Skip to main content

SOI-Technology ST-SPICE

  • Chapter

Abstract

As described in the previous chapters, SOI CMOS technology has been regarded as another major VLSI technology in addition to bulk CMOS technology. VLSI circuits using SOI CMOS technology have been reported increasingly. Since the performance of SOI CMOS devices is quite different from that of the bulk ones, SOI VLSI circuits have demonstrated unique phenomena as described in Chapter 3. When designing SOI VLSI circuits, the SPICE CAD program designed for bulk CMOS devices may not be sufficient for circuit simulation. In this chapter, by including the analytical device models of deep-submicron fully-depleted SOI CMOS devices described in the last two chapters, SOI-Technology— ST-SPICE1 suitable for CAD of SOI CMOS VLSI circuits is described. Starting from the basic concepts of the SPICE program, analytical device models of deep-submicron fully-depleted SOI CMOS devices used in ST-SPICE for CAD of VLSI circuits are explained. In the final portion of this section, usage of the ST-SPICE CAD program for analyzing the steady state and transient behaviors of SOI CMOS circuits is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Auberton-Herve, “SOI: Materials to Systems,” IEDM Dig., pp. 3–10, 1996.

    Google Scholar 

  2. Y. Yamaguchi and Y. Inoue, “SOI DRAM: Its Features and Possibility,” SOI Conf. Dig., pp. 122–124, 1995.

    Google Scholar 

  3. H.-S. Kim, S.-B. Lee, D.-U. Choi, J.-H. Shim, K.-C. Lee, K.-P. Lee, K.-N. Kim, and J.-W. Park, “A High Performance 16M DRAM on a Thin Film SOI,” Symp. VLSI Tech. Dig., pp. 143–144, 1995.

    Google Scholar 

  4. K. Suma, T. Tsuruda, H. Hidaka, T. Eimori, T. Oashi, Y. Yamaguchi, T. Iwamatsu, M. Hirose, K. Fujishima, Y. Inoue, T. Nishimura, and T. Yoshihara, “An SOI-DRAM with Wide Operating Voltage Range by CMOS/SIMOX Technology,” ISSCC Dig., pp. 138–139, 1994.

    Google Scholar 

  5. H. Lu, E. Yee, L. Hite, T. Houston, Y.-D. Sheu, R. Rajgopal, C. C. Shen, J.-M. Hwang, and G. Pollack, “A 1-M Bit SRAM on SIMOX Material,” SOI Conf. Dig., pp. 182–183, 1993.

    Google Scholar 

  6. T. Iwamatsu, Y. Yamaguchi, Y. Inoue, T. Nishimura, and N. Tsubouchi, “CAD-Compatible High-Speed CMOS/SIMOX Technology Using Field-Shield Isolation for IM Gate Array,” IEDM Dig., pp. 475–478, 1993.

    Google Scholar 

  7. Y. Kado, T. Ohno, M. Harada, K. Deguchi, and T. Tsuchiya, “Enhanced Performance of Multi-GHz PLL LSIs Using Sub-l/4-micron Gate Ultrathin Film CMOS/SIMOX Technology with Synchrotron X-Ray Lithography,” IEDM Dig., pp. 243–246, 1993.

    Google Scholar 

  8. R. Rajsuman, “Implementation of Switch Network Logic in SOI,” IEEE J. Sol. St. Ckts, Vol. 25, No. 3, pp. 874–877, June 1990.

    Article  Google Scholar 

  9. Y. Omura, S. Nakashima, K. Izumi, and T. Ishii, “0.1-μm-Gate, Ultrathin-Film CMOS Devices Using SIMOX Substrate with 80-nm-Thick Buried Oxide Layer,” IEEE Trans. Elec. Dev., Vol. 40, No. 5, pp. 1019–1022, May 1993.

    Article  Google Scholar 

  10. M. Fujishima, K. Asada, Y. Omura, and K. Izumi, “Low-Power 1/2 Frequency Dividers Using 0.1-μm CMOS Circuits Built with Ultrathin SIMOX Substrates,” IEEE J. Sol. St. Ckts, Vol. 28, No. 4, pp. 510–512, Apr. 1993.

    Article  Google Scholar 

  11. K. Ohuchi, R. Ohba, H. Nhyama, K. Nakajima, and T. Mizuno, “A High-Performance 0.05μm SOI MOS FET: Possibility of Velocity Overshoot,” Jpn. J. Appl. Phys., Vol. 35, No. 28, pp. 960–964, Feb. 1996.

    Article  Google Scholar 

  12. Y. Hu, T. Houston, R. Rajgopal, K. Joyner, and C. Teng, “Isolation Techniques for 256MBit SOI DRAM Application,” SOI Conf. Dig., pp. 26–27, 1995.

    Google Scholar 

  13. J. B. Kuo, Y. G. Chen, and K. W. Su, “Sidewall-Related Narrow Channel Effect in Mesa-Isolated Fully-Depleted Ultra-Thin SOI NMOS Devices,” IEEE Elec. Dev. Let., Vol. 16, No. 9, pp. 379–381, Sept. 1995.

    Article  Google Scholar 

  14. K. W. Su and J. B. Kuo, “Modeling Narrow-Channel Effect in VLSI Mesa-Isolated SOI MOS Devices Using a Quasi-Two-Dimensional Approach,” Sol. St. Elec., Vol. 39, No. 9, pp. 1321–1329, Sept. 1996.

    Article  Google Scholar 

  15. K. K. Young, “Short-Channel Effect in Fully Depleted SOI MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 36, No. 2, pp. 399–402, Feb. 1989.

    Article  Google Scholar 

  16. J. B. Kuo, K. W. Su, Y. G. Chen, and S. S. Chen, “Short-Channel Effect on the Threshold Voltage of Accumulation-Type, Inversion-Type and Intrinsic-Type SOI PMOS Devices,” Sol. St. Elec, Vol. 38, No. 10, pp. 1845–1847, Oct. 1995.

    Article  Google Scholar 

  17. K. W. Su and J. B. Kuo, “Analytical Threshold Voltage Model Considering Small-Geometry Effects for VLSI Mesa-Isolated Fully-Depleted Ultrathin SOI NMOS Devices Using a Quasi-3D Approach,” private communication.

    Google Scholar 

  18. P. J. VanDerVoorn and J. P. Krusius, “Inversion Channel Edge in Trench-Isolated Sub-l/4-μm MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 43, No. 8, pp. 1274–1280, Aug. 1996.

    Article  Google Scholar 

  19. M. Matloubian, R. Sundaresan, and H. Lu, “Measurement and Modeling of the Sidewall Threshold Voltage of Mesa-Isolated SOI MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 36, No. 5, pp. 938–942, May 1989.

    Article  Google Scholar 

  20. T. Elewa, B. Kleveland, S. Cristoloveanu, B. Boukriss, and A. Chovet, “Detailed Analysis of Edge Effects in SIMOX-MOS Transistors,” IEEE Trans. Elec. Dev., Vol. 39, No. 4, pp. 874–882, Apr. 1992.

    Article  Google Scholar 

  21. D. Chen, E. C. Kan, U. Ravaioli, C.-W. Shu, and R. W. Dutton, “An Improved Energy Transport Model Including Nonparabolicity and Non-Maxwellian Distribution Effects,” IEEE Elec. Dev. Let., Vol. 13, No. 1, pp. 26–28, Jan. 1992.

    Article  Google Scholar 

  22. S. Y. Ma and J. B. Kuo, “Concise Analytical Model for Deep Submicron N-Channel Metal-Oxide-Semiconductor Devices with Consideration of Energy Transport,” Jpn. J. Appl. Phys., Vol. 33, No. 18, pp. 550–553, Jan. 1994.

    Article  Google Scholar 

  23. Y.-G. Chen, S.-Y. Ma, J. B. Kuo, Z. Yu, and R. W. Dutton, “An Analytical Drain Current Model Considering both Electron and Lattice Temperatures Simultaneously for Deep Submi-cron Ultrathin SOI NMOS Devices with Self-Heating,” IEEE Trans. Elec. Dev., Vol. 42, No. 5, pp. 899–906, May 1995.

    Article  Google Scholar 

  24. K. W. Su and J. B. Kuo, “A Non-Local Impact Ionization/Lattice Temperature Model for VLSI Double-Gate Ultrathin SOI NMOS Devices,” IEEE Trans. Elec. Dev., Vol. 44, No. 2, pp. 324–330, Feb. 1997.

    Article  Google Scholar 

  25. Y. G. Chen, J. B. Kuo, Z. Yu, and R. W. Dutton, “An Analytical Drain Current Model for Short-Channel Fully-Depleted Ultrathin Silicon-on-Insulator NMOS Devices,” Sol. St. Elec, Vol. 38, No. 12, pp. 2051–2057, Dec. 1995.

    Article  Google Scholar 

  26. M. Berger and Z. Chai, “Estimation of Heat Transfer in SOI-MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 38, No. 4, pp. 871–875, Apr. 1991.

    Article  Google Scholar 

  27. J. Bielefeld, G. Pelz, H. B. Abel, and G. Zimmer, “Dynamic SPICE-Simulation of the Electrothermal Behavior of SOI MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 42, No. 11, pp. 1968–1974, Nov. 1995.

    Article  Google Scholar 

  28. B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “BSIM: Berkeley Short-Channel IGFET Model for MOS Transistors,” IEEE J. Sol. St. Ckts, Vol. 22, No. 4, pp. 558–566, Aug. 1987.

    Article  Google Scholar 

  29. J.-H. Sim and J. B. Kuo, “An Analytical Back-Gate Bias Effect Model for Ultrathin SOI CMOS Devices,” IEEE Trans. Elec. Dev., Vol. 40, No. 4, pp. 755–765, Apr. 1993.

    Article  Google Scholar 

  30. P. Antognetti, D. D. Caviglia, and E. Profumo, “CAD Model for Threshold and Subthreshold Conduction in MOSFET’s,” IEEE J. Sol. St. Ckts, Vol. 17, No. 3, pp. 454–458, Jun. 1982.

    Article  Google Scholar 

  31. K. K. Young, “Analysis of Conduction in Fully Depleted SOI MOSFET’s,” IEEE Trans. Elec. Dev., Vol. 36, No. 3, pp. 504–506, Mar. 1989.

    Article  Google Scholar 

  32. J. B. Kuo and K. W. Su, “Compact Current Model for Mesa-Isolated Fully-Depleted Ultrathin SOI NMOS Devices Considering Sidewall-Related Narrow Channel Effects,” SOI Conf. Dig., pp. 84–85, 1997.

    Google Scholar 

  33. D. E. Ward and R. W. Dutton, “A Charge-Oriented Model for MOS Transistor Capacitances,” IEEE J. Sol. St Ckts, Vol. 13, No. 5, pp. 703–708, Oct. 1978.

    Article  Google Scholar 

  34. B.J. Sheu and P.-K Ko, “Measurement and Modeling of Short-Channel MOS Transistor Gate Capacitances,” IEEE J. Sol. St. Ckts, Vol. 22, No. 3, pp. 464–472, June 1987.

    Article  Google Scholar 

  35. R. Shrivastava and K. Fitzpatrick, “A Simple Model for the Overlap Capacitance of a VLSI MOS Device,” IEEE Trans. Elec. Dev., Vol. 29, No. 12, pp. 1870–1875, Dec. 1982.

    Article  Google Scholar 

  36. J. M. Higman, I. C. Kizilyalli, and K. Hess, “Nonlocality of the Electron Ionization Coefficient in n-MOSFET’s: An Analytic Approach,” IEEE Elec. Dev. Let., Vol. 9, No. 8, pp. 399–401, Aug. 1988.

    Article  Google Scholar 

  37. K. Taniguchi, M. Yamaji, K. Sonoda, T. Kunikiyo, and C. Hamaguchi, “Monte Carlo Study of Impact Ionization Phenomena in Small Geometry MOSFET’s,” IEDM Dig., pp. 355–358, 1994.

    Google Scholar 

  38. DAVINCI: Three-Dimensional Device Simulation Program, Technology Modeling Associates, Inc., 1996.

    Google Scholar 

  39. J. Chen, S. Parke, J. King, F. Assaderaghi, P. K. Ko, and C. Hu, “A High Speed SOI Technology with 12ps/18ps Gate Delay Operating at 5V/1.5V,” IEDM Dig., pp. 35–38, 1992.

    Google Scholar 

  40. H. Nakamura, K. Imai, H. Onishi, K. Kumagai, T. Yamada, K. Iwaki, Y. Matsubara, T. Ishigami, S. Kurosawa, and T. Horiuchi, “High Performance Dual-Gate FD-SOI CMOS Process with an Ultra Thin TiSi 2 ,” SOI Conf. Dig., pp. 24–25, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuo, J.B., Su, KW. (1998). SOI-Technology ST-SPICE. In: CMOS VLSI Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2823-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2823-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5057-4

  • Online ISBN: 978-1-4757-2823-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics