Skip to main content

Scientific-Medical Foundations of Radiation Protection

  • Chapter
Book cover Environmental Standards

Abstract

In this chapter, we will present the scientific-medical foundations which are the basis of today’s standards for radiation protection. They are the result of decades of intensive research. The case of radiation protection is thus rather outstanding with respect to completeness and reliability of its foundations. Political practice will often require that standards are based on a less solid basis of knowledge. It is exactly for this reason, however, that the standards of radiation protection have been chosen to serve as a model for the establishment of environmental standards in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Alper, T. (1979): Cellular Radiobiology, Cambridge, Cambridge University Press.

    Google Scholar 

  • Altmann, K.I., Gerber, G.B., Okada, S. (1970): Radiation-Biochemistry, New York, Academic Press.

    Google Scholar 

  • BEIR (1980): The Effects of Exposure to Low Levels of Ionizing Radiation, Washington, D.C., National Academic Press.

    Google Scholar 

  • Boice, J.D., Fraumeni, J.F. (1984): Radiation Carcinogenesis: Epidemiology and Biological Significance, New York, Raven Press.

    Google Scholar 

  • Bond, V.P., Fliedner, T.M., Archambeau, J.O. (1965): Mammalian Radiation Lethality: a Disturbance in Cellular Kinetics, New York, Academic Press.

    Google Scholar 

  • Chadwick, K.H., Leenhouts, H.P. (1981): The Molecular Theory of Radiation Biology, Berlin, Springer.

    Book  Google Scholar 

  • Chem G 1982 (Chemikaliengesetz): Gesetz zum Schutz gegen gefährliche Stoffe.

    Google Scholar 

  • Cook-Mozaffari, P.J., Darby, S.C., Doll, R., Forman, D., Hermon, C., Pike, M.C., Vincent, T. (1989a): Geographical Variation in Mortality from Leukaemia and Other Cancers in England and Wales in Relation to Proximity Nuclear Installations, 1969–1978, Brit. J. Cancer 59, 476–485.

    Article  Google Scholar 

  • Cook-Mozaffari, P.J., Darby, S.C., Doll, R. (1989b): Cancer Near Potential Sites of Nuclear Installations, Lancet II, No 8672, 1145–1147.

    Article  Google Scholar 

  • Darby, S.C., Doll, R. (1987): Falbut, Radiation Doses Near Dounreay, and Childhood Leukaemia, Brit. Med. J. 294, No 6572, 603–607.

    Article  Google Scholar 

  • Dikomey, E., Franzke, J. (1986): Three Classes of DNA Strand Breaks Induced by X-Irradiation and Internal ß-Rays, Int. J. Radiat. Biol. 50, 893–908.

    Article  Google Scholar 

  • Dunning, D.E., Schwarz, G. (1981): Variability of Human Thyroid Characteristics and Estimates of Dose from Ingested I-131, Health Phys. 40, 661–675.

    Article  Google Scholar 

  • Eckerman, K.F., Kerr, G.D., Raridon, R. (1980): Organ Doses from Isotropic and Cloud Sources of Gamma Rays, Health Phys. 39. 1054.

    Google Scholar 

  • Ehling, U.H. (1987): Quantifizierung des strahlengenetischen Risikos, Strahlen, Strahlenther. Onkol. 163, 283–291.

    Google Scholar 

  • Elkind, K.F., Sutton, H. (1960): Radiation Response of Mammalian Cells Grown in Culture. I. Repair of X-Ray Damage in Surviving Chinese Hamster Cells, Radiat. Res. 13, 556–593.

    Article  Google Scholar 

  • Feinendegen, L.E. (1977): Das Strahlenrisiko bei Kernreaktoren und radioaktivem Müll, Öff. Gesundh.-Wesen 39, 584–598.

    Google Scholar 

  • Fischer, A. (1981): Schilddrüsengewichte im saarländisch-pfälzischen Raum — Ein Beitrag zur Endemie des Kropfes, Dissertation, Universität des Saarlandes, Homburg.

    Google Scholar 

  • Gardner, M.J., Snee, M.P., Hall, A.J., Powell, C.A., Downes, S., Terrell, J.D. (1990): Results of a Case-Control Study of Leukaemia and Lymphoma among Young People Near Sellafield Nuclear Plant in West Cumbria, Brit. Med. J 300, 423–434.

    Article  Google Scholar 

  • Generoso, W.M., Shelby, M.D., Serres de, F.J. (1980): DNA Repair and Mutagenesis in Eukaryotes, New York, Plenum Press.

    Book  Google Scholar 

  • Glöbel, B. (1978): Die Ökologie von stabilem und radioaktivem Jod und Bedeutung für die Beurteilung des Strahlenrisikos bei der medizinischen Anwendung, Habilitationsschrift, Universität des Saarlandes, Homburg.

    Google Scholar 

  • Hall, E.J. (1978): Radiobiology for the Radiologist, Hagerstown/Maryland, Harper and Row.

    Google Scholar 

  • Hanawalt, Ph.C., Cooper, P.K., Ganesau, A.K., Smith, Ch.A. (1979): DNA Repair in Bacteria and Mammalian Cells, Annu. Rev. Biochem. 48, 783.

    Article  Google Scholar 

  • Hellstem, P., Keller, H.E., Weinheimer, D. (1978): Thyroid Jodine Concentration and Total Thyroid Iodine in Normal Subjects and in Endemic Goitre Subjects, J. Endocrinol. 9, 351–356.

    Google Scholar 

  • Henrichs, K., Kaul, A. (1982): Age Dependent Values of Specific Absorbed Fractions and Specific Effective Energy for the Dosimetry of Internal Emitters, Rad. Prot. Dosim., Vol. 3, No. 1/2, 71–73.

    Google Scholar 

  • Henrichs K., Müller-Brunecker, G., Paretzke, H.G. (1983): Zur Strahlenexposition der Schilddrüse bei Inkorporation von Jod-Isotopen, GSF-Bericht, GSFS-960.

    Google Scholar 

  • Hoffmann, F.O. (1973): Parameters to be Considered when Calculating the Age Dependent 1–131 Dose to the Thyroid, Bericht des Instituts für Reaktorsicherheit, Köln (jetzt GRS), IRS,

    Google Scholar 

  • ICRP (1975): Report of the Task Group on Reference Man, ICRP Publication, ICRP 23, Oxford, Pergamon Press.

    Google Scholar 

  • ICRP (1977): Recommendations of the International Commission on Radiological Protection, ICRP Publication, ICRP 26, Oxford, Pergamon Press.

    Google Scholar 

  • ICRP (1979): Limits for Intakes of Radionuclides by Workers, ICRP Publication,

    Google Scholar 

  • ICRP 30, Oxford, Pergamon Press.

    Google Scholar 

  • Ishihara, T., Sasaki, M.S. (1983): Radiation-Induced Chromosome Damage in Man, New York, Alan R. Liss, Inc.

    Google Scholar 

  • Jacobi, W (1975): The Concept of the Effective Dose — A Proposal for the Combination of Organ Doses, Radiat. Environ. Bioph. 12, 101–109.

    Article  Google Scholar 

  • Jacobi, W., Paretzke, H.G., Ehling, U.H. (1981): Strahlenexposition und Strahlenrisiko der Bevölkerung, Kapitel II, GSF-Bericht, GSF-S-710.

    Google Scholar 

  • Jacobi, W. (1987): Strahlenschutz in Forschung und Praxis, Stuttgart, G. Thieme, vol. XXIX.

    Google Scholar 

  • Jacobi, W. (1988): Strahlenexposition und Strahlenrisiko der Bevölkerung durch den Tschernobyl-Unfall, Phys. BI. 44, 240–246.

    Google Scholar 

  • Karhausen, L., Pages, J.P., Vacca, G., Piepz, A., Visscher, M. (1973): Metabolisme de l’iode chez l’enfant et l’adolescent dans une région de la communauté, Bericht der Europäischen Gemeinschaften, EUR 4964 f. 18/86.

    Google Scholar 

  • Kaul, A., Roedler, H.D. (1980): Radioiodine: Biokinetics, Mean Dose and Dose Distribution, Radiat. Environ. Bioph. 18, 185–195.

    Article  Google Scholar 

  • Kellerer, A.M. (1990): The New Estimates of Radiation Risks, Vol. 55, No 4, 198–203.

    Google Scholar 

  • Kiefer, J. (1981): Biologische Strahlenwirkung, Berlin, Springer.

    Book  Google Scholar 

  • Killough, G.G., Eckerman, K.F. (1983): Internal Dosimetry, in: Radiological Assessment, J.E. Till & H.R. Meyer (eds.), U.S Nuclear Regulatory Commission, Washington, NUREG/CR-3332, 7–88.

    Google Scholar 

  • Kinlen, L. (1988): Evidence for an Infective Cause of Childhood Leukaemia: Comparison of a Scottish New Town with Nuclear Reprocessing Sites in Britain, Lancet II, No 8624, 1323–1326.

    Article  Google Scholar 

  • Kocher, D.C. (1983): External Dosimetry, in: Radiological Assessment, J.E. Till & H.R. Meyer (eds.), U.S. Nuclear Regulatory Commission, Washington, NUREG/CR-3332, 8.1–8.52.

    Google Scholar 

  • Kramer, R., Drexler, G. (1982): On the Calculation of the Effective Dose Equivalent, Rad. Prot. Dosim. Vol. 3, No 1/2, 13–24.

    Google Scholar 

  • Luckey, T.D. (1980): Hormesis with Ionizing Radiation, Boca Raton, Florida CRC Press, Inc..

    Google Scholar 

  • Matthies, M., Eisfeld, K., Paretzke, H.G., Pröhl, G., Wirth, E. (1982): Simulation des Transfers von Radionukliden in landwirtschaftlichen Nahrungsketten, GSF-Bericht, GSF-S-882.

    Google Scholar 

  • McKusick, V.A. (1983): Mendelian Inheritance in Man, 6th ed., Baltimore, John Hopkins University Press.

    Google Scholar 

  • NIH (1985): Report of the National Institutes of Health ad hoc Working Group to Develop Radioepidemiological Tables, NIH Publication No. 85 2748, U.S. Department of Health and Human Services, Washington, D.C..

    Google Scholar 

  • Nothdurft, W. (1985): Knochenmark, in: Handbuch der Radiologie, Berlin, Springer, vol. XX, 235–264.

    Google Scholar 

  • Otake, M., Yoshimaru, H., Schuh, W.J. (1988): Severe Mental Retardation among the Prenatally Exposed Survivors of the Atomic Bombing of Hiroshima and Nagasaki: A Comparison of the T6SDR and D586 Dosimetry Systems, Radiation Effects Research Foundation, Hiroshima, RERF TR.

    Google Scholar 

  • Pampfer, S., Streffer, C. (1988): Prenatal Death and Malformations after Irradiation of Mouse Zygotes with Neutrons or X-Rays, Teratology 37, 1–9.

    Article  Google Scholar 

  • Patterson, M.C., Bech-Hanssen, N.T., Smith, P.J., Mulvihill, J.J. (1984): Radiogenic Neoplasia, Cellular Radiosensivity and Faulty DNA Repair, in: Radiation Carcinogenesis, J.D. Boice & J.F. Fraumeni (eds.), New York, Raven Press, 319–336.

    Google Scholar 

  • Preston, D.L., Kato, H., Kopecki, K.J., Fujita, Sh. (1987): Cancer Mortality among A-Bomb Survivors in Hiroshima and Nagasaki, Life Span Study Report 10, Part 1, 1950–1982, Radiation Effects Research Foundation, Hiroshima, RERF TR 1–86.

    Google Scholar 

  • Pröhl, G., Friedland, W., Paretzke, H.G. (1986): Intercomparison of the Terrestrial Food Cham Models FOOD-MARC and ECOSYS, GSF-Bericht, GSF 18/86.

    Google Scholar 

  • Roedler, H.D. (1977): Strahlenexposition des Patienten durch Radiopharmaka — Grenzen der Genauigkeit von Dosisberechnungen, Dissertation, FU Berlin.

    Google Scholar 

  • Roman, E., Beral, V., Carpenter, L., Watson, A., Barton, C., Ryder, H., Aston, D.L. (1987): Childhood Leukaemia in the West Berkshire and Basingstroke and North Hampshire District Health Authorities in Relation to Nuclear Establishments in the Vicinity, Lancet, 17–22.

    Google Scholar 

  • Schuh, W.J., Otake, M., Neel, J.V. (1981): Genetic Effects of the Atomic Bombs: A Reappraisal, Science 213, 1220–1227.

    Article  Google Scholar 

  • Shellabarger, C.J., Chmelevsky, D., Kellerer, A.M. (1980): Induction of Mammary Neoplasms in the Sprague-Dawley Rat by 430 keV Neutrons and XRays, J. Natl. Cancer 164, 821–833.

    Google Scholar 

  • Shimizu, Y., Kato, H., Schull, W.J., Preston, D.L., Fujita, Sh., Pierce, D.A. (1987): Comparison of Risk Coefficients for Site-Specific Cancer Mortality Based on the D586 and T6SDR Shielded Kerma and Organ Doses, Life Span Study Report 11, Radiation Effects Research Foundation, Hiroshima, RERF TR 12–87.

    Google Scholar 

  • Snyder, W.S., Fisher, L., Ford, M.R. (1969): Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom, MIRD Pamphlet 5, J. Nucl. Med. 10, Suppl..

    Google Scholar 

  • Sonntag von, C. (1987): The Chemical Basis of Radiation Biology, London, Taylor & Francis.

    Google Scholar 

  • Stather, J.W., Greenhalgh, J.R. (1983): The Metabolism of Iodine in Children and Adults, NRPB — R 140, Didcot.

    Google Scholar 

  • Stewart, A., Kneale, G.W. (1968): Changes in the Cancer Risk Associated with Obstetric Radiography, Lancet, No 7534, 104–107.

    Article  Google Scholar 

  • SSK 1985 (Strahlenschutzkommission): Wirkungen nach pränataler Bestrahlung, Bundesminister des Innern (ed.), vol. 2, Stuttgart, Gustav Fischer Verlag.

    Google Scholar 

  • Strlsch V 1989 (Strahlenschutzverordnung): Verordnung über den Schutz vor Schäden durch ionisierende Strahlen.

    Google Scholar 

  • Streffer, C. (1969): Strahlen-Biochemie, Heidelberger Taschenbücher 59/60, Berlin, Springer.

    Book  Google Scholar 

  • Streffer, C., Müller, W.-U. (1984): Radiation Risk from Combined Exposure to Ionizing Radiations and Chemicals, Adv. Radiat. Biol. 11, 173–210.

    Google Scholar 

  • Streffer, C., van Beuningen, D. (1985): Zelluläre Strahienbiologie und Strahlen-Pathologie, Handbuch der Radiologie, Berlin, Springer, vol. XX, 1–39.

    Google Scholar 

  • Streffer, C. (1985): Mechanismen der strahlenbedingten Kanzerogenese: Aspekte zellbiologischer und tierexperimenteller Untersuchungen, in: Strahlenschutz in Forschung und Praxis, Stuttgart, G. Thieme, vol. XXVIII, 34–47.

    Google Scholar 

  • Streffer, C. (1987): Risiko nach Strahlenexpositionen während der pränatalen Entwicklung des Menschen, in: Strahlenschutz in Forschung und Praxis, Stuttgart, G. Thieme, vol. XXVIII, 34–47.

    Google Scholar 

  • Trott, K.R. (1985): Strahlenwirkungen auf die Abdominalorgane, in: Handbuch der Radiologie, Berlin, Springer, vol. XX, 69–100.

    Google Scholar 

  • UNSCEAR 1977 (United Nations Scientific Committee on the Effects of Atomic Radiation): Sources and Effects of Ionizing Radiation, United Nations, New York.

    Google Scholar 

  • UNSCEAR 1982 (United Nations Scientific Committee on the Effects of Atomic Radiation): Ionizing Radiation: Sources and Biological Effects, United Nations, New York.

    Google Scholar 

  • UNSCEAR 1986 (United Nations Scientific Committee on the Effects of Atomic Radiation): Genetic and Somatic Effects of Ionizing Radiation, United Nations, New York.

    Google Scholar 

  • UNSCEAR 1988 (United Nations Scientific Committee on the Effects of Atomic Radiation): Sources, Effects and Risks of Ionizing Radiation, United Nations, New York.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pinkau, K. et al. (1998). Scientific-Medical Foundations of Radiation Protection. In: Environmental Standards. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2797-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2797-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5027-7

  • Online ISBN: 978-1-4757-2797-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics