) Mechanism of control of leaf movements. Annu. Rev. Plant Physiol. 32: 83–110.

    Article  CAS  Google Scholar 

  • Schmidt, J.E. & Kaiser, W.M. (1987) Response of the succulent leaves of Peperomia magnoliaefolia to dehydration. Plant Physiol. 83: 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Scholander, P.F., Bradstreet, E.D., & Hemmingsen, E.A. (1965) Sap pressures in vascular plants. Science 148: 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, E.-D. (1991) Water and nutrient interactions with plant water stress. In: Response of plants to multiple stresses, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 89–101.

    Chapter  Google Scholar 

  • Schulze, E.-D. & Hall, A.E. (1982) Stomatal responses, water loss, and CO2 assimilation rates of plants in contrasting environments. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 181–230.

    Google Scholar 

  • Schulze, E.-D., Cermak, J., Matyssek, R., Penka, M., Zimmermann, R., Vasicek, F., Gries, W., & Kucera, J. (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475–483.

    Article  Google Scholar 

  • Schulze, E.-D., Turner, N.C., Gollan, T., & Shakel, K.A. (1987) Stomatal responses to air humidity and soil drought. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 311–321.

    Google Scholar 

  • Schwartz, A., Gilboa, S. & Koller, D. (1987) Photonastic control of leaflet orientation in Melilotus indicus (Fabaceae). Plant Physiol. 84: 318–323.

    Article  PubMed  CAS  Google Scholar 

  • Shackel, K. (1996) To tense, or not too tense: reopening the debate about water ascent in plants. Trends Plant Sci. 1: 105–106.

    Article  Google Scholar 

  • Shah, N., Smirnoff, N., & Stewart, G.R. (1987) Photosynthesis and stomatal characteristics of Striga hermonthica in relation to its parasitic habit. Physiol. Plant. 69: 699–703.

    Article  Google Scholar 

  • Sharkey, T.D. & Ogawa, T. (1987) Stomatal responses to light. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 195–208.

    Google Scholar 

  • Sharpe, P.J.H., Wu, H. & Spence, R.D. (1987) Stomatal mechanics. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 91–114.

    Google Scholar 

  • Sherwin, H.W. & Farrant, H.W. (1996) Differences in rehydration of three desiccation-tolerant angiosperm species. Ann. Bot. 78: 703–710.

    Article  Google Scholar 

  • Sherwin, H.W. & Farrant, H.W. (1998) Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regul., in press.

    Google Scholar 

  • Slatyer, R.O. (1967) Plant — water relationships. Academic Press, London.

    Google Scholar 

  • Smirnoff, N. & Cumbes, Q.J. (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057–1060.

    Article  CAS  Google Scholar 

  • Sowell, J.B., McNulty, S.P., & Schilling, B.K. (1996) The role of stem recharge in reducing the winter desiccation of Picea engelmannii (Pinaceae) needles at alpine timberline. Am. J. Bot. 83: 1351–1355.

    Article  Google Scholar 

  • Sperry, J.S. (1995) Limitations on stem water transport and their consequences. In: Plant stems. Physiology and functional morphology , B.L. Gartner (ed). Academic Press, San Diego, pp. 105–124.

    Google Scholar 

  • Sperry, J.S. & Sullivan, J.E. (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ringporous, diffuse-porous, and conifer species. Plant Physiol. 100: 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, J.S. & Tyree, M.T. (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol. 88: 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, J.S. & Tyree, M.T. (1990) Water-stress — induced xylem embolism in three species of conifers. Plant Physiol. 88: 581–587.

    Article  Google Scholar 

  • Sperry, J.S., Saliendra, N.Z., Pockman, W.T., Cochard, H., Cuizat, P., Davis, S.D., Ewers, F.W., & Tyree, M.T. (1996) New evidence for large negative xylem pressures and their measurement by the pressure chamber technique. Plant Cell Environ. 19: 427–436.

    Article  Google Scholar 

  • Sprenger, N., Bortlik, K., Brandt, A., Boller, T., & Wiemken, A. (1995) Purification, cloning, and functional expression of scucrose: fructan 6fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc. Natl. Acad. Sci. USA 92: 11652–11656.

    Article  PubMed  CAS  Google Scholar 

  • Steponkus, P.L. (1981) Responses to extreme temperatures. Cellular and sub-cellular bases. In: Encyclopedia of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). SpringerVerlag, Berlin, pp. 371–402.

    Google Scholar 

  • Steudle, E. (1994) Water transport across roots. Plant Soil 167: 79–90.

    Article  CAS  Google Scholar 

  • Steudle, E. (1995) Trees under tension. Nature 378: 663–664.

    Article  CAS  Google Scholar 

  • Stirzaker, R.J. & Passioura, J.B. (1996) The water relations of the root — soil interface. Plant Cell Environ. 19: 201–208.

    Article  Google Scholar 

  • Stirzaker, R.J., Passioura, J.B., & Wilms, Y. (1996) Soil structure and plant growth: Impact of bulk density and biopores. Plant Soil 185: 151–162.

    Article  CAS  Google Scholar 

  • Takahashi, H. (1994) Hydrotropism and its interaction with gravitropism in roots. Plant Soil 165: 301–308.

    Article  CAS  Google Scholar 

  • Takahashi, H. & Scott, T.K. (1993) Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap. Plant Cell Environ. 16: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Tardieu, F., Zhang, J., Katerji, N., Bethenod, O., Palmer, S., & Davies, W.J. (1992) Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant Cell Environ. 15: 193–197.

    Article  CAS  Google Scholar 

  • Tardieu, F., Lafarge, T., & Simonneau, T. (1996) Stomatal control by fed or endogenous xylem ABA in sunflower: interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species. Plant Cell Environ. 19: 75–84.

    Article  CAS  Google Scholar 

  • Thorburn, P.J. & Ehleringer, J.R. (1995) Root water uptake of field-growing plants indicated by measurements of natural-abundance deuterium. Plant Soil 177: 225–233.

    Article  CAS  Google Scholar 

  • Tranquillini, W. (1982) Frost-drought and its ecological significance. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 379–400.

    Google Scholar 

  • Turrel, F.M. (1936) The area of the internal exposed surface of dicotyledon leaves. Am. J. Bot. 23: 255–264.

    Article  Google Scholar 

  • Tyree, M.T. & Jarvis, P.G. (1982) Water in tissues and cells. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Springer-Verlag, Berlin, pp. 36–77.

    Google Scholar 

  • Tyree, M.T. & Sperry, J.S. (1989) Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Mol. Biol. 40: 19–38.

    Article  Google Scholar 

  • Van den Boogaard, R., Veneklaas, E.J., Peacock, J., & Lambers, H. (1996) Yield and water use of wheat (Triticum aestivum L.) cultivars in a Mediterranean environment: Effects of water availability and sowing density. Plant Soil 181: 251–262.

    Article  Google Scholar 

  • Van Hylckama, T.E.A. (1974) Water use by salt cedar as measured by the water budget method. U.S. geological survey papers, 491-E.

    Google Scholar 

  • Vijn, I., Van Dijken, A., Sprenger, N., Van Dun, K., Weisbeek, P., Wiemken, A., & Smeekens, S. (1997) Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan: fructan 6Gfructosyltransferase. Plant J. 11: 387–398

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann, T.C. (1984) Site of light perception and motor cells in a sun-tracking lupine (Lupinus succulentus). Physiol. Plant. 62: 335–340.

    Article  Google Scholar 

  • Vogt, K.A., Vogt, D.A., Palmiotto, P.A., Boon, P., O’Hara, J., & Asbjornson, H. (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil. 187: 159–219.

    Article  CAS  Google Scholar 

  • Wang, X.-L., Canny, M.J., & McCully, M.E. (1991) The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiol. Plant. 82: 157–162.

    Article  Google Scholar 

  • Wisniewski, M., Davis, G., & Arora, R. (1991) Effect of macerase, oxalic acid, and EGTA on deep supercooling and pit membrane structure of xylem parenchyma of peach. Plant Physiol. 96: 1354–1359.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, F.I. (1995) Ecophysiological controls of conifer distributions. In: Ecophysiology of coniferous forests, W.K. Smith & T.M. Hinckley (eds). Academic Press, San Diego, pp. 79–94.

    Google Scholar 

  • Wyn Jones, R.G. & Gorham, J. (1983) Osmoregulation. In: Encyclopedia of plant physiology, N.S., Vol. 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 35–58.

    Google Scholar 

  • Yang, S. & Tyree, M.T. (1992) A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ. 15: 633–643.

    Article  Google Scholar 

  • Zeiger, E., Iino, M., Shimazaki, K.-I., & Ogawa, T. (1987) The blue-light response of stomata: Mechanism and function. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 209–227.

    Google Scholar 

  • Zimmermann, M.H. (1983) Xylem structure and the ascent of sap. Springer-Verlag, Berlin.

    Google Scholar 

  • Zimmermann, M.H. & Milburn, J.A. (1982) Transport and storage of water. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 135–151.

    Google Scholar 

  • Zimmermann, U., Meinzer, F.C., Benkert, R., Zhu, J.J., Schneider, H., Goldstein, G., Kuchenbrod, E., & Haase, A. (1994) Xylem water transport: Is the available evidence consistent with the cohesion theory? Plant Cell Environ. 17: 1169–1181.

    Article  Google Scholar 

  • Zwieniecki, M.A. & Newton, M. (1995) Roots growing in rock fissures: Their morphological adaptation. Plant Soil 172: 181–187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (1998). Plant Water Relations. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2855-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2855-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2857-6

  • Online ISBN: 978-1-4757-2855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics