Skip to main content

Role in Ecosystem and Global Processes

  • Chapter
Plant Physiological Ecology

Abstract

Decomposition of plant litter involves the physical and chemical processes that reduce litter to CO2, water, and mineral nutrients. It is a key process in the nutrient cycle of most terrestrial ecosystems, and the amount of carbon returned to the atmosphere by decomposition of dead organic matter is an important component of the global carbon budget (Vitousek 1982, Vitousek et al. 1994) (Sect. 2.6 of the chapter on ecosystem and global processes). Sooner or later, most plant material is decomposed, although a small proportion of recalcitrant organic matter becomes stabilized for thousands of years as humus. Most root-released material (exudates and other root-derived organic matter) is incorporated in the soil microbial biomass or lost as CO2 within weeks, at least at a high nutrient supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  • Aerts, R. (1995) The advantages of being evergreen. Trends Ecol. Evol. 10:402–407.

    Article  PubMed  CAS  Google Scholar 

  • Aerts, R. (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79:439–449.

    Article  Google Scholar 

  • Aerts, R. & De Caluwe, H. (1997) Nutritional and plantmediated controls on leaf litter decomposition of Carex species. Ecology 78:244–260.

    Google Scholar 

  • Baldwin, I.T., Olson, R.K., & Reiners, W.A. (1983) Proteinbinding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol. Biochem. 15:419–423.

    Article  CAS  Google Scholar 

  • Berendse, F., Berg, B., & Bosatta, E. (1987) The effect of lignin and nitrogen on the decomposition of litter in nutrient-poor ecosystems: A theoretical approach. Can. J. Bot. 65:1116–1120.

    Article  CAS  Google Scholar 

  • Berendse, F., Bobbink, R., & Rouwenhorst, G. (1989) A comparative study on nutrient cycling in wet heathland ecosystems. II. Litter decomposition and nutrient mineralization. Oecologia 78:338–348.

    Article  Google Scholar 

  • Berg, B. & Staaf, H. (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol. Bull. 33:163–178.

    CAS  Google Scholar 

  • Bottner, P., Cortez, J., & Sallih, Z. (1991) Effect of living roots on carbon and nitrogen of the soil microbial biomass. In: Plant root growth, D. Atkinson (eds). Blackwell Scientific, London, pp. 201–210.

    Google Scholar 

  • Bradley, R.L. & Fyles, J.W. (1996) Interactions between tree seedling roots and humus forms in the control of soil C and N cycling. Biol. Fertil. Soils 23:70–79.

    Article  Google Scholar 

  • Bryant, J.P., Chapin III F.S., & Klein, D.R. (1983) Carbon/ nutrient balance of boreal plants in relation to herbivory. Oikos 40:357–368.

    Article  CAS  Google Scholar 

  • Chapin III F.S. (1991) Effects of multiple environmental stresses on nutrient availability and use. In: Response of plants to multiple stresses, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 67–88.

    Chapter  Google Scholar 

  • Cheng, W. & Coleman, D.C. (1990) Effect of living roots on soil organic matter decomposition. Soil Biol. Biochem. 22:781–787.

    Article  Google Scholar 

  • Clarholm, M. (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17:181–187.

    Article  CAS  Google Scholar 

  • Clymo, R.S. & Hayward, P.M. (1982) The ecology of Sphagnum. In: Bryophyte ecology, A.J.E. Smith (ed). Chapman and Hall, London, pp. 229–289.

    Chapter  Google Scholar 

  • Cornelissen, J.H.C. (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84:573–582.

    Article  Google Scholar 

  • Diaz, S.A., Grime, J.P., Harris, J., & McPherson, E. (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617.

    Article  CAS  Google Scholar 

  • Dormaar, J.F. (1990) Effect of active roots on the decomposition of soil organic materials. Biol. Fertil. Soils 10:121–126.

    CAS  Google Scholar 

  • Edwards, N.T. & Sollins, P. (1997) Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology 54:406–412.

    Article  Google Scholar 

  • Flanagan, P.W. & Van Cleve, K. (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13:795–817.

    Article  CAS  Google Scholar 

  • Fox, R.H., Myers, R.J.K., & Vallis, I. (1990) The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil 129:251–259.

    CAS  Google Scholar 

  • Franck, V.M., Hungate, B.A., Chapin III F.S., & Field, C.B. (1997) Decomposition of litter produced under elevated CO2: Dependence on plant species and nutrient supply. Biogeochemistry 36:223–237.

    Article  Google Scholar 

  • Gershenzon, J. (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Phytochemical adaptations to stress, recent advances in phytochemistry, Vol. 18, B.N. Timmermann, C. Steelink, & F.A. Loewus (eds). Plenum Publishing Corporation New York, pp. 273–320.

    Google Scholar 

  • Gorham, E. (1991) Northern peatlands: Role in the carbon cycle and probable responses to climate warming. Ecol. Appl. 1:182–195.

    Article  Google Scholar 

  • Griffiths, B.S., Welschen, R., Van Arendonk, J.J.C.M., & Lambers, H. (1992) The effects of nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species. Oecologia 91:253–259.

    Article  Google Scholar 

  • Harris, M.M. & Riha, S.J. (1991) Carbon and nitrogen dynamics in forest floor during short-term laboratory incubations. Soil Biol. Biochem. 23:1035–1041.

    Article  CAS  Google Scholar 

  • Hobbie, S.E. (1992) Effects of plant species on nutrient cycling. Trends Ecol. Evolu. 7:336–339.

    Article  CAS  Google Scholar 

  • Hobbie, S.E. (1995) Direct and indirect effects of plant species on biogeochemical processes in arctic ecosystems. In: Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences, F.S. Chapin III & Ch. Körner (eds). Springer-Verlag, Berlin, pp. 213–224.

    Google Scholar 

  • Hobbie, S.E. (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66:503–522.

    Article  Google Scholar 

  • Hungate, B.A., Canadell, J.C., & Chapin III F.S. (1996) Plant species mediate changes in microbial N in response to elevated CO2. Ecology 77:2505–2515.

    Article  Google Scholar 

  • Johnson, L.C. & Damman, A.W.H. (1993) Decay and its regulation in Sphagnum peatlands. Adv. Bryol. 5:249–296.

    Google Scholar 

  • Leyval, C. & Berthelin, J. (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol. Fertil. Soils 15:259–267.

    Article  CAS  Google Scholar 

  • Merckx, R., Den Hartog, A., & Van Veen, J.A. (1985) Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol. Biochem. 17:565–569.

    Article  Google Scholar 

  • Merckx, R., Dijkstra, A., Den Hartog, A., & Van Veen, J.A. (1987) Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biol. Fertil. Soils 5:126–132.

    Article  Google Scholar 

  • Northup, R.R., Yu, Z., Dahlgren, R.A., & Vogt, K.A. (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229.

    Article  CAS  Google Scholar 

  • Norton, J.M. & Firestone, M.K. (1996) N dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol. Biochem. 28:351–362.

    Article  CAS  Google Scholar 

  • Parmelee, R.W., Ehrenfeld, J.G., & Tate, R.L. III (1993) Effects of pine roots on microorganisms, fauna, and nitrogen availability in two soil horizons of a coniferous forest spodosol. Biol. Fertil. Soils 15:113–119.

    Article  CAS  Google Scholar 

  • Paul, E.A. & Clark, F.E. (1989) Soil microbiology and biochemistry. Academic Press, San Diego.

    Google Scholar 

  • Rygiewicz, P.T. & Andersen, C.P. (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58–60.

    Article  Google Scholar 

  • Van Breemen, N. (1993) Soils as biotic constructs favouring net primary productivity. Geoderma 57:183–211.

    Article  Google Scholar 

  • Van Veen, J.A., Merckx, R., & Van de Geijn, S.C. (1989) Plant- and soil related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115:179–188.

    Article  Google Scholar 

  • Van Vuuren, Aerts, R., Berendse, F., & De Visser, W. (1992) Nitrogen mineralization in heathland ecosystems dominated by different plant species. Biogeochemistry 16:151–166.

    Article  Google Scholar 

  • Verhoeven, J.T.A. & Toth, E. (1995) Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem. 27:271–275.

    Article  CAS  Google Scholar 

  • Vitousek, P.M. (1982) Nutrient cycling and nutrient use efficiency. Am. Nat. 119:553–572.

    Article  Google Scholar 

  • Vitousek, P.M., Turner, D.R., Parton, W.J., & Sanford, R.L. (1994) Litter decomposition on the Mauna Loa environmental matrix, Hawaii: Patterns, mechanisms, and models. Ecology 75:418–429.

    Article  Google Scholar 

  • Wilschke, J., Hoppe, E., & Rudolph, H.-J. (1990) Biosynthesis of sphagnum acid. In: Bryophytes: Their chemistry and chemical Taxonomy, H.D. Zinsmeister & R. Mues (eds). Oxford Science Publications, Oxford, pp. 253–263.

    Google Scholar 

  • Zak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J.A., Fogel, R., & Randlett, D.A. (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117.

    Article  CAS  Google Scholar 

  • Zhu, W. & Ehrenfeld, J.G. (1996) The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil. Plant Soil 179:109–118.

    Article  CAS  Google Scholar 

  • Aerts, R. (1995) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 84:597–608.

    Google Scholar 

  • Balling, R.C. (1988) The climatic impact of a Sonoran vegetation discontinuity. Clim. Change 13:99–109.

    Article  Google Scholar 

  • Bokhari, U.G. & Singh, J.S. (1975) Standing state and cycling of nitrogen in soil-vegetation components of prairie ecosystems. Ann. Bot. 39:273–285.

    Google Scholar 

  • Bonan, G.B., Pollard, D., & Thompson, S.L. (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718.

    Article  Google Scholar 

  • Bonan, G.B., Chapin III F.S., & Thompson, S.L. (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim. Change 29:145–167

    Article  Google Scholar 

  • Bormann, F.H. & Likens, G.E. (1979) Pattern and process in a forested ecosystem. Springer-Verlag, New York.

    Book  Google Scholar 

  • Chapin III F.S.. (1993) Functional role of growth forms in ecosystem and global processes. In: Scaling physiological processes: Leaf to globe, J.R. Ehleringer & C.B. Field (eds). Academic Press, San Diego, pp. 287–312.

    Chapter  Google Scholar 

  • Chapin III F.S., McFadden, J.P., & Hobbie, S.E. (1997) The role of arctic vegetation in ecosystem and global processes. In: Ecology of arctic environments, S.J. Woodin & M. Marquiss (eds). Blackwell Scientific, Oxford, pp. 121–135.

    Google Scholar 

  • Chapman, W.L. & Walsh, J.E. (1993) Recent variations of sea ice and air temperature in high latitudes. Bull. Am. Meteor. Soc. 74:33–47.

    Article  Google Scholar 

  • Charney, J.G., Quirk, W.J., Chow, S.-H., & Kornfield, J. (1977) A comparative study of effects of albedo change on drought in semiarid regions. J. Atmos. Sci. 34:1366–1385.

    Article  Google Scholar 

  • Choudhury, B.J. (1987) Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis. Rem. Sens. Env. 22:209–233.

    Article  Google Scholar 

  • Ciais, P., Tans, P.P., Trolier, M., White, J.W.C., & Francey, R.J. (1995) A large northern hemisphere terrestrial C02 sink indicated by the 13C/12C ratio of atmospheric C02. Nature 269:1098–1102.

    CAS  Google Scholar 

  • Cole, D.W. & Rapp, M. (1981) Elemental cycling in forest ecosystems. In: Dynamic properties of forest ecosystems, D.E. Reichle (ed). Cambridge University Press, Cambridge, pp. 341–409.

    Google Scholar 

  • D’Antonio, C.M. & Vitousek, P.M. (1992) Biological invasions by exotic grasses, the grass-fire cycle, and global change. Annu. Rev. Ecol. Syst. 23:63–87.

    Google Scholar 

  • Davidson, E.A. & Ackerman, I.L. (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–164.

    Article  CAS  Google Scholar 

  • Davis, M.B., Sugita, S., Calcote, R.R., & Frelich, L. (1992) Invasion of forests by hemlock coincided with change in disturbance regime. Bull. Ecol. Soc. Am. 73:155.

    Google Scholar 

  • Denning, A.S., Fung, I.Y., & Randall, D. (1995) Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376:240–243.

    Article  CAS  Google Scholar 

  • Diaz, S.A., Grime, J.P., Harris, J., & McPherson, E. (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617.

    Article  CAS  Google Scholar 

  • Farquhar, G.D. (1989) Models of integrated photosynthesis of cells and leaves. Phil. Trans. R. Soc. Lond. Series B 323:357–367.

    Article  CAS  Google Scholar 

  • Field, C.B. (1991) Ecological scaling of carbon gain to stress and resource availability. In: Integrated responses of plants to stress, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 35–65.

    Chapter  Google Scholar 

  • Foley, J.A., Kutzbach, J.E., Coe, M.T., & Levis, S. (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54.

    Article  Google Scholar 

  • Goulden, M.L., Daube, B.C., Fan, S.-M., Sutton, D.J., Bazzaz, A., Munger, J.W., & Wofsy, S.C. (1997) Physiological responses of a black spruce forest to weather. J. Geophys. Res. 1020:28987–28996.

    Article  Google Scholar 

  • Goward, S. N., Tucker, C.J., & Dye, D.G. (1985) North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiomater. Vegetatio 64:3–14.

    Article  Google Scholar 

  • Gray, J.T. & Schlesinger, W.H. (1981) Nutrient cycling in Mediterranean type ecosystems. In: Resource use by chaparral and matorral, P.C. Miller (ed). Springer-Verlag, New York, pp. 259–285.

    Chapter  Google Scholar 

  • Grime, J.P. & Hunt, R. (1975) Relative growth rate: Its range and adaptive significance in a local flora. J. Ecol. 63:393–422.

    Article  Google Scholar 

  • Harte, J. & Kinzig, A.P. (1993) Mutualism and competition between plants and decomposers: Implications for nutrient allocation in ecosystems. Am. Nat. 141:829–846.

    Article  PubMed  CAS  Google Scholar 

  • Henderson-Sellers, A., McGuffie, K., & Gross, C. (1995) Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increase. J. Climat. 8:1738–1756.

    Article  Google Scholar 

  • Hirose, T. & Werger, M.J.A. (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526.

    Article  Google Scholar 

  • Hobbie, S.E. (1992) Effects of plant species on nutrient cycling. Trends Ecol. Evolu. 7:336–339.

    Article  CAS  Google Scholar 

  • Kasischke, E.S., Christensen, N.L., & Stocks, B.J. (1995) Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5:437–451.

    Article  Google Scholar 

  • Kauppi, P.E., Mielikainen, K., & Kuusela, K. (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–74.

    Article  PubMed  CAS  Google Scholar 

  • Lieth, H. (1975) Modeling the primary productivity of the world. In: Primary productivity of the biosphere, H. Lieth & R.H. Whittaker (eds). Springer-Verlag, Berlin, pp. 237–263.

    Chapter  Google Scholar 

  • Monteith, J.L. (1977) Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. Lond. B 281:277–294.

    Article  Google Scholar 

  • Myneni, R.B., Keeling, CD., Tucker, C.J., Asrar, G., & Nemani, R.R. (1997) Increased plant growth in the northern high latitudes from 1981–1991. Nature 386:698–702.

    Article  CAS  Google Scholar 

  • Odum, E.P. (1969) The strategy of ecosystem development. Science 164:262–270.

    Article  PubMed  CAS  Google Scholar 

  • Oechel, W.C, Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G., & Grulke, N. (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361:520–523.

    Article  Google Scholar 

  • Payette, S. & Filion, L. (1985) White spruce expansion at the tree line and recent climatic change. Can. J. For. Res. 15:241–251.

    Article  Google Scholar 

  • Robles, M. & Chapin III F.S.. (1995) Comparison of the influence of two exotic species on ecosystem processes in the Berkeley Hills. Madrono 42:349–357.

    Google Scholar 

  • Running, S.W. & Coughlan, J.C. (1988) A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Modelling 42:125–154.

    Article  CAS  Google Scholar 

  • Sala, O.E., Parton, W.J., Joyce, L.A., & Lauenroth, W.K. (1988) Primary production of the cental grassland region of the United States. Ecology 69:40–45.

    Article  Google Scholar 

  • Schimel, D.S. (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol. 1:77–91.

    Article  Google Scholar 

  • Schlesinger, W.H. (1991) Biogeochemistry: An analysis of global change. Academic Press, San Diego.

    Google Scholar 

  • Schulze, E.-D. & Hall, A.E. (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Encyclopedia of plant physiology, Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 181–230.

    Google Scholar 

  • Schulze, E.-D., Kelliher, F.M., Korner, C, Lloyd, J., & Leuning, R. (1994) Relationship among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25:629–660.

    Article  Google Scholar 

  • Shukla, J., Nobre, C, & Sellers, P. (1990) Amazon deforestation and climate change. Science 247:1322–1325.

    Article  PubMed  CAS  Google Scholar 

  • Silvertown, J.W. (1982) Introduction to plant population ecology. Longman, London.

    Google Scholar 

  • Slobodchikoff, F.S. & Doyen, J.T. (1977) Effects of Ammophila arenaria on sand dune arthropod communities. Ecology 58:1171–1175.

    Article  Google Scholar 

  • Tans, P.P., Fung, I.Y., & Takahashi, T. (1990) Observational constraints on the global COz budget. Science 247:1431–1438.

    Article  PubMed  CAS  Google Scholar 

  • Terashima, I. & Hikosaka, K. (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18:1111–1128.

    Article  Google Scholar 

  • Tilman, D. (1988) Plant strategies and the dynamics and function of plant communities. Princeton University Press, Princeton.

    Google Scholar 

  • Van Cleve, K., Chapin III F.S., Dryness, C.T., & Viereck, L.A. (1991) Element cycling in taiga forest: State-factor control. BioScience 41:78–88.

    Article  Google Scholar 

  • Vitousek, P.M. (1994) Beyond global warming: Ecology and global change. Ecology 75:1861–1876.

    Article  Google Scholar 

  • Vitousek, P.M. & Howarth, R.W. (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Vitousek, P.M., Walker, L.R., Whiteacre, L.D., Mueller-Dombois, D., & Matson, P.A. (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J.E., Zhou, X., Portis, D., & Serreze, M. (1994) Atmospheric contribution to hydrologic variations in the arctic. Atmosphere-Ocean 32:733–755.

    Article  Google Scholar 

  • Weller, D.E. (1987) A reevaluation of the -3/2 power rule of plant self-thinning. Ecol. Monogr. 57:23–43.

    Article  Google Scholar 

  • White, J. (1980) Demographic factors in populations of plants. In: Demography and evolution in plant populations, O.T. Solbrig (eds). Blackwell Scientific, Oxford, pp. 21–48.

    Google Scholar 

  • Wofsy, S.C, Goulden, M.L., Munger, J.W., Fan, S.-M., Bakwin, P.S., Daube, B.C., Bassow, S.L., & Bazzaz, F.A. (1993) Net exchange of CO2 in a mid-latitude forest. Science 260:1314–1317.

    Article  PubMed  CAS  Google Scholar 

  • Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14:107–129.

    Google Scholar 

  • Zak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J. A., Fogel, R., & Randlett, D.A. (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117.

    Article  CAS  Google Scholar 

  • Zimov, S.A., Chuprynin, V.I., Oreshko, A.P., Chapin III F.S., Reynolds, J.F., & Chapin, M.C. (1995) Steppe-tundra transition: An herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146:765–794.

    Article  Google Scholar 

  • Zimov S.A., Davidov S.P., Voropaev Y.V., Prosiannikov S.F., Semiletov LP., Chapin M.C, & Chapin III F.S. (1996) Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Clim. Change 33:111–120.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (1998). Role in Ecosystem and Global Processes. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2855-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2855-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2857-6

  • Online ISBN: 978-1-4757-2855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics