Skip to main content

SOI CMOS Circuits

  • Chapter
Book cover CMOS VLSI Engineering

Abstract

In the previous chapter, SOI technology has been described. Due to the unique oxide isolation structure, SOI CMOS devices are latchup-free. In addition, parasitic capacitances are small. Better subthreshold characteristics and transconductance characteristics can be expected from SOI CMOS devices. Furthermore, reduced leakage currents and good radiation hardness are strong points of SOI CMOS devices. As shown in Fig. 3.1, due to the unique structure, device density of an SOI CMOS circuit can be enhanced substantially, as compared to the bulk CMOS circuit[1]. As shown in the figure, NMOS and PMOS SOI devices can be placed adjacent to each other. Therefore, in the future of the circuit design for VLSI, SOI is an important technology. In this chapter, SOI CMOS circuits are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Stern, P. A. Ivey, S. Davidson and S. N. Walker, “Silicon-on-Insulator (SOI): A High Performance ASIC Technology,” CICC Dig., pp.9.2.1–4, 1992.

    Google Scholar 

  2. P.-F. Lu, C.-T. Chuang, J. Ji, L. F. Wagner, C.-M. Hsieh, J. B. Kuang, L. L. Hsu, M. M. Pelella, S.-F. S. Chu, and C. J. Anderson, “Floating-Body Effects in Partially Depleted SOI CMOS Circuits,” IEEE J. Sol. St. Ckt, Vol. 32, No. 8, pp. 1241–1253, Aug. 1997.

    Article  Google Scholar 

  3. R. Rajsuman, “Implementation of Switch Network Logic in SOI,” IEEE J. Sol. St. Ckt, Vol. 25, No. 3, pp. 874–877, June 1990.

    Article  Google Scholar 

  4. F. Assaderaghi, S. Parke, D. Sinitsky, J. Bokor, P. K. Ko, and C. Hu, “A Dynamic Threshold Voltage MOSFET (DTMOS) for Very Low Voltage Operation,” IEEE Elec. Dev. Let, Vol. 15, No. 12, pp. 510–512, Dec. 1994.

    Article  Google Scholar 

  5. F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, and C. Hu, “Dynamic Threshold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI,” IEEE Trans. Elec. Dev., Vol. 44, No. 3, pp. 414–422, March 1997.

    Article  Google Scholar 

  6. I.-Y. Chung, Y. J. Park, and H. S. Min, “A New SOI Inverter using Dynamic Threshold for Low-Power Applications,” IEEE Elec. Dev. Let, Vol. 18, No. 6, pp. 248–250, June 1997.

    Article  Google Scholar 

  7. T. W. Houston, “A Novel Dynamic Vt Circuit Configuration,” SOI Conf. Dig., pp. 154–155, 1997.

    Google Scholar 

  8. T. Douseki, S. Shigematsu, J. Yamada, M. Harada, H. Inokawa, and T. Tsuchiya, “A 0.5-V MTCMOS/SIMOX Logic Gate,” IEEE J. Sol. St. Ckt, Vol. 32, No. 10, pp. 1604–1609, Oct. 1997.

    Article  Google Scholar 

  9. Y. Sato, Y. Kado, T. Tsuchiya, T. Kosugi, H. Ishii, and K. Nishimura, “300KG Gate-Array LSI using 0.25μm Ultra-Thin-Film Fully-Depleted CMOS/SIMOX with Tungsten-Deposited Source/Drain,” SOI Conf. Dig., pp. 168–169, 1997.

    Google Scholar 

  10. Y. Kado, H. Inokawa, Y. Okazaki, T. Tsuchiya, Y. Kawai, M. Sato, Y. Sakakibara, S. Nakayama, H. Yamada, M. Kitamura, S. Nakashima, K. Nishimura, S. Date, M. Ino, K. Takeya, and T. Sakai, “Substantial Advantages of Fully-Depleted CMOS/SIMOX Devices as Low-Power High-Performance VLSI Components Compared with its Bulk-CMOS Counterpart,” IEDM Dig., pp. 635–638, 1995.

    Google Scholar 

  11. Y. Yamaguchi, A. Ishibashi, M. Shimizu, T. Nishimura, K. Tsukamoto, K. Horie, and Y. kasaka, “A High-Speed 0.6 — μm 16K CMOS Gate Array on a Thin SIMOX Film,” IEEE Trans. Elec. Dev., Vol. 40, No. 1, pp. 179–186, Jan. 1993.

    Article  Google Scholar 

  12. K. Ueda, K. Nii, Y. Wada, I. Takimoto, S. Maeda, T. Iwamatsu, Y. Yamaguchi, S. Maegawa, K. Mashiko, and H. Hamano, “A CAD-Compatible SOI/CMOS Gate Array having Body-Fixed Partially-Depleted Transistors,” ISSCC Dig., pp. 288–289, 1997.

    Google Scholar 

  13. K. Mashiko, K. Ueda, K. Nii, Y. Wada, T. Hirota, S. Maeda, T. Iwamatsu, Y. Yamaguchi, T. Ipposhi, S. Maegawa, and H. Hamano, “A 0.35μm 560KG SOI/CMOS Gate Array using Field-Shield Isolation Technique,” SOI Conf. Dig., pp. 166–167, 1997.

    Google Scholar 

  14. N. Sasaki and M. Nakano, “A CMOS/SOS Gate Array with a New Customization Technique of Cutting,” IEEE Trans. Elec. Dev., Vol. 29, No. 10, pp. 1535–1541, Oct. 1982.

    Article  Google Scholar 

  15. K. Kumagai, T. Yamada, H. Iwaki, H. Nakamura, H. Onishi, Y. Matsubara, K. Imai and S. Kurosawa, “A New SRAM Cell Design using 0.35μm CMOS/SIMOX Technology,” SOI Conf. Dig., pp. 174–175, 1997.

    Google Scholar 

  16. G. G. Shahidi, T. H. Ning, T. I. Chappell, J. H. Comfort, B. A. Chappell, R. Franch, C. J. Anderson, P. W. Cook, S. E. Schuster, M. G. Rosenfield, M. R. Polcari, R. H. Dennard, and B. Davari, “SOI for a 1-Volt CMOS Technology and Application to a 512Kb SRAM with 3.5ns Access Time,” IEDM Dig., pp. 813–816, 1993.

    Google Scholar 

  17. M. Isobe, Y. Uchida, K. Maeguchi, T. Mochizuki, M. Kimura, H. Hatano, Y. Mizutani, and H. Tango, “An 18ns CMOS/SOS 4K Static RAM,” IEEE J. Sol. St. Ckt, Vol. 16, No. 5, pp. 460–465, Oct. 1981.

    Article  Google Scholar 

  18. J. B. Kuang, S. Ratanaphanyarat, M. J. Saccamango, L. L.-C. Hsu, R. C. Flaker, L. F. Wagner, S.-F. S. Chu, and G. G. Shahidi, “SRAM Bitline Circuits on PD SOI: Advantages and Concerns,” IEEE J. Sol. St. Ckt, Vol. 32, No. 6, pp. 837–844, June 1997.

    Article  Google Scholar 

  19. Y. Takao, H. Shimada, N. Suzuki, Y. Matsukawa, Y. Kobayashi and N. Sasaki, “A Low-Power SRAM Utilizing High On/Off Ratio Laser-Recrystallized SOI PMOSFET Load,” Symp. VLSI Ckt Dig., pp. 95–96, 1991.

    Google Scholar 

  20. Y. Takao, H. Shimada, N. Suzuki, Y. Matsukawa and N. Sasaki, “Low-Power and High-Stability SRAM Technology using a Laser-Recrystallized p-Channel SOI MOSFET,” IEEE Trans. Elec. Dev., Vol. 39, No. 9, pp. 2147–2152, Sept. 1992.

    Article  Google Scholar 

  21. T. Nishimura, Y. Inoue, K. Sugahara, M. Nakaya, Y. Horiba and Y. Akasaka, “A Three Dimensional Static RAM,” Symp. VLSI Tech. Dig., pp. 30–31, 1985.

    Google Scholar 

  22. Y. Yamaguchi and Y. Inoue, “SOI DRAM: Its Features and Possibility,” SOI Conf. Dig., pp. 122–124, 1995.

    Google Scholar 

  23. H.-S. Kim, S.-B. Lee, D.-U. Choi, J.-H. Shim, K.-C. Lee, K.-P. Lee, K.-N. Kim, and J.-W. Park, “A High Performance 16M DRAM on a Thin Film SOI,” Symp. VLSI Tech. Dig., pp. 143–144, 1995.

    Google Scholar 

  24. J. A. Mandelman, J. E. Barth, J. K. DeBrosse, R. H. Dennard, H. L. Kalter, J. Gautier and H. I. Hanafi, “Floating-Body Concerns for SOI Dynamic Random Access Memory (DRAM),” SOI Conf. Dig., pp. 136–137, 1996.

    Google Scholar 

  25. S. Tomishima, F. Morishita, M. Tsukude, T. Yamagata, and K. Arimoto, “A Long Data Retention SOI-DRAM with the Body Refresh Function,” Symp. VLSI Ckt. Dig., pp. 198–199, 1996.

    Google Scholar 

  26. H.-S. Kim, D.-U. Choi, S.-H. Lee, S.-K. Lee, J.-K. Park, K.-N. Kim and J.-W. Park, “Data Retention Times in SOI-DRAMs,” Symp. VLSI Tech. Dig., pp. 126–127, 1996.

    Google Scholar 

  27. Y.-H. Koh, J.-H. Choi, J.-W. Yang, M.-H. Nam, W.-C. Lee, J.-W. Lee and M.-R. Oh, “64Mbit SOI-DRAM Technologies using Body-Contacted (BC) Structure,” SOI Conf. Dig., pp. 170–171, 1997.

    Google Scholar 

  28. K. Suma, T. Tsuruda, H. Hidaka, T. Eimori, T. Oashi, Y. Yamaguchi, T. Iwamatsu, M. Hirose, F. Morishita, K. Arimoto, K. Fujishima, Y. Inoue, T. Nishimura, and T. Yoshihara, “An SOI-DRAM with Wide Operating Voltage Range by CMOS/SIMOX Technology,” IEEE J. Sol. St. Ckt, Vol. 29, No. 11, pp. 1323–1329, Nov. 1994.

    Article  Google Scholar 

  29. K. Shimomura, H. Shimano, N. Sakashita, F. Okuda, T. Oashi, Y. Yamaguchi, T. Eimori, M. Inuishi, K. Arimoto, S. Maegawa, Y. Inoue, S. Komori, and K. Kyuma, “A 1-V 46-ns 16-Mb SOI-DRAM with Body Control Technique,” IEEE J. Sol St Ckt, Vol. 32, No. 11, pp. 1712–1720, Nov. 1997.

    Article  Google Scholar 

  30. K. Ohtake, K. Shirakawa, M. Koba, K. Awane, Y. Ohta, D. Azuma and S. Miyata, “Triple Layered SOI Dynamic Memory,” IEDM Dig., pp. 148–151, 1986.

    Google Scholar 

  31. W. M. Huang, K. Papworth, M. Racanelli, J. P. John, J. Foerstner, H. C. Shin, H. Park, B. Y. Hwang, T. Wetteroth, S. Hong, H. Shin, S. Wilson and S. Cheng, “TFSOI CMOS Technology for Sub-lV Microcontroller Circuits,” IEDM Dig., pp. 59–62, 1995.

    Google Scholar 

  32. T. Fuse, Y. Oowaki, T. Yamada, M. Kamoshida, M. Ohta, T. Shino, S. Kawanaka, M. Terauchi, T. Yoshida, G. Matsubara, S. Yoshioka, S. Watanabe, M. Yoshimi, K. Ohuchi, and S. Manabe, “A 0.5V 200MHz 1-Stage 32b ALU using a Body Bias Controlled SOI Pass-Gate Logic,” ISSCC Dig., pp.286–287, 1997.

    Google Scholar 

  33. M. Verbeck, C. Zimmermann, and H-L. Fiedler, “A MOS Switched-Capacitor Ladder Filter in SIMOX Technology for High Temperature Applications up to 300C,” IEEE J. Sol. St. Ckt, Vol. 31, No. 7, pp. 908–914, July 1996.

    Article  Google Scholar 

  34. A. O. Adan, T. Naka, S. Kaneko, D. Urabe, K. Higashi, and A. Kagisawa, “Low-Voltage 0.35μm CMOS/SOI Technology for High-Performance ASIC’s,” CICC Dig., pp. 427–430, 1997.

    Google Scholar 

  35. J.-P. Eggermont, D. D. Ceuster, D. Flandre, B. Gentinne, P. G. A. Jespers, and J.-P. Colinge, “Design of SOI CMOS Operational Amplifiers for Applications up to 300C,” IEEE J. Sol. St. Ckt, Vol. 31, No. 2, pp. 179–186, Feb. 1996.

    Article  Google Scholar 

  36. P. Francis, A. Terao, B. Gentinne, D. Flandre and J.-P. Colinge, “SOI Technology for High-Temperature Applications,” IEDM Dig., pp. 353–356, 1992.

    Google Scholar 

  37. V. Dessard, D. Baldwin, L. Demeus, B. Gentinne and D. Flandre, “SOI Implementation of Low-Voltage and High-Temperature MOSFET-C Continuous-Time Filters,” SOI Conf. Dig., pp. 24–25, 1996.

    Google Scholar 

  38. A. Viviani, D. Flandre and P. Jespers, “A SOI-CMOS Micro-Power First-Order Sigma-Delta Modulator,” SOI Conf. Dig., pp. 110–111, 1996.

    Google Scholar 

  39. H.-J. Song and C.-K. Kim, “A Temperature-Stabilized SOI Voltage Reference Based on Threshold Voltage Difference Between Enhancement and Depletion NMOSFET’s,” IEEE J. Sol. St. Ckt, Vol. 28, No. 6, pp. 671–677, June 1993.

    Article  Google Scholar 

  40. R. H. Waiden, A. E. Schmitz, A. R. Kramer, L. E. Larson, and J. Pasiecznik, “A Deep-Submicrometer Analog-to-Digital Converter Using Focused-Ion-Beam Implants,” IEEE J. Sol. St. Ckt, Vol. 25, No. 2, pp. 562–571, Apr. 1990.

    Article  Google Scholar 

  41. B. M. Tenbroek, M. S. L. Lee, W. Redman-White, C. F. Edwards, R. J. T. Bunyan and M. J. Uren, “Measurement and Simulation of Self-Heating in SOI CMOS Analogue Circuits,” SOI Conf. Dig., pp. 156–157, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuo, J.B., Su, KW. (1998). SOI CMOS Circuits. In: CMOS VLSI Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2823-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2823-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5057-4

  • Online ISBN: 978-1-4757-2823-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics