Using Artificial Neural Nets to Specify and Estimate Aggregate Reference Price Models

  • Martin Natter
  • Harald Hruschka
Part of the Advances in Computational Management Science book series (AICM, volume 1)


Reference price theories provide behavioral explanations of certain dynamic price effects. These theories postulate that consumers compare internal prices (reference prices) to observed actual prices. Together with other factors this comparison determines purchase decisions (Winer 1988). Consumers consider reference prices that lie above actual prices as gain. On the other hand, if reference prices lie below actual prices, consumers feel a loss. Favorable (unfavorable) evaluation of observed prices of a brand increases (decreases) its market share.


Market Share Rational Expectation Reference Price Hide Unit Price Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amemiya T. Selection of Regressors. International Economic Review 1980; 21: 331–354.CrossRefGoogle Scholar
  2. Bagozzi, Richard P. Causal Models in Marketing. New York: Wiley, 1980.Google Scholar
  3. Bishop CM. Exact Calculation of the Hessian Matrix for the Multilayer Perceptron. Neural Computation 1992; 4: 494–501.CrossRefGoogle Scholar
  4. Bridges E, Yim CK, Briesch RA. A High-Tech Product Market Share Model with Customer Expectations. Marketing Science 1995; 14: 61–81.CrossRefGoogle Scholar
  5. Bultez, Alain. Price Cut versus Coupon Promotion. Brussels: European histitute for Advanced Studies in Management, 1975.Google Scholar
  6. Cybenko G. Continuous Value Neural Networks with Two Hidden Layers are Sufficient. Mathematics of Control, Signal and Systems 1989; 2: 303–314.CrossRefGoogle Scholar
  7. Diller, Hermann. Preispolitik. 2nd Edition. Stuttgart: Kohlhammer, 1991.Google Scholar
  8. Elman JL. Distributed Representations, Simple Recurrent Networks, and Grammatical Structure. Machine Learning 1991; 7: 195–225.Google Scholar
  9. Hertz, John, Krogh, Anders, Palmer, Richard G. Introduction to the Theory of Neural Computation. Redwood City, CA: Addison-Wesley, 1991.Google Scholar
  10. Homik K, Stinchcombe M, White H. Multilayer Feedforward Networks are Universal Approximators. Neural Networks 1989; 3: 359–366.Google Scholar
  11. Hruschka, Harald. Marketing-Entscheidungen. Munich: Vahlen Verlag, 1996.Google Scholar
  12. Jain AK, Dubes RC. Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice-Hall, 1988.Google Scholar
  13. Jüreskog, Karl G., Wold, Herman. Systems Under Indirect Observation, Part I. Amsterdam: North Holland, 1982.Google Scholar
  14. Johansson JK. Advertising and the S-Curve. A New Approach. Journal of Marketing Research 1979; 16: 345–354.Google Scholar
  15. Kaas, Klaus Peter. Ein Neuronenmodell als probabilistische Interpretation der Preisabsatzfunktion. Saarbrücken: Arbeitspapier des hrstituts für Konsum-und Verhaltensforschung an der Universität des Saarlandes, 1972.Google Scholar
  16. Kaas, Klaus Peter. Empirische Preisabsatzfunktionen bei Konsumgütern. Berlin: Springer, 1977. Kahneman D, Tversky A. An Analysis of Decision Under Risk. Econometrica 1979; 47: 363–391.Google Scholar
  17. Krishnamurthi L, Mazumdar T, Raj SP. Asymmetric Response to Price in Consumer Brand Choice and Purchase Quantity Decisions. Journal of Consumer Research 1992; 19: 387–400.CrossRefGoogle Scholar
  18. Kucher, Eckhard. Scannerdaten und Preissensitivität bei Konsumgütern. Wiesbaden: Gabler, 1985. Landau HJ. Pricing in a Dynamic Model with Saturation. Econometrica 1976; 44: 1153–1155.Google Scholar
  19. Lilien, Gary L., Kotler, Philip, Moorthy, K. Sridhar. Marketing Models. Englewood Cliffs, NJ: Prentice-Hall, 1992.Google Scholar
  20. Muth JF. Rational Expectations and the Theory of Price Movement. Econometrica 1961; 29: 315–335.CrossRefGoogle Scholar
  21. Naert, Philippe, Leeflang, Peter S.H. Building Implementable Marketing Models. Leiden: Martinus Nijhof, 1978.Google Scholar
  22. Natter M, Hruschka H. Ankerpreise als Erwartungen oder dynamische latente Variablen in Marktreaktionsmodellen. Zeitschrift für betriebswirtschaftliche Forschung 1997; 49 (to appear).Google Scholar
  23. Nerlove M. Adaptive Expectations and Cobweb Phenomena. Quarterly Journal of Economics 1958; 72: 227–240.CrossRefGoogle Scholar
  24. Ripley, Brian D. “Statistical Aspects of Neural Networks.” In Networks and Chaos - Statistical and Probabilistic Aspects, Barndorff-Nielsen, Ole E., Jensen, Johan L., Kendall, Wilfried S., eds. London: Chapman Hall, 1993.Google Scholar
  25. Rumelhart, David E, McClelland, James L Parallel Distributed Processing: Explorations in the Microstructure of Cognition I. Cambridge, MA: MIT Press, 1986.Google Scholar
  26. Simon, Hermann. Preismanagement. 2nd Edition. Wiesbaden: Gabler, 1992.CrossRefGoogle Scholar
  27. Thompson GL, Teng JT. Optimal Pricing and Advertising Policies for New Product Oligopoly Models. Marketing Science 1984; 3: 148–168.CrossRefGoogle Scholar
  28. White H. Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models. Journal of the American Statistical Association 1989; 84: 1003–1013.CrossRefGoogle Scholar
  29. Winer, Russel S. “Behavioral Perspective on Pricing: Buyers’ Subjective Perceptions of Price Revisited.” In Issues in Pricing, Devinney, Timothy M., ed. Lexington, MA: Lexington Books, 1988.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Martin Natter
    • 1
  • Harald Hruschka
    • 2
  1. 1.University of EconomicsViennaAustria
  2. 2.University of RegensburgRegensburgGermany

Personalised recommendations