Connexionist Approach and Corporate Distress Diagnosis

A Contribution to the Processing of Incomplete Information
  • Jean-François Casta
  • Bernard Prat
Part of the Advances in Computational Management Science book series (AICM, volume 1)


Over the last thirty years, and in particular up to the mid-1980s, evaluation of the risk of corporate bankruptcy has been the subject of many empirical research projects, using mostly linear discriminant analysis. The methodology used in that research has generated a great deal of criticism, thus favouring the emergence of various alternative approaches. The most recent one, called the connexionist approach, allies the dynamics of complex systems and the neuro-mimetic paradigm. It applies the neural networks’ properties of learning and generalization (or self-organization) to the prediction of corporate bankruptcy. Paradoxically, given the degree of sophistication of the statistical techniques used, higher than in any other numerical induction procedure, empirical research on corporate bankruptcy remains dependent on the quality of the data and in particular their degree of completeness. This problem may be solved by employing one of the following two techniques: the elimination cf those companies whose data are incomplete or the use of econometric methods to complete the series (Hachette 1994). The removal of some companies from the sample — the most commonly used procedure — introduces a methodological bias whereby the incompleteness does not affect distressed companies and the others equally.


Hide Layer Linear Discriminant Analysis Financial Ratio Learn Vector Quantization Bankruptcy Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman EI. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, September 1968; XXIII: 589–609.CrossRefGoogle Scholar
  2. Altman EI. Corporate Financial Distress and Bankruptcy. New York: John Wiley and Sons, 1993.Google Scholar
  3. Altman EI, Haldeman R, Narayanan P. ZETA analysis: a new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, June 1977; I: 21–54.Google Scholar
  4. Altman EI, Marco G, Varetto F. Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance, 1994; 18: 505–529.CrossRefGoogle Scholar
  5. Amirikian B, Nishimura H. What size network is good for generalization of a specific task of interest?. Neural Networks, 1994; 7, 2: 321–329.CrossRefGoogle Scholar
  6. Baetge J., Krause C. The classification of companies by means of neural networks. Proceedings of the Congrés de l’Association Française de Comptabilité. Paris, 1994; II: 517–534.Google Scholar
  7. Bardos M. Le risque de défaillance d’entreprise. Cahiers Economiques et Monétaires de la Banque de France. Paris, 1984; 19.Google Scholar
  8. Bardos M. Ratios significatifs et détection du risque. Trois méthodes d’analyse discriminante. Cahiers Economiques et Monétaires de la Banque de France. Paris, 1989; 33.Google Scholar
  9. Bardos M, Zhu W. Comparaison de l’analyse discriminante linéaire et des réseaux de neurones. Revue de Statistiques Appliquées. Paris, Forthcoming.Google Scholar
  10. Barnes P. The analysis and use of financial ratios: a review article. Journal of Business Finance and Accounting. 1987; 14: 449–461.CrossRefGoogle Scholar
  11. Barniv R, Raveh A. Identifying financial distress: a new non-parametric approach. Journal of Business Finance and Accounting, Summer 1989: 361–388.Google Scholar
  12. Beaver WH. Financial ratios as predictors of failure, Empirical Research in Accounting: Selected Studies. Journal of Accounting Research, 1966; supplement 5: 71–111.Google Scholar
  13. Carpenter G, Grossberg S. ART 2: Self-organization of stable category recognition codes for analog inputs patterns. Applied optics, December 1987; 26, 23: 4919–4930.CrossRefGoogle Scholar
  14. Casta JF, Zerbib JP. Prévoir la défaillance des entreprises ? Revue Française de Comptabilité, Paris October 1979; 97: 506–527.Google Scholar
  15. Chung H, Tam K.Y. A comparative analysis of inductive learning alogrithms. Intelligent Systems in Accounting, Finance and Management, January 1993.Google Scholar
  16. Coats PK, Fant LF. Recognizing financial distress patterns using a neural networks tool. Financial Management, Autumn 1993; 22, 3: 142–154.CrossRefGoogle Scholar
  17. Couturier A, Fioleau B. Performances des réseaux neuronaux comme outil de classification et de positionnement des entreprises au sein de leur secteur d’activité. Proceedings of the Congrès de l’Association Française de Comptabilité, Poitiers 1993; 1: 355–364.Google Scholar
  18. De Bodt E, Cottrell M, Levasseur M. Les réseaux de neurones en finance, Principes et revue de la littérature. Finance, Paris 1995; 16, 1: 25–91.Google Scholar
  19. Eisenbeis RA. Pitfalls in the application of discriminant analysis in Business, Finance and Economics. Journal of Finance, June 1977; XXXII, 3: 875–900.CrossRefGoogle Scholar
  20. Eisenbeis RA, Avery R. Discriminant Analysis and Classification Procedures: theory and applications. Mass.: Lexington Books, 1972.Google Scholar
  21. Frydman H, Altman EI, Duen-Li Kao D. Introducing recursive partitioning for financial classification: the case of financial distress. Journal of Finance, March 1985; XL, 1: 269–291.Google Scholar
  22. Gallinari P, Fogelman-Soulié F. Progressive Design of MLP Architecture. Proceedings of Neuro-Nimes. France: Nimes 1988; 171–182.Google Scholar
  23. Gallinari P, Thiria S, Badran F, Fogelman-Soulié F. On the relations between discriminant analysis and multilayer perceptrons. Neural Networks, 1991; 4: 349–360.CrossRefGoogle Scholar
  24. Gallinari P, Fogelman-Soulié F, Thiria S. “Multi-Layer Perceptrons and Data Analysis.” In Neural Networks for Computing. Utah: Snowbird, 1988.Google Scholar
  25. Hachette I, Mai HM. “Le traitement des données manquantes pour la recherche en finance.” In Recherches en Finance du CEREG. J. Hamon and B. Jacquillat eds. Paris: Economica, 1994.Google Scholar
  26. Joy OM, Tollefson JO. On the financial application of discriminant analysis. Journal of Financial and Quantitative Analysis, December 1975; X, 15: 723–739.CrossRefGoogle Scholar
  27. Malécot JF. Sait-on vraiment prévoir les défaillances d’entreprises ? France: Economie et Sociétés, série Gestion, December 1986; XX, 12: 55–82.Google Scholar
  28. Malécot JF. Analyses théoriques des défaillances d’entreprises: une revue de la littérature. Working paper, CEREG. Université de Paris Dauphine, Paris 1991; n°9108.Google Scholar
  29. McClelland JL, Rumelhart DE. The PDP Research Group: Parallel Distribued Processing. New-York: Academic Press, 1986.Google Scholar
  30. Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, Spring 1980; 18: 109–131.CrossRefGoogle Scholar
  31. Rumelhart DE, Hinton G, Williams R. “Learning Internal Representations by Error Propagation.” In Parallel Distribued Processing: exploring the microstructure of the cognition, Rumelhart DE, McClelland JL. eds. Cambridge, M.A.: The MIT Press, 1986; 318–362.Google Scholar
  32. Tam KT, Kiang MY. Managerial applications of neural networks: the case of bank failure predictions, Management Science, 1992; 38, 7: 926–947.CrossRefGoogle Scholar
  33. Wang K, Massimo CD, Tham MT, Morris J. A procedure for determination the topology of multilayer feedfordward neural networks. Neural Networks, 1994; 7, 2: 291–300.CrossRefGoogle Scholar
  34. Watson CJ. Multivariate distributional properties, outliers and transformation of financial ratios. The Accounting Review, July 1990; 65, 3: 682–695.Google Scholar
  35. Weigend AS, Rumelhart DE, Huberman BA. Generalization by weight-elimination. Advanced in Neural Information Processing Systems, 1991; 3: 875–882.Google Scholar
  36. Zavgren C. The prevision of corporate failure: the state of the art. Journal of Accounting Litterature. 1983; 2: 1–38.Google Scholar
  37. Zmijewski ME. Methodological issues related to the estimation of financial distress prediction problems. Journal of Accounting Research. 1984; supplement XXII: 59–82.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Jean-François Casta
    • 1
  • Bernard Prat
    • 2
  1. 1.Largo, Université d’Angers and CeregUniversité de Paris DauphineFrance
  2. 2.CeregUniversité de Paris DauphineFrance

Personalised recommendations