Advertisement

Towards Effective Models for Optical Passive Star Based Lightwave Networks

  • Afonso Ferreira
Chapter

Abstract

Distributed memory computing systems are composed of processor / memory modules that communicate by the exchange of messages through an underlying communication network. Among the many technologies used to implement such networks, the Optical Passive Star (OPS) coupler is a very efficient medium for transmitting information. It offers multiple access channels that allow a substantial reduction in the latencies for one-to-many communications, since every processor can access all its neighbors in a single step through an OPS. In this chapter, we give an overview of effective models for OPS-based lightwave networks, which can capture most aspects related to the required resources (single or multiple OPS’s), technology used (single or multiple wavelengths) and diameter (single or multiple hops in pairwise communications).

Keywords

Interconnection Network Multiple Access Channel Euler Tour Optimal Embedding Host Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. S. Acampora. A multichannel multihop local lightwave network. In proceedings of the IEEE Globecom’87, pages 459–467, Nov. 1987. Tokio, Japan.Google Scholar
  2. [2]
    C. Berge. Hypergraphs. North Holland, 1989.Google Scholar
  3. [3]
    J.-C. Bermond. Le problème des “ouvroirs” (hypergraph gossip problem). In Colloques Internacionaux du Centre National de la Recherche Scientifique, number 260, pages 31–34, 1976.Google Scholar
  4. [4]
    J.-C. Bermond, J. Bond, and C. Peyrat. Interconnection networks with each node on two busses. In M. Cosnard, Y. Robert, P. Quinton, and M. Tchuente, editors, Parallel Algorithms and Architectures, pages 155–167. North Holland, 1984.Google Scholar
  5. [5]
    J.-C. Bermond and F. O. Ergincan. Bus interconnection networks. Technical Report 93–56, Université Nice - Sophia Antipolis, Sept. 1993.Google Scholar
  6. [6]
    P. Berthomé, J. Cohen, and A’. Ferreira. Tori embeddings in POPS networks through stack-graph models. Technical report, LIP-ENS Lyon, 1997.Google Scholar
  7. [7]
    P. Berthomé and A. Ferreira. Improved embeddings in POPS networks through stack-graph models. In Proceedings of the 3rd IEEE International Conference on Massively Parallel Processing using Optical Interconnections — MPPOI’96, pages 130–136. IEEE CS Press, Oct. 1996.CrossRefGoogle Scholar
  8. [8]
    L. N. Bhuyan and D. P. Agrawal. Generalized hypercube and hyperbus structures for a computer network. IEEE Transactions on Computers, 33: 323–333, 1984.zbMATHCrossRefGoogle Scholar
  9. [9]
    Y. Birk, N. Linial, and R. Meshulam. On the uniform-traffic capacity of single-hop interconnections employing shared directional multichannels. IEEE Transactions on Information Theory, 39 (1): 186–191, 1993.zbMATHCrossRefGoogle Scholar
  10. [10]
    H. Bourdin, A. Ferreira, and K. Marcus. A comparative study of one-to-many WDM lightwave interconnection networks for multiprocessors. In E. Schenfeld, editor, Proceedings of the 2nd IEEE International Workshop on Massively Parallel Processing using Optical Interconnections, pages 257–264, San Antonio (USA), Oct. 1995. IEEE Press.CrossRefGoogle Scholar
  11. [11]
    H. Bourdin, A. Ferreira, and K. Marcus. On stack-graphs OPS-based lightwave networks. In Proceedings of EuroPar’96,Lecture Notes in Computer Science, Lyon (F), Oct. 1996. Springer-Verlag.Google Scholar
  12. [12]
    C. A. Brackett. Dense wavelength division multiplexing networks: Principles and applications. IEEE Journal on Selected Areas in Communications, pages 948–964, Aug. 1990.Google Scholar
  13. [13]
    D. Chiarulli, S. Levitan, R. G. Melhem, J. Teza, and G. Gravenstreter. Multiprocessor interconnection networks using partitioned optical passive star (POPS) topologies and distributed control. In E. Schenfeld, editor, Proceedings of the Second IEEE International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI’94), pages 70–80, Cancun, Mx, Apr. 1994. IEEE Press.Google Scholar
  14. [14]
    D. Coudert, A. Ferreira, and X. Munoz. Efficient multi-hop multi-OPS lightwave networks. Technical report, LIP - ENS Lyon, 1997.Google Scholar
  15. [15]
    C. Delorme. Graphes et hypergraphes sommet-transitifs. Research Report 383, LRI - University Paris-Sud, Bat. 490, 91450 Orsay, France, Nov. 1987.Google Scholar
  16. [16]
    P. W. Dowd. Wavelength division multiple access channel hypercube processor interconnection. IEEE Transactions on Computers, 41: 1223–1241, 1992.CrossRefGoogle Scholar
  17. [17]
    A. Ferreira. Handbook of Parallel and Distributed Computing, chapter Hyper-cubes. McGraw-Hill, New York (USA ), 1995.Google Scholar
  18. [18]
    A. Ferreira, E. Fleury, and M. Grammatikakis. Multicasting control and communications on multihop stack-ring ops networks. In Proceedings of the 4th IEEE International Conference on Massively Parallel Processing using Optical Interconnections — MPPOI’97, 1997.Google Scholar
  19. [19]
    A. Ferreira, A. Goldman vel Lejbman, and S. W. Song. Bus based parallel computers: A viable way for massive parallelism. In Springer-Verlag, editor, PARLE’94 Parallel Architectures and Languages Europe, volume 817, pages 553564, July 1994. Lecture Notes in Computer Science.Google Scholar
  20. [20]
    A. Ferreira and K. Marcus. Modular multihop WDM-based lightwave networks, and routing. In S. I. Najafi and H. Porte, editors, Proceedings of The European Symposium on Advanced Networks and Services, Conference on Receivers, transmitters, and WDMs for fibre optic networks, volume 2449, pages 78–86, Amsterdam, Mar. 1995. SPIE–The International Society for Optical Engineering.Google Scholar
  21. [21]
    G. Gravenstreter and R. G. Melhem. Embedding rings and meshes in partitioned optical passive stars networks. In E. Schenfeld, editor, Proceedings of the Second IEEE International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI’95), pages 220–227, San Antonio, Tx, Oct. 1995. IEEE Press.CrossRefGoogle Scholar
  22. [22]
    M.-C. Heydemann, J. Opatrny, and D. Sotteau. Embeddings of hypercubes and grids into de Bruijn graphs. Journal of Parallel and Distributed Computing, 23: 104–111, 1994.zbMATHCrossRefGoogle Scholar
  23. [23]
    A. Hily and D. Sotteau. Communications in bus networks. In M. Cosnard, A. Ferreira, and J. Peters, editors, Parallel and Distributed Computing, volume 805 of Lecture Notes in Computer Science, pages 197–206. Springer-Verlag, May 1994.Google Scholar
  24. [24]
    J. S. Jwo, S. Lackshmivarahan, and S. K. Dhall. Embedding cycles and grids in star-graphs. In Second Symposium on Parallel and Distributed Processing, pages 540–547, Dallas, Texas, Dec. 1990.Google Scholar
  25. [25]
    P. Lalanne and P. Chavel, editors. Perspectives for parallel optical interconnects. Basic Research Series. Springer-Verlag, 1993.Google Scholar
  26. [26]
    F. T. Leighton. Introduction to algorithms and architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.Google Scholar
  27. [27]
    A. Louri and H. Sung. A hypercube-based optical interconnection network: a solution to the scalability requirements for massively parallel computers. In E. Schenfeld, editor, Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections, pages 81–93, Cancun (Mx), Apr. 1994. IEEE Press.CrossRefGoogle Scholar
  28. [28]
    P. Marchand, A. Krishnamoorthy, S. Esener, and U. Efron. Optically augmented 3-D computer: Technology and architecture. In Proceedings of the 1st IEEE International Conference on Massively Parallel Processing using Optical Interconnections - MPPOI’94,pages 133–139, Cancun, Mx, 1994. IEEE Press.Google Scholar
  29. [29]
    K. Marcus. A comparative study of topological properties of some WDNI light-wave networks. In E. H. D’Hollander, G. R. Joubert, F. J. Peters, and D. Trystram, editors, Proceedings of the International Conference on Parallel Computing PARCO’95. North Holland, 1995.Google Scholar
  30. [30]
    B. Mukherjee. WDM-based local lightwave networks Part I: Single-hop systems. IEEE Networks, 6 (3): 12–27, May 1992.CrossRefGoogle Scholar
  31. [31]
    B. Mukherjee. WDM-based local lightwave networks Part II: Multi-hop systems. IEEE Networks, pages 20–32, July 1992.Google Scholar
  32. [32]
    A. Sen, A. Sengupta, and S. Bandyopadhyay. Generalized supercube: An incrementally expandable interconnection network. Journal of Parallel and Distributed Computing, 13: 338–344, 1991.Google Scholar
  33. [33]
    K. N. Sivarajan and R. Ramaswami. Lightwave networks based on de Bruijn graphs. IEEE/ACM Transactions on Networking, 2 (1): 70–79, Apr. 1994.CrossRefGoogle Scholar
  34. [34]
    Q. F. Stout. Meshes with multiple busses. In Proceedings of the 27th IEEE Symposium on the Foundations of, pages 264–273, 1986.Google Scholar
  35. [35]
    T. Szymanski. A fiber-optic “hypermesh” for SIMD/MIMD machines. In Supercomputing-90 Conference, pages 710–719, New York, Nov. 1990.CrossRefGoogle Scholar
  36. [36]
    T. Szymanski. Hypermeshes: Optical interconnection networks for parallel computing. Journal of Parallel and Distributed Computing, 26: 1–23, 1995.zbMATHCrossRefGoogle Scholar
  37. [37]
    P. Tvrdik, R. Harbane, and M.-C. Heydemann. Uniform homomorphisms of de Bruijn and Kautz networks. Technical Report 986, LRI- Université Paris-Sud, June 1995.Google Scholar
  38. [38]
    F. Zane, P. Marchand, R. Paturi, and S. Esener. Scalable network architectures using the optical transpose interconnection system (OTIS). In Proceedings of the 3rd IEEE International Conference on Massively Parallel Processing using Optical Interconnections–MPPOI’96, pages 114–121. IEEE CS Press, Oct. 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Afonso Ferreira
    • 1
  1. 1.CNRS LIP-ENS LyonLyon Cedex 07France

Personalised recommendations