Plant Water Relations

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


Although water is the most abundant molecule on the earth’s surface, the availability of water is the factor that most strongly restricts terrestrial plant production on a global scale. Low water availability limits the productivity of many natural ecosystems, particularly in dry climates (Fig. 1). In addition, losses in crop yield due to water stress exceed losses due to all other biotic and environmental factors combined (Boyer 1985). Regions where rainfall is abundant and fairly evenly distributed over the growing season, such as in the wet tropics, have lush vegetation. Where summer droughts are frequent and severe, forests are replaced by grasslands, as in the Asian steppes and North American prairies. Further decrease in rainfall results in semidesert, with scattered shrubs, and finally deserts. Even the effects of temperature are partly exerted through water relations because rates of evaporation and transpiration are correlated with temperature.


Stomatal Conductance Guard Cell Relative Water Content Plant Cell Environ Soil Water Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Alamillo, J.M. & Bartels, D. (1996) Light and stage of development influence the expression of desiccationinduced genes in the resurrection plant Craterostigma plantagineum. Plant Cell Environ. 19: 300–310.CrossRefGoogle Scholar
  2. Assmann, S.M. & Zeiger, E. (1987) Guard cell bioenergetics. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 125–162.Google Scholar
  3. Baas, P. (1986) Ecological patterns in xylem anatomy. In: On the economy of plant form and function, T.J. Givnish (ed.). Cambridge University Press, Cambridge, pp. 327–352.Google Scholar
  4. Bartels, D. & Nelson, D. (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ. 17: 659–667.CrossRefGoogle Scholar
  5. Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D. & Salamini, F. (1990) Molecular cloning of abscisic acidmodulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. P1anta 181: 27–34.Google Scholar
  6. Bewley, J.D. & Krochko, J.E. (1982) Desiccation-tolerance In: Encyclopedia of plant physiology, N.S., Vol. 12B O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegle (eds). Springer-Verlag, Berlin, pp. 325–400.Google Scholar
  7. Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Eister, R., Salamini, F., & Bartels, D. (1993) The unusual sugacomposition in leaves of the resurrection plan Myrothamnus flabellifolia. Physiol. Plant. 87: 223–226.CrossRefGoogle Scholar
  8. Bohnert, H.J., Nelson, D.E., & Jensen, R.G. (1995) Adapta tions to environmental stresses. Plant Cell 7: 1099–111PubMedGoogle Scholar
  9. Boyer, J.S. (1985) Water transport. Annu. Kev. Plant. Physiol. 36: 473–516.CrossRefGoogle Scholar
  10. Borchert, R. (1994) Soil and stem water storage determin phenology and distribution of tropical dry forest trees. Ecology 75: 1437–1449.CrossRefGoogle Scholar
  11. Bradford, K.J. & Hsiao, T.C. (1982) Physiological responses to moderate water stress. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobe, C.B. Osmond, & H. Ziegler (eds). Springer-Verla Berlin, pp. 263–324.Google Scholar
  12. Bray, E.A. (1993) Molecular responses to water deficit. Plant Physiol. 103: 1035–1040.PubMedGoogle Scholar
  13. Bréda, N., Granier, A., Barataud, F., & Moyne, C. (1995) Soil water dynamics in an oak stand. I. Soil moistu water potential and water uptake by roots. Plant Soil 172: 17–27.CrossRefGoogle Scholar
  14. Bunce, J.A. (1997) Does transpiration control stomatal responses to water vapour pressure deficit? Plant Cell Environ. 19: 131–135.CrossRefGoogle Scholar
  15. Caldwell, M.M. & Richards, J.H. (1986) Competing root systems: Morphology and models of absorption. In: On the economy of plant form and function, T.J. Givnish (ed.). Cambridge University Press, Cambridge, pp. 251–273.Google Scholar
  16. Caldwell, M.M. & Richards, J.H. (1989) Hydraulic lift: Water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79: 1–5.CrossRefGoogle Scholar
  17. Cardon, Z.G. & Berry, J. (1992) Effects of O2 and CO2 concentration on the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora. Plant Physiol. 99: 1238–1244.PubMedCrossRefGoogle Scholar
  18. Chiariello, N.R., Field, C.B., & Mooney, H.A. (1987) Midday wilting in a tropical pioneer tree. Funct. Ecol. 1: 3–11.CrossRefGoogle Scholar
  19. Chrispeels, M.J. & Agre, P. (1994) Aquaporins: Water channel proteins of plant and animal cells. Trends Biochem. Sci. 19: 421–425.PubMedCrossRefGoogle Scholar
  20. Correia, M.J., Pereira, J.S., Chaves, M.M., Rodrigues, M.L., & Pacheo, C.A. (1995) ABA xylem concentrations determine maximum daily leaf conductance of field grown Vitis vinifera L. plants. Plant Cell Environ. 18: 511–521.CrossRefGoogle Scholar
  21. Cowan, I.R. (1977) Water use in higher plants. In: Water. Planets, plants and people, A.K. McIntyre (ed.). Australian Academy of Science, Canberra, pp. 71–107.Google Scholar
  22. Dace, H., Sherwin, H.W., Illing, N., & Farrant, J.M. (1998) Use of metabolic inhibitors to elucidate mechanisms of recovery from desiccation stress in the resurrection plant Xerophyta humilis. Plant Growth Regul., in press.Google Scholar
  23. Daniels, M.J., Mirkov, T.E., & Chrispeels, M.J. (1994) The plasma membrane of Arabidopsis thaliana contains a mercurey-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol. 106: 1325–1333.PubMedCrossRefGoogle Scholar
  24. Darwin, C. (1880) The power of movement in plants. John Murray, London.Google Scholar
  25. Darwin, F. (1898) Observations on stomata. Phil Trans. Royal Soc., Ser. B, 190: 531–621.CrossRefGoogle Scholar
  26. Davies, W.J., Tardieu, F., & Trejo, C.L. (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol. 104: 309–314.PubMedGoogle Scholar
  27. Dawson, T.E. (1993) Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions. Oecologia 95: 565–574.Google Scholar
  28. de Pury, D.G.G. (1995) Scaling photosynthesis and water use from leaves to paddocks. PhD Thesis, Australian National University, Canberra, Australia (Chap. 3).Google Scholar
  29. Dixon, H.H. (1914) Transpiration and the ascent or sap in plants. MacMillan, London.CrossRefGoogle Scholar
  30. Ehleringer, J.R., Phillips, S.L., Schuster, W.S.F., & Sandquist, D.R. (1991) Differential utilization of summer rains by desert plants. Oecologia 75: 1–7.Google Scholar
  31. Ehleringer, J.R., Schulze, E.-D., Ziegler, H., Lange, O. L., Farquhar, G.D., & Cowan, I.R. (1985) Xylem-tapping mistletoes: Water or nutrient parasites? Science 227: 1479–1481.PubMedCrossRefGoogle Scholar
  32. Ewers, F.W. & Fisher, J.B. (1991) Why vines have narrow stems: Histological trends in Bauhinia fassoglensis (Fabaceae). Oecologia 88: 233–237.CrossRefGoogle Scholar
  33. Ewers, F.W., Fisher, J.B., & Chiu, S.T. (1990) A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 84: 544–552.Google Scholar
  34. Fichtner, K. & Schulze, E.-D. (1990) Xylem water flow in tropical vines as measured by a steady state heating method. Oecologia 82: 355–361.CrossRefGoogle Scholar
  35. Flowers, T.J., Troke, P.F., & Yeo, A.R. (1977) The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–121.CrossRefGoogle Scholar
  36. Franks, P.J., Cowan, I.R., Tyerman, D., Cleary, A.L., Lloyd, J., & Farquhar, G.D. (1995) Guard cell pressure/ aperture characteristics measured with the pressure probe. Plant Cell Environ. 18: 795–800.CrossRefGoogle Scholar
  37. Franks, P.J., Cowan, I.R., & Farquhar, G.D. (1997) The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest species. Plant Cell Environ. 20: 142–145.CrossRefGoogle Scholar
  38. Fu, Q.A. & Ehleringer, J.R. (1989) Heliotropic leaf movements in common beans controlled by air temperature. Plant Physiol. 91: 1162–1167.PubMedCrossRefGoogle Scholar
  39. Fuchs, E.E. & Livingston, N.J. (1996) Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings. Plant Cell Environ. 19: 1091–1098.CrossRefGoogle Scholar
  40. Gaff, D.F. (1981) The biology of resurrection plants. In: The biology of Australian plants, J.S. Pate & A.J. McComb (eds). University of Western Australia Press, pp. 115–146.Google Scholar
  41. Gamon, J.A. & Pearcy, R.W. (1989) Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79: 475–481.CrossRefGoogle Scholar
  42. Gartner, B.L. (1995) Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Plant stems. Physiology and functional morphology, B.L. Gartner (ed.). Academic Press, San Diego, pp. 125–149.Google Scholar
  43. Hanson, A.D. & Hitz, W.D. (1982) Metabolic responses of mesophytes to plant water deficits. Annu. Rev. Plant. Physiol. 33: 163–203.CrossRefGoogle Scholar
  44. Harten, J.B. & Eickmeier, W.G. (1986) Enzyme dynamics of the resurrection plant Selaginella lepidophylla (Hook. & Grev.) spring during rehydration. Plant Physiol. 82: 61–64.PubMedCrossRefGoogle Scholar
  45. Hartung, W., Sauter, A., Turner, N.C., Fillery, I., & Heilmeier, H. (1996) Abscisic acid in soils: What is its function and which mechanisms influence its concentration? Plant Soil 184: 105–110.CrossRefGoogle Scholar
  46. Hedrich, R. & Schroeder, J.I. (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev. Plant Physiol. 40: 539–569.Google Scholar
  47. Hendrey, G.A.F. (1993) Evolutionary origins and natural functions of fructans-a climatological, biogeographic and mechanistic appraisal. New Phytol. 123: 3–14.CrossRefGoogle Scholar
  48. Hirasawa, T., Takahashi, H., Suge, H., & Ishihara, K. (1997) Water potential, turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea (Pisum sativum L.). Plant Cell Environ. 20: 381–386.CrossRefGoogle Scholar
  49. Holbrook, N.M. & Putz, F.E. (1996) From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant Cell Environ. 19: 631–642.CrossRefGoogle Scholar
  50. Holbrook, N.M., Burns, M.J., & Field, C.B. (1995) Negative xylem pressures in plants: A test of the balancingpressure technique. Science 270: 1193–1194.CrossRefGoogle Scholar
  51. Huang, B., North, G.B., & Nobel, P.S. (1993) Soil sheath, photosynthate distribution to roots, and rhizosphere water relations of Opuntia ficus-indica. Int. J. Plant Sci. 154: 425–431.CrossRefGoogle Scholar
  52. Ingram, J. & Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403.PubMedCrossRefGoogle Scholar
  53. Kalapos, T., Van den Boogaard, R., & Lambers, H. (1996) Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant Soil 185: 137–149.CrossRefGoogle Scholar
  54. Kao, W.-Y. & Forseth, I.N. (1992) Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ. 15: 703–710.CrossRefGoogle Scholar
  55. Kern, J.S. (1995) Evaluation of soil water retention models based on basic soil physical properties. Soil Sci. Soc. Am. J. 59: 1134–1141.CrossRefGoogle Scholar
  56. Kerstiens, G. (1996) Signalling across the divide: A wider perspective of cuticular structure-function relationships. Trends Plant Sci. 1: 125–129.CrossRefGoogle Scholar
  57. Körner, C., Neumayer M., Pelaez Menendez-Riedl, S., & Smeets-Scheel, A. (1989) Functional morphology of mountain plants. Flora 182: 353–383.Google Scholar
  58. Kramer, P.J. (1969) Plant & soil water relationships. McGraw-Hill, New York.Google Scholar
  59. Lange, O.L., Lšch, R., Schulze, E.-D., & Kappen, L. (1971) Responses of stomata to changes in humidity. Planta 100: 76–86.CrossRefGoogle Scholar
  60. Lieth, H. (1975) Modelling the primary productivity of the world. In: Primary productivity of the biosphere, H. Lieth & R.H. Whittaker (eds). Springer-Verlag, Heidelberg, pp. 237–283.CrossRefGoogle Scholar
  61. Lo Gullo, M.A. & Salleo, S. (1988) Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytol. 108: 267–276.CrossRefGoogle Scholar
  62. Lo Gullo, M.A., Salleo, S., Piaceri, E.C., & Rosso, R. (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ. 18: 661–669.CrossRefGoogle Scholar
  63. Longstreth, D.J., Bolanos, J.A., & Goddard, R.H. (1985) Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides grown at two light intensities. Am. J. Bot. 72: 14–19.CrossRefGoogle Scholar
  64. Loveless, A.R. (1961) A nutritional interpretation of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 169–184.Google Scholar
  65. Loveless, A.R. (1962) Further evidence to support a nutritional interpretation of sclerophylly. Ann. Bot. 26: 551–561.Google Scholar
  66. MacRobbie, E.A.C. (1987) Ionic relations of guard cells. In: Stomatal Function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 125–162.Google Scholar
  67. Magnani, F. & Borghetti, M. (1995) Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica. Plant Cell Environ. 18: 689–696.CrossRefGoogle Scholar
  68. Mansfield, T.A. & McAinsh, M.R. (1995) Hormones as regulators of water balance. In: Plant hormones, P.J. Davies (ed). Kluwer Academic Publishers, Dordrecht.Google Scholar
  69. Margolis, H., Oren, R., Whitehead, D., & Kaufmann, M.R. (1995) Leaf area dynamics of conifer forests. In: Ecophysiology of coniferous forests, W.K. Smith & T.M. Hinckley (eds). Academic Press, San Diego, pp. 181–223.Google Scholar
  70. Maxwell, C., Griffiths, H., Borland, A.M., Broadmeadow, M.S.J., & McDavid, C.R. (1992) Photoinhibitory responses of the epiphytic bromeliad Guzmania monostachia during the dry season in Trinidad maintain photochemical integrity under adverse conditions. Plant Cell Environ. 15: 37–47.CrossRefGoogle Scholar
  71. Maggio, A. & Joly, R.J. (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems. Evidence for a channel-mediated water pathway. Plant Physiol. 109: 331–335.PubMedGoogle Scholar
  72. McCain, D.C., Croxdale, J., & Markley, J.L. (1993) The spatial distribution of chloroplast water in Acer platanoides sun and shade leaves. Plant Cell Environ. 16: 727–733.CrossRefGoogle Scholar
  73. McCully, M.E. & Canny, M.J. (1988) Pathways and processes of water and nutrient movement in roots. Plant Soil 111: 159–170.CrossRefGoogle Scholar
  74. Meidner, H. (1987) Three hundred years of research into stomata. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 7–27.Google Scholar
  75. Meidner, H. & Sheriff, D.W. (1976) Water and plants. Blackie, Glasgow.Google Scholar
  76. Milburn, J.A. (1997) Water flow in plants. Longman, London.Google Scholar
  77. Monteith, J.L. (1995) A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 18: 357–364.CrossRefGoogle Scholar
  78. Mooney, H.A. & Dunn, E.L. (1970) Photosynthetic systems of Mediterranean climate shrubs and trees of California and Chile. Am. Nat. 194: 447–453.CrossRefGoogle Scholar
  79. Mooney, H.A., Ehleringer, J., & Berry, J.A. (1976) High photosynthetic capacity of a winter annual in Death Valley. Science 194: 322–324.PubMedCrossRefGoogle Scholar
  80. Mooney, H.A., Gulmon, S.L., Rundel, P.W., & Ehleringer, J. (1980) Further observations on the water relations of Prosopis tamarugo of the northern Atacama desert. Oecologia 44: 177–180.CrossRefGoogle Scholar
  81. Morison, J.I.L. (1987) Intercellular CO2 concentration and stomatal response to CO2. In: Stomatal function, E. Zeiger, G.D. Farquhar, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 229–251.Google Scholar
  82. Morison, J.I.L. (1993) Response of plants to CO2 under water limited conditions. Vegetatio 104/105: 193–209.CrossRefGoogle Scholar
  83. Morison, J.I.L. & Gifford, R.M. (1983) Stomatal sensitivity of carbon dioxide and humidity. A comparison of two C3 and two C4 grass species. Plant Physiol. 71: 789–796.PubMedCrossRefGoogle Scholar
  84. Mott, K.A. & Parkhurst, D.F. (1991) Stomatal responses to humidity in air and helox. Plant Cell Environ. 14: 509–516.CrossRefGoogle Scholar
  85. Nabil, M. & Coudret, A. (1995) Effects of sodium chloride on growth, tissue elasticity and solute adjustments in two Acacia nilotica subspecies. Physiol. Plant. 93: 217–224.CrossRefGoogle Scholar
  86. Nobel, P.S. (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego.Google Scholar
  87. Nobel, P.S. (1996) Ecophysiology of roots of desert plants, with special emphasis on agaves and cacti. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, Inc., New York, pp. 823–858.Google Scholar
  88. Nobel, P.S., Zaragoza, L.J., & Smith, W.K. (1975) Relationship between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus. 55: 1067–1070.Google Scholar
  89. North, G.B. & Nobel, P.S. (1997) Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant Soil 191: 249–258.CrossRefGoogle Scholar
  90. Oertli, J.J. (1996) Transport of water in the rhizosphere and in roots. In: Plant roots: The hidden half. Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Decker, Inc., New York, pp. 607–633.Google Scholar
  91. Oliver, M.J. (1991) Influence of protoplastic water loss on the control of protein synthesis in the desiccationtolerant moss Tortula ruralis. Ramifications for a repairbased mechanism of desiccation tolerance. Plant Physiol. 97: 1501–1511.PubMedCrossRefGoogle Scholar
  92. Oosterhuis, D.M., Walker, S., & Eastman, J. (1985) Soybean leaflet movement as an indicator of crop water stress. Crop. Sci. 25: 1101–1106.CrossRefGoogle Scholar
  93. Osmond, C.B., Winter, K., & Ziegler, H. (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of plant physiology, N.S. Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 479–547.Google Scholar
  94. Outlaw, W.H. Jr. (1995) Stomata and sucrose: A full circle. In: Carbon partitioning and source-sink interactions in plants, M.A. Madore & W.J. Lucas (eds). American Society of Plant Physiologists, Rockville, MD, pp. 56–67.Google Scholar
  95. Passioura, J.B. (1982) Water in the soil-plant-atmosphere continuum. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 5–33.Google Scholar
  96. Passioura, J.B. (1988a) Water transport in and to roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 245–265.CrossRefGoogle Scholar
  97. Passioura, J.B. (1988b) Root signals control leaf expansion in wheat seedlings growing in drying soil. Aust. J. Plant Physiol. 15: 687–693.CrossRefGoogle Scholar
  98. Passioura, J.B. (1988c) Responses to Dr P.J. Kramer’s article, “Changing concepts regarding plant water relations”. Plant Cell Environ. 11: 569–571.CrossRefGoogle Scholar
  99. Passioura, J.B. (1991) Soil structure and plant growth. Aust. J. Soil Res. 29: 717–728.CrossRefGoogle Scholar
  100. Pedersen, O. & Sand-Jensen, K. (1997) Transpiration does not control growth and nutrient supply in the amphibious plant Mentha aquatica. Plant Cell Environ. 20: 117–123.CrossRefGoogle Scholar
  101. Pelah, D., Wang, W., Altman, A., Shoseyov, O., & Bartels, D. (1997) Differential accumulation of water stressrelated proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol. Plant. 99: 153–159.CrossRefGoogle Scholar
  102. Peterson, C.A. (1989) Significance of the exodermis in root function. In: Structural and functional aspects of transport in roots, B.C. Loughman, O. Gasparikova, & J. Kolek (eds). Kluwer Academic Publishers, Dordrecht, pp. 35–40.CrossRefGoogle Scholar
  103. Peterson, C.A. & Enstone, D.E. (1996) Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant. 97: 592–598.CrossRefGoogle Scholar
  104. Piatkowski, D., Schneider, K., Salamini, F., & Bartels, D. (1990) Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol. 94: 1682–1688.PubMedCrossRefGoogle Scholar
  105. Pilon-Smits, E.A.H., Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.J., & Smeekens, S.J.M. (1995) Improved performance of transgenic fructanaccumulating tobacco under drought stress. Plant Physiol. 107: 125–130.PubMedGoogle Scholar
  106. Pockman, W.T., Sperry, J.S., & O’Leary, J.W. (1995) Sustained and significant negative water pressure in xylem. Nature 378: 715–716.CrossRefGoogle Scholar
  107. Pollard, A. & Wyn Jones, R.G. (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144: 291–298.CrossRefGoogle Scholar
  108. Pollock, C.J. & Cairns, A.J. (1991) Fructan metabolism in grasses and cereals. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 42: 77–101.CrossRefGoogle Scholar
  109. Pritchard, J. (1994) The control of cell expansion in roots. New Phvtol. 127: 3–26.CrossRefGoogle Scholar
  110. Pütz, N. (1996) Development and function of contractile roots. In: Plant roots: The hidden half. Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Decker, Inc., New York. pp. 859–894.Google Scholar
  111. Richards, J.H. & Caldwell, M.M. (1987) Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73: 486–489.CrossRefGoogle Scholar
  112. Rundel, P.W. (1995) Adaptive significance of some morphological and physiological characteristics in Mediterranean plants: Facts and fallacies. In: Time scales of biological responses to water constraints. The case of Mediterranean Biota, J. Roy, J. Aronson, & F. di Castri (eds). SPB Academic Publishing, Amsterdam, pp. 119–139.Google Scholar
  113. Pyankov, V.I. (1993) The role of the photosynthetic apparatus in adaptation of plants to environment. PhD Thesis, Moscow, Institute of Plant Physiology.Google Scholar
  114. Raschke, K. (1987) Action of abscisic acid on guard cells. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (ed). Stanford University Press, Stanford, pp. 253–279.Google Scholar
  115. Robichaux, R.H. & Canfield, J.E. (1985) Tissue elastic properties of eight Hawaiian Dubautia species that differ in habitat and diploid chromosome number. Oecologia 66: 77–80.CrossRefGoogle Scholar
  116. Robichaux, R.H., Holsinger, K.E., & Morse, S.R. (1986) Turgor maintenance in Hawaiian Dubautia species: The role of variation in tissue osmotic and elastic properties. In: On the economy of plant form and function, T.J. Givnish (ed). Cambridge University Press, Cambridge, pp. 353–380.Google Scholar
  117. Rodriguez, M.L., Chaves, M.M., Wendler, R., David, M.M., Quick, W.P., Leegood, R.C., Stitt, M., & Pereira, J.S. (1993) Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Aust. J. Plant Physiol. 20: 309–321.CrossRefGoogle Scholar
  118. Satter, R.L. & Galston, A.W. (1981) Mechanism of control of leaf movements. Annu. Rev. Plant Physiol. 32: 83–110.CrossRefGoogle Scholar
  119. Schmidt, J.E. & Kaiser, W.M. (1987) Response of the succulent leaves of Peperomia magnoliaefolia to dehydration. Plant Physiol. 83: 190–194.PubMedCrossRefGoogle Scholar
  120. Scholander, P.F., Bradstreet, E.D., & Hemmingsen, E.A. (1965) Sap pressures in vascular plants. Science 148: 339–346.PubMedCrossRefGoogle Scholar
  121. Schulze, E.-D. (1991) Water and nutrient interactions with plant water stress. In: Response of plants to multiple stresses, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 89–101.CrossRefGoogle Scholar
  122. Schulze, E.-D. & Hall, A.E. (1982) Stomatal responses, water loss, and CO2 assimilation rates of plants in contrasting environments. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 181–230.Google Scholar
  123. Schulze, E.-D., Cermak, J., Matyssek, R., Penka, M., Zimmermann, R., Vasicek, F., Gries, W., & Kucera, J. (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475–483.CrossRefGoogle Scholar
  124. Schulze, E.-D., Turner, N.C., Gollan, T., & Shakel, K.A. (1987) Stomatal responses to air humidity and soil drought. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 311–321.Google Scholar
  125. Schwartz, A., Gilboa, S. & Koller, D. (1987) Photonastic control of leaflet orientation in Melilotus indicus (Fabaceae). Plant Physiol. 84: 318–323.PubMedCrossRefGoogle Scholar
  126. Shackel, K. (1996) To tense, or not too tense: reopening the debate about water ascent in plants. Trends Plant Sci. 1: 105–106.CrossRefGoogle Scholar
  127. Shah, N., Smirnoff, N., & Stewart, G.R. (1987) Photosynthesis and stomatal characteristics of Striga hermonthica in relation to its parasitic habit. Physiol. Plant. 69: 699–703.CrossRefGoogle Scholar
  128. Sharkey, T.D. & Ogawa, T. (1987) Stomatal responses to light. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 195–208.Google Scholar
  129. Sharpe, P.J.H., Wu, H. & Spence, R.D. (1987) Stomatal mechanics. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 91–114.Google Scholar
  130. Sherwin, H.W. & Farrant, H.W. (1996) Differences in rehydration of three desiccation-tolerant angiosperm species. Ann. Bot. 78: 703–710.CrossRefGoogle Scholar
  131. Sherwin, H.W. & Farrant, H.W. (1998) Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regul., in press.Google Scholar
  132. Slatyer, R.O. (1967) Plant — water relationships. Academic Press, London.Google Scholar
  133. Smirnoff, N. & Cumbes, Q.J. (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057–1060.CrossRefGoogle Scholar
  134. Sowell, J.B., McNulty, S.P., & Schilling, B.K. (1996) The role of stem recharge in reducing the winter desiccation of Picea engelmannii (Pinaceae) needles at alpine timberline. Am. J. Bot. 83: 1351–1355.CrossRefGoogle Scholar
  135. Sperry, J.S. (1995) Limitations on stem water transport and their consequences. In: Plant stems. Physiology and functional morphology , B.L. Gartner (ed). Academic Press, San Diego, pp. 105–124.Google Scholar
  136. Sperry, J.S. & Sullivan, J.E. (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ringporous, diffuse-porous, and conifer species. Plant Physiol. 100: 605–613.PubMedCrossRefGoogle Scholar
  137. Sperry, J.S. & Tyree, M.T. (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol. 88: 581–587.PubMedCrossRefGoogle Scholar
  138. Sperry, J.S. & Tyree, M.T. (1990) Water-stress — induced xylem embolism in three species of conifers. Plant Physiol. 88: 581–587.CrossRefGoogle Scholar
  139. Sperry, J.S., Saliendra, N.Z., Pockman, W.T., Cochard, H., Cuizat, P., Davis, S.D., Ewers, F.W., & Tyree, M.T. (1996) New evidence for large negative xylem pressures and their measurement by the pressure chamber technique. Plant Cell Environ. 19: 427–436.CrossRefGoogle Scholar
  140. Sprenger, N., Bortlik, K., Brandt, A., Boller, T., & Wiemken, A. (1995) Purification, cloning, and functional expression of scucrose: fructan 6fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc. Natl. Acad. Sci. USA 92: 11652–11656.PubMedCrossRefGoogle Scholar
  141. Steponkus, P.L. (1981) Responses to extreme temperatures. Cellular and sub-cellular bases. In: Encyclopedia of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). SpringerVerlag, Berlin, pp. 371–402.Google Scholar
  142. Steudle, E. (1994) Water transport across roots. Plant Soil 167: 79–90.CrossRefGoogle Scholar
  143. Steudle, E. (1995) Trees under tension. Nature 378: 663–664.CrossRefGoogle Scholar
  144. Stirzaker, R.J. & Passioura, J.B. (1996) The water relations of the root — soil interface. Plant Cell Environ. 19: 201–208.CrossRefGoogle Scholar
  145. Stirzaker, R.J., Passioura, J.B., & Wilms, Y. (1996) Soil structure and plant growth: Impact of bulk density and biopores. Plant Soil 185: 151–162.CrossRefGoogle Scholar
  146. Takahashi, H. (1994) Hydrotropism and its interaction with gravitropism in roots. Plant Soil 165: 301–308.CrossRefGoogle Scholar
  147. Takahashi, H. & Scott, T.K. (1993) Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap. Plant Cell Environ. 16: 99–103.PubMedCrossRefGoogle Scholar
  148. Tardieu, F., Zhang, J., Katerji, N., Bethenod, O., Palmer, S., & Davies, W.J. (1992) Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant Cell Environ. 15: 193–197.CrossRefGoogle Scholar
  149. Tardieu, F., Lafarge, T., & Simonneau, T. (1996) Stomatal control by fed or endogenous xylem ABA in sunflower: interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species. Plant Cell Environ. 19: 75–84.CrossRefGoogle Scholar
  150. Thorburn, P.J. & Ehleringer, J.R. (1995) Root water uptake of field-growing plants indicated by measurements of natural-abundance deuterium. Plant Soil 177: 225–233.CrossRefGoogle Scholar
  151. Tranquillini, W. (1982) Frost-drought and its ecological significance. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 379–400.Google Scholar
  152. Turrel, F.M. (1936) The area of the internal exposed surface of dicotyledon leaves. Am. J. Bot. 23: 255–264.CrossRefGoogle Scholar
  153. Tyree, M.T. & Jarvis, P.G. (1982) Water in tissues and cells. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Springer-Verlag, Berlin, pp. 36–77.Google Scholar
  154. Tyree, M.T. & Sperry, J.S. (1989) Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Mol. Biol. 40: 19–38.CrossRefGoogle Scholar
  155. Van den Boogaard, R., Veneklaas, E.J., Peacock, J., & Lambers, H. (1996) Yield and water use of wheat (Triticum aestivum L.) cultivars in a Mediterranean environment: Effects of water availability and sowing density. Plant Soil 181: 251–262.CrossRefGoogle Scholar
  156. Van Hylckama, T.E.A. (1974) Water use by salt cedar as measured by the water budget method. U.S. geological survey papers, 491-E.Google Scholar
  157. Vijn, I., Van Dijken, A., Sprenger, N., Van Dun, K., Weisbeek, P., Wiemken, A., & Smeekens, S. (1997) Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan: fructan 6Gfructosyltransferase. Plant J. 11: 387–398PubMedCrossRefGoogle Scholar
  158. Vogelmann, T.C. (1984) Site of light perception and motor cells in a sun-tracking lupine (Lupinus succulentus). Physiol. Plant. 62: 335–340.CrossRefGoogle Scholar
  159. Vogt, K.A., Vogt, D.A., Palmiotto, P.A., Boon, P., O’Hara, J., & Asbjornson, H. (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil. 187: 159–219.CrossRefGoogle Scholar
  160. Wang, X.-L., Canny, M.J., & McCully, M.E. (1991) The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiol. Plant. 82: 157–162.CrossRefGoogle Scholar
  161. Wisniewski, M., Davis, G., & Arora, R. (1991) Effect of macerase, oxalic acid, and EGTA on deep supercooling and pit membrane structure of xylem parenchyma of peach. Plant Physiol. 96: 1354–1359.PubMedCrossRefGoogle Scholar
  162. Woodward, F.I. (1995) Ecophysiological controls of conifer distributions. In: Ecophysiology of coniferous forests, W.K. Smith & T.M. Hinckley (eds). Academic Press, San Diego, pp. 79–94.Google Scholar
  163. Wyn Jones, R.G. & Gorham, J. (1983) Osmoregulation. In: Encyclopedia of plant physiology, N.S., Vol. 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 35–58.Google Scholar
  164. Yang, S. & Tyree, M.T. (1992) A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ. 15: 633–643.CrossRefGoogle Scholar
  165. Zeiger, E., Iino, M., Shimazaki, K.-I., & Ogawa, T. (1987) The blue-light response of stomata: Mechanism and function. In: Stomatal function, E. Zeiger, G.D. Zeiger, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 209–227.Google Scholar
  166. Zimmermann, M.H. (1983) Xylem structure and the ascent of sap. Springer-Verlag, Berlin.Google Scholar
  167. Zimmermann, M.H. & Milburn, J.A. (1982) Transport and storage of water. In: Encyclopedia of plant physiology, N.S., Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 135–151.Google Scholar
  168. Zimmermann, U., Meinzer, F.C., Benkert, R., Zhu, J.J., Schneider, H., Goldstein, G., Kuchenbrod, E., & Haase, A. (1994) Xylem water transport: Is the available evidence consistent with the cohesion theory? Plant Cell Environ. 17: 1169–1181.CrossRefGoogle Scholar
  169. Zwieniecki, M.A. & Newton, M. (1995) Roots growing in rock fissures: Their morphological adaptation. Plant Soil 172: 181–187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hans Lambers
    • 1
    • 2
  • F. Stuart ChapinIII
    • 3
  • Thijs L. Pons
    • 1
  1. 1.Department of Plant Ecology and Evolutionary BiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Plant Sciences, Faculty of AgricultureUniversity of Western AustraliaNedlandsAustralia
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA

Personalised recommendations