Role in Ecosystem and Global Processes

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


Decomposition of plant litter involves the physical and chemical processes that reduce litter to CO2, water, and mineral nutrients. It is a key process in the nutrient cycle of most terrestrial ecosystems, and the amount of carbon returned to the atmosphere by decomposition of dead organic matter is an important component of the global carbon budget (Vitousek 1982, Vitousek et al. 1994) (Sect. 2.6 of the chapter on ecosystem and global processes). Sooner or later, most plant material is decomposed, although a small proportion of recalcitrant organic matter becomes stabilized for thousands of years as humus. Most root-released material (exudates and other root-derived organic matter) is incorporated in the soil microbial biomass or lost as CO2 within weeks, at least at a high nutrient supply.


Normalize Difference Vegetation Index Decomposition Rate Litter Decomposition Specific Leaf Area Litter Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Aerts, R. (1995) The advantages of being evergreen. Trends Ecol. Evol. 10:402–407.PubMedCrossRefGoogle Scholar
  2. Aerts, R. (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79:439–449.CrossRefGoogle Scholar
  3. Aerts, R. & De Caluwe, H. (1997) Nutritional and plantmediated controls on leaf litter decomposition of Carex species. Ecology 78:244–260.Google Scholar
  4. Baldwin, I.T., Olson, R.K., & Reiners, W.A. (1983) Proteinbinding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol. Biochem. 15:419–423.CrossRefGoogle Scholar
  5. Berendse, F., Berg, B., & Bosatta, E. (1987) The effect of lignin and nitrogen on the decomposition of litter in nutrient-poor ecosystems: A theoretical approach. Can. J. Bot. 65:1116–1120.CrossRefGoogle Scholar
  6. Berendse, F., Bobbink, R., & Rouwenhorst, G. (1989) A comparative study on nutrient cycling in wet heathland ecosystems. II. Litter decomposition and nutrient mineralization. Oecologia 78:338–348.CrossRefGoogle Scholar
  7. Berg, B. & Staaf, H. (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol. Bull. 33:163–178.Google Scholar
  8. Bottner, P., Cortez, J., & Sallih, Z. (1991) Effect of living roots on carbon and nitrogen of the soil microbial biomass. In: Plant root growth, D. Atkinson (eds). Blackwell Scientific, London, pp. 201–210.Google Scholar
  9. Bradley, R.L. & Fyles, J.W. (1996) Interactions between tree seedling roots and humus forms in the control of soil C and N cycling. Biol. Fertil. Soils 23:70–79.CrossRefGoogle Scholar
  10. Bryant, J.P., Chapin III F.S., & Klein, D.R. (1983) Carbon/ nutrient balance of boreal plants in relation to herbivory. Oikos 40:357–368.CrossRefGoogle Scholar
  11. Chapin III F.S. (1991) Effects of multiple environmental stresses on nutrient availability and use. In: Response of plants to multiple stresses, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 67–88.CrossRefGoogle Scholar
  12. Cheng, W. & Coleman, D.C. (1990) Effect of living roots on soil organic matter decomposition. Soil Biol. Biochem. 22:781–787.CrossRefGoogle Scholar
  13. Clarholm, M. (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17:181–187.CrossRefGoogle Scholar
  14. Clymo, R.S. & Hayward, P.M. (1982) The ecology of Sphagnum. In: Bryophyte ecology, A.J.E. Smith (ed). Chapman and Hall, London, pp. 229–289.CrossRefGoogle Scholar
  15. Cornelissen, J.H.C. (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84:573–582.CrossRefGoogle Scholar
  16. Diaz, S.A., Grime, J.P., Harris, J., & McPherson, E. (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617.CrossRefGoogle Scholar
  17. Dormaar, J.F. (1990) Effect of active roots on the decomposition of soil organic materials. Biol. Fertil. Soils 10:121–126.Google Scholar
  18. Edwards, N.T. & Sollins, P. (1997) Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology 54:406–412.CrossRefGoogle Scholar
  19. Flanagan, P.W. & Van Cleve, K. (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13:795–817.CrossRefGoogle Scholar
  20. Fox, R.H., Myers, R.J.K., & Vallis, I. (1990) The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil 129:251–259.Google Scholar
  21. Franck, V.M., Hungate, B.A., Chapin III F.S., & Field, C.B. (1997) Decomposition of litter produced under elevated CO2: Dependence on plant species and nutrient supply. Biogeochemistry 36:223–237.CrossRefGoogle Scholar
  22. Gershenzon, J. (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Phytochemical adaptations to stress, recent advances in phytochemistry, Vol. 18, B.N. Timmermann, C. Steelink, & F.A. Loewus (eds). Plenum Publishing Corporation New York, pp. 273–320.Google Scholar
  23. Gorham, E. (1991) Northern peatlands: Role in the carbon cycle and probable responses to climate warming. Ecol. Appl. 1:182–195.CrossRefGoogle Scholar
  24. Griffiths, B.S., Welschen, R., Van Arendonk, J.J.C.M., & Lambers, H. (1992) The effects of nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species. Oecologia 91:253–259.CrossRefGoogle Scholar
  25. Harris, M.M. & Riha, S.J. (1991) Carbon and nitrogen dynamics in forest floor during short-term laboratory incubations. Soil Biol. Biochem. 23:1035–1041.CrossRefGoogle Scholar
  26. Hobbie, S.E. (1992) Effects of plant species on nutrient cycling. Trends Ecol. Evolu. 7:336–339.CrossRefGoogle Scholar
  27. Hobbie, S.E. (1995) Direct and indirect effects of plant species on biogeochemical processes in arctic ecosystems. In: Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences, F.S. Chapin III & Ch. Körner (eds). Springer-Verlag, Berlin, pp. 213–224.Google Scholar
  28. Hobbie, S.E. (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66:503–522.CrossRefGoogle Scholar
  29. Hungate, B.A., Canadell, J.C., & Chapin III F.S. (1996) Plant species mediate changes in microbial N in response to elevated CO2. Ecology 77:2505–2515.CrossRefGoogle Scholar
  30. Johnson, L.C. & Damman, A.W.H. (1993) Decay and its regulation in Sphagnum peatlands. Adv. Bryol. 5:249–296.Google Scholar
  31. Leyval, C. & Berthelin, J. (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol. Fertil. Soils 15:259–267.CrossRefGoogle Scholar
  32. Merckx, R., Den Hartog, A., & Van Veen, J.A. (1985) Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol. Biochem. 17:565–569.CrossRefGoogle Scholar
  33. Merckx, R., Dijkstra, A., Den Hartog, A., & Van Veen, J.A. (1987) Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biol. Fertil. Soils 5:126–132.CrossRefGoogle Scholar
  34. Northup, R.R., Yu, Z., Dahlgren, R.A., & Vogt, K.A. (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229.CrossRefGoogle Scholar
  35. Norton, J.M. & Firestone, M.K. (1996) N dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol. Biochem. 28:351–362.CrossRefGoogle Scholar
  36. Parmelee, R.W., Ehrenfeld, J.G., & Tate, R.L. III (1993) Effects of pine roots on microorganisms, fauna, and nitrogen availability in two soil horizons of a coniferous forest spodosol. Biol. Fertil. Soils 15:113–119.CrossRefGoogle Scholar
  37. Paul, E.A. & Clark, F.E. (1989) Soil microbiology and biochemistry. Academic Press, San Diego.Google Scholar
  38. Rygiewicz, P.T. & Andersen, C.P. (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58–60.CrossRefGoogle Scholar
  39. Van Breemen, N. (1993) Soils as biotic constructs favouring net primary productivity. Geoderma 57:183–211.CrossRefGoogle Scholar
  40. Van Veen, J.A., Merckx, R., & Van de Geijn, S.C. (1989) Plant- and soil related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115:179–188.CrossRefGoogle Scholar
  41. Van Vuuren, Aerts, R., Berendse, F., & De Visser, W. (1992) Nitrogen mineralization in heathland ecosystems dominated by different plant species. Biogeochemistry 16:151–166.CrossRefGoogle Scholar
  42. Verhoeven, J.T.A. & Toth, E. (1995) Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem. 27:271–275.CrossRefGoogle Scholar
  43. Vitousek, P.M. (1982) Nutrient cycling and nutrient use efficiency. Am. Nat. 119:553–572.CrossRefGoogle Scholar
  44. Vitousek, P.M., Turner, D.R., Parton, W.J., & Sanford, R.L. (1994) Litter decomposition on the Mauna Loa environmental matrix, Hawaii: Patterns, mechanisms, and models. Ecology 75:418–429.CrossRefGoogle Scholar
  45. Wilschke, J., Hoppe, E., & Rudolph, H.-J. (1990) Biosynthesis of sphagnum acid. In: Bryophytes: Their chemistry and chemical Taxonomy, H.D. Zinsmeister & R. Mues (eds). Oxford Science Publications, Oxford, pp. 253–263.Google Scholar
  46. Zak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J.A., Fogel, R., & Randlett, D.A. (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117.CrossRefGoogle Scholar
  47. Zhu, W. & Ehrenfeld, J.G. (1996) The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil. Plant Soil 179:109–118.CrossRefGoogle Scholar
  48. Aerts, R. (1995) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 84:597–608.Google Scholar
  49. Balling, R.C. (1988) The climatic impact of a Sonoran vegetation discontinuity. Clim. Change 13:99–109.CrossRefGoogle Scholar
  50. Bokhari, U.G. & Singh, J.S. (1975) Standing state and cycling of nitrogen in soil-vegetation components of prairie ecosystems. Ann. Bot. 39:273–285.Google Scholar
  51. Bonan, G.B., Pollard, D., & Thompson, S.L. (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718.CrossRefGoogle Scholar
  52. Bonan, G.B., Chapin III F.S., & Thompson, S.L. (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim. Change 29:145–167CrossRefGoogle Scholar
  53. Bormann, F.H. & Likens, G.E. (1979) Pattern and process in a forested ecosystem. Springer-Verlag, New York.CrossRefGoogle Scholar
  54. Chapin III F.S.. (1993) Functional role of growth forms in ecosystem and global processes. In: Scaling physiological processes: Leaf to globe, J.R. Ehleringer & C.B. Field (eds). Academic Press, San Diego, pp. 287–312.CrossRefGoogle Scholar
  55. Chapin III F.S., McFadden, J.P., & Hobbie, S.E. (1997) The role of arctic vegetation in ecosystem and global processes. In: Ecology of arctic environments, S.J. Woodin & M. Marquiss (eds). Blackwell Scientific, Oxford, pp. 121–135.Google Scholar
  56. Chapman, W.L. & Walsh, J.E. (1993) Recent variations of sea ice and air temperature in high latitudes. Bull. Am. Meteor. Soc. 74:33–47.CrossRefGoogle Scholar
  57. Charney, J.G., Quirk, W.J., Chow, S.-H., & Kornfield, J. (1977) A comparative study of effects of albedo change on drought in semiarid regions. J. Atmos. Sci. 34:1366–1385.CrossRefGoogle Scholar
  58. Choudhury, B.J. (1987) Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis. Rem. Sens. Env. 22:209–233.CrossRefGoogle Scholar
  59. Ciais, P., Tans, P.P., Trolier, M., White, J.W.C., & Francey, R.J. (1995) A large northern hemisphere terrestrial C02 sink indicated by the 13C/12C ratio of atmospheric C02. Nature 269:1098–1102.Google Scholar
  60. Cole, D.W. & Rapp, M. (1981) Elemental cycling in forest ecosystems. In: Dynamic properties of forest ecosystems, D.E. Reichle (ed). Cambridge University Press, Cambridge, pp. 341–409.Google Scholar
  61. D’Antonio, C.M. & Vitousek, P.M. (1992) Biological invasions by exotic grasses, the grass-fire cycle, and global change. Annu. Rev. Ecol. Syst. 23:63–87.Google Scholar
  62. Davidson, E.A. & Ackerman, I.L. (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–164.CrossRefGoogle Scholar
  63. Davis, M.B., Sugita, S., Calcote, R.R., & Frelich, L. (1992) Invasion of forests by hemlock coincided with change in disturbance regime. Bull. Ecol. Soc. Am. 73:155.Google Scholar
  64. Denning, A.S., Fung, I.Y., & Randall, D. (1995) Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376:240–243.CrossRefGoogle Scholar
  65. Diaz, S.A., Grime, J.P., Harris, J., & McPherson, E. (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617.CrossRefGoogle Scholar
  66. Farquhar, G.D. (1989) Models of integrated photosynthesis of cells and leaves. Phil. Trans. R. Soc. Lond. Series B 323:357–367.CrossRefGoogle Scholar
  67. Field, C.B. (1991) Ecological scaling of carbon gain to stress and resource availability. In: Integrated responses of plants to stress, H.A. Mooney, W.E. Winner, & E.J. Pell (eds). Academic Press, San Diego, pp. 35–65.CrossRefGoogle Scholar
  68. Foley, J.A., Kutzbach, J.E., Coe, M.T., & Levis, S. (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54.CrossRefGoogle Scholar
  69. Goulden, M.L., Daube, B.C., Fan, S.-M., Sutton, D.J., Bazzaz, A., Munger, J.W., & Wofsy, S.C. (1997) Physiological responses of a black spruce forest to weather. J. Geophys. Res. 1020:28987–28996.CrossRefGoogle Scholar
  70. Goward, S. N., Tucker, C.J., & Dye, D.G. (1985) North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiomater. Vegetatio 64:3–14.CrossRefGoogle Scholar
  71. Gray, J.T. & Schlesinger, W.H. (1981) Nutrient cycling in Mediterranean type ecosystems. In: Resource use by chaparral and matorral, P.C. Miller (ed). Springer-Verlag, New York, pp. 259–285.CrossRefGoogle Scholar
  72. Grime, J.P. & Hunt, R. (1975) Relative growth rate: Its range and adaptive significance in a local flora. J. Ecol. 63:393–422.CrossRefGoogle Scholar
  73. Harte, J. & Kinzig, A.P. (1993) Mutualism and competition between plants and decomposers: Implications for nutrient allocation in ecosystems. Am. Nat. 141:829–846.PubMedCrossRefGoogle Scholar
  74. Henderson-Sellers, A., McGuffie, K., & Gross, C. (1995) Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increase. J. Climat. 8:1738–1756.CrossRefGoogle Scholar
  75. Hirose, T. & Werger, M.J.A. (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526.CrossRefGoogle Scholar
  76. Hobbie, S.E. (1992) Effects of plant species on nutrient cycling. Trends Ecol. Evolu. 7:336–339.CrossRefGoogle Scholar
  77. Kasischke, E.S., Christensen, N.L., & Stocks, B.J. (1995) Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5:437–451.CrossRefGoogle Scholar
  78. Kauppi, P.E., Mielikainen, K., & Kuusela, K. (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–74.PubMedCrossRefGoogle Scholar
  79. Lieth, H. (1975) Modeling the primary productivity of the world. In: Primary productivity of the biosphere, H. Lieth & R.H. Whittaker (eds). Springer-Verlag, Berlin, pp. 237–263.CrossRefGoogle Scholar
  80. Monteith, J.L. (1977) Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. Lond. B 281:277–294.CrossRefGoogle Scholar
  81. Myneni, R.B., Keeling, CD., Tucker, C.J., Asrar, G., & Nemani, R.R. (1997) Increased plant growth in the northern high latitudes from 1981–1991. Nature 386:698–702.CrossRefGoogle Scholar
  82. Odum, E.P. (1969) The strategy of ecosystem development. Science 164:262–270.PubMedCrossRefGoogle Scholar
  83. Oechel, W.C, Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G., & Grulke, N. (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361:520–523.CrossRefGoogle Scholar
  84. Payette, S. & Filion, L. (1985) White spruce expansion at the tree line and recent climatic change. Can. J. For. Res. 15:241–251.CrossRefGoogle Scholar
  85. Robles, M. & Chapin III F.S.. (1995) Comparison of the influence of two exotic species on ecosystem processes in the Berkeley Hills. Madrono 42:349–357.Google Scholar
  86. Running, S.W. & Coughlan, J.C. (1988) A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Modelling 42:125–154.CrossRefGoogle Scholar
  87. Sala, O.E., Parton, W.J., Joyce, L.A., & Lauenroth, W.K. (1988) Primary production of the cental grassland region of the United States. Ecology 69:40–45.CrossRefGoogle Scholar
  88. Schimel, D.S. (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol. 1:77–91.CrossRefGoogle Scholar
  89. Schlesinger, W.H. (1991) Biogeochemistry: An analysis of global change. Academic Press, San Diego.Google Scholar
  90. Schulze, E.-D. & Hall, A.E. (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Encyclopedia of plant physiology, Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 181–230.Google Scholar
  91. Schulze, E.-D., Kelliher, F.M., Korner, C, Lloyd, J., & Leuning, R. (1994) Relationship among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25:629–660.CrossRefGoogle Scholar
  92. Shukla, J., Nobre, C, & Sellers, P. (1990) Amazon deforestation and climate change. Science 247:1322–1325.PubMedCrossRefGoogle Scholar
  93. Silvertown, J.W. (1982) Introduction to plant population ecology. Longman, London.Google Scholar
  94. Slobodchikoff, F.S. & Doyen, J.T. (1977) Effects of Ammophila arenaria on sand dune arthropod communities. Ecology 58:1171–1175.CrossRefGoogle Scholar
  95. Tans, P.P., Fung, I.Y., & Takahashi, T. (1990) Observational constraints on the global COz budget. Science 247:1431–1438.PubMedCrossRefGoogle Scholar
  96. Terashima, I. & Hikosaka, K. (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18:1111–1128.CrossRefGoogle Scholar
  97. Tilman, D. (1988) Plant strategies and the dynamics and function of plant communities. Princeton University Press, Princeton.Google Scholar
  98. Van Cleve, K., Chapin III F.S., Dryness, C.T., & Viereck, L.A. (1991) Element cycling in taiga forest: State-factor control. BioScience 41:78–88.CrossRefGoogle Scholar
  99. Vitousek, P.M. (1994) Beyond global warming: Ecology and global change. Ecology 75:1861–1876.CrossRefGoogle Scholar
  100. Vitousek, P.M. & Howarth, R.W. (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115.CrossRefGoogle Scholar
  101. Vitousek, P.M., Walker, L.R., Whiteacre, L.D., Mueller-Dombois, D., & Matson, P.A. (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804.PubMedCrossRefGoogle Scholar
  102. Walsh, J.E., Zhou, X., Portis, D., & Serreze, M. (1994) Atmospheric contribution to hydrologic variations in the arctic. Atmosphere-Ocean 32:733–755.CrossRefGoogle Scholar
  103. Weller, D.E. (1987) A reevaluation of the -3/2 power rule of plant self-thinning. Ecol. Monogr. 57:23–43.CrossRefGoogle Scholar
  104. White, J. (1980) Demographic factors in populations of plants. In: Demography and evolution in plant populations, O.T. Solbrig (eds). Blackwell Scientific, Oxford, pp. 21–48.Google Scholar
  105. Wofsy, S.C, Goulden, M.L., Munger, J.W., Fan, S.-M., Bakwin, P.S., Daube, B.C., Bassow, S.L., & Bazzaz, F.A. (1993) Net exchange of CO2 in a mid-latitude forest. Science 260:1314–1317.PubMedCrossRefGoogle Scholar
  106. Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14:107–129.Google Scholar
  107. Zak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J. A., Fogel, R., & Randlett, D.A. (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117.CrossRefGoogle Scholar
  108. Zimov, S.A., Chuprynin, V.I., Oreshko, A.P., Chapin III F.S., Reynolds, J.F., & Chapin, M.C. (1995) Steppe-tundra transition: An herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146:765–794.CrossRefGoogle Scholar
  109. Zimov S.A., Davidov S.P., Voropaev Y.V., Prosiannikov S.F., Semiletov LP., Chapin M.C, & Chapin III F.S. (1996) Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Clim. Change 33:111–120.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hans Lambers
    • 1
    • 2
  • F. Stuart ChapinIII
    • 3
  • Thijs L. Pons
    • 1
  1. 1.Department of Plant Ecology and Evolutionary BiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Plant Sciences, Faculty of AgricultureUniversity of Western AustraliaNedlandsAustralia
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA

Personalised recommendations