Skip to main content

Abstract

Smart-pixel technology or hybrid-VLSI electronics is emerging as a serious candidate for the fabrication of massively parallel, large throughput bandwidth optoelectronics systems. This chapter attemps to review the current state of the art and the future trends in this field. Basic considerations show that the technology depends on few parameters in the optical and electronic domains. A system-specific calculation on the optimum throughput is carried out in the case of the bitonic sorter demontrator which is being built at Heriot-Watt University. The methodology developed emphasizes the need for more compact, high sensitivity, high gain and low power consumption photoreceiver amplifiers as well as the development of short pulse duration, high modulation rate, high energy laser sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alidina, S. Devadas, A. Ghosh, and M. Papaefthymiou. Precomputationbased sequential logic optimization for low power. IEEE Transactions on VLSI Systems, 2:126.-435, 1994.

    Google Scholar 

  2. N. E. Batcher. Sorting networks and their applications. In Spring Joint Computer Confercnec, pages 307— 314, 1968.

    Google Scholar 

  3. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low power CMOS digital design. IEEE Journal of Solid-State Circuits, 27: 473–484, 1992.

    Article  Google Scholar 

  4. M. P. Y. Desmulliez, P. W. Foulk, and M. R. Taghizadeh. Optical clock distribution for multichip module Accepted for Optical Review, 1997.

    Google Scholar 

  5. M. P. Y. Desmulliez, P. W. Foulk, and B. S. Wherrett. Hybrid technology for optoelectronic parallel processing. basic considerations. Accepted to OSA Topical Meeting in Optics in Computing 97, Lake Tahoe, Nevada, USA, 1997.

    Google Scholar 

  6. M. P. Y. Desmulliez, F. A. P. Tooley, J. A. B. Dines, N. L. Grant, D. J. Goodwill, D. Baillie, B. S. Wherrett, P. W. Foulk, S. Ashcroft, and P. Black. Perfect-shuffle interconnected bitonic sorter: optoelectronic design..applied Optics, 34: 50775090, 1995.

    Google Scholar 

  7. M. P. Y. Desmulliez, B. S. Wherrett, A. J. Waddie, J. F. Snowdon, and J. A. B. Dines. Performance analysis of SEED-based smart-pixel arrays used in data sorting. Applied Optics, 35 (32): 6397–6416, 1996.

    Article  ADS  Google Scholar 

  8. J. A. B. Dines. Smart-pixel optoelectronic receiver based on a charge sensitive amplifier design. IEEE Journal on Selected Topics in Quantum Electronics, 2: 117–120, 1996.

    Article  Google Scholar 

  9. Eager. Advances in rechargeable batteries pace portable computer growth. In Silicon Valley Personal Computer Conference, pages 693–697, 1991.

    Google Scholar 

  10. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee. Comparison between optical and electrical interconnects based on power and speed considerations. Applied Optics, 27: 1742–1751, 1988.

    Article  ADS  Google Scholar 

  11. D. Fey. Characterization of massively parallel smart-pixels systems for the example of a binary associative memory. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 76–83, San Antonio (USA), Oct. 1995. IEEE Computer Society Press.

    Google Scholar 

  12. S. R. Forrest and H. S. Hinton. Special issue on smart pixels. IEEE Journal of Quantum Electronics, Vol. 29, 1993.

    Google Scholar 

  13. W. Franz. Z. Naturforsch. Teil. A 13, 1958.

    Google Scholar 

  14. J. W. Goodman. Optical Processing and Computing, chapter Optics as an interconnect technology, pages 1–32. Academic Press, San Diego, 1989. H.H. Arsenault, T. Szoplik, and B. Macukow, Eds.

    Google Scholar 

  15. M. Goodwin, A. Moseley, M. Kearley, R. Morris, C. Kirby, J. Thompson, R. Goodfellow, and I. Bennion. Opto-electronic component array for optical interconnection of circuits and subsystems. Journal of Lightwave Technology, 9: 1639–1644, 1991.

    Article  ADS  Google Scholar 

  16. S. H. Hinterlong and H. M. Hall. Bringing photonics to broadband switching. AT6;T Technical Journal, pages 71–80, 1994.

    Google Scholar 

  17. H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley. Free-space digital optical systems. Proceedings of the IEEE, 82: 1632–1649, 1994.

    Article  Google Scholar 

  18. A. Iwata. Optical interconnections for ULSI technology innovation. Optoelectronic Devices and Technology, 9: 778–783, 1994.

    Google Scholar 

  19. L. V. Keldysh. Zh. Eksp. Teor. Fiz. 34, 1958. [Soy. Phys. - JETP 7, pp. 788 (1958)].

    Google Scholar 

  20. R. W. Keyes. The wire-limited logic chip. IEEE Journal of Solid-State Circuits, 17:1232–1233, 1982.

    Google Scholar 

  21. D. R. Kiefer and V. W. Swanson. Implementation of optical clock distribution in a supercomputer. In Optical Computing, number 10, pages 261–263, 1995. OSA Technical Digest Series (Optical Society of America, Washington DC, 1995 ).

    Google Scholar 

  22. A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, S. P. Hui, B. Tseng, L. M. F. Chirovsky, R. Leibenguth, D. Kossives, D. Dahringer, L. A. D’Asaro, F. E. Kiamilev, G. F. Aplin, R. G. Rozier, and D. A. B. Miller. Photonic page buffer based on GaAs multiple-quantum-well modulators bonded directly over active silicon CMOS ciruits. Applied Optics, 35: 2439–2448, 1996.

    Article  ADS  Google Scholar 

  23. A. V. Krishnamoorthy and D. A. B. Miller. Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap. IEEE Journal on Selected Topics in Quantum Electronics, 2: 55–76, 1996.

    Article  Google Scholar 

  24. Z. L. Lemnos. Manufacturing technology challenges for low power electronics (LPE). DARPA Project, 1996. http://eto.sysplan.com.

    Google Scholar 

  25. A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, E. Laskowski, S. Pei, M. Focht, J. Freund, G. Guth, R. Leibenguth, L. Smith, and T. K. Woodward. Field-effect transistor self electrooptic effect (FET-SEED) electrically addressed differential modulator array. Applied Optics, 33: 2849–2855, 1994.

    Article  ADS  Google Scholar 

  26. A. L. Lentine, L. M. F. Chirovsky, and T. K. Woodward. Optical energy considerations for diode-clamped smart-pixel optical receivers. IEEE Journal of Quantum Electronics, 30: 1167–1174, 1994.

    Article  ADS  Google Scholar 

  27. Ceramic ball grid array package. Semiconductor International, Nov. 1996. page 64.

    Google Scholar 

  28. D. T. Lu, H. Ozguz, P. J. Marchand, A. V. Krishnamoorthy, F. Kiamilev, R. Pa-turi, S. H. Lee, and S. C. Esener, Design trade-offs in optoelectronics parallel processing systems using smart-SLMs. Optical and Quantum Electronics, 24: S379 — S403, 1992.

    Article  Google Scholar 

  29. D. A. B. Miller. Hybrid SEED - massively parallel optical interconnections for silicon ICs. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 2–7, San Antonio (USA), Oct. 1995. IEEE Computer Society Press.

    Google Scholar 

  30. D. A.’13. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus. Band-edge electroabsorption in quantum well structures - the quantum confined Stark effect. Physics Review Letters, 53: 2173, 1984.

    Article  ADS  Google Scholar 

  31. L. S. Nielsen, C. Niessen, J. Sparso, and K. Van Berkel. Low-power operation self-timed circuits and adaptive scaling of the supply voltage. IEEE Transactions on VLSI Systems, 2: 391–397, 1994.

    Article  Google Scholar 

  32. H. Ozaktas and J. W. Goodman. Frontiers of Computing Systems Research 2, chapter The limitations of interconnections in providing communication between an array of points, pages 61–130. Plenum Press, New York, 1991.

    Google Scholar 

  33. A. Payne and C. Toumazou. Analog amplifiers: classification and generalization. IEEE Tansactions on Circuits and Systems-I, 43: 43–50, 1995.

    Article  Google Scholar 

  34. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang. An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays. IEEE Photonics Technology Letters, 7:1057–1069, 199. 5.

    Google Scholar 

  35. A. Schiltz. A review of planar techniques for multichip modules. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 15: 236–244, 1992.

    Google Scholar 

  36. Semiconductor Industry Association. The national technology roadmap for semiconductors, 1994. San Jose, California.

    Google Scholar 

  37. T. H. Szymanski and H. S. Hinton. A reconfigurable intelligent optical backplane for parallel computing and communications. submitted to Applied Optics, 1997.

    Google Scholar 

  38. N. Tan and S. Eriksson. Low-power chip-to-chip communication circuits. Electronic Letters, 30: 1732–1733, 1994.

    Article  Google Scholar 

  39. P. P. Vasilev, I. H. White, D. Burns, and W. Sibbett. High-power, low-jitter encoded picosecond pulse genration using an RF-locked, Q-switched multi-contact GaAs/GaAIAs diode laser. Electronic Letters, 29: 1593, 1993.

    Article  Google Scholar 

  40. Vitesse VSC864A-2. Gallium arsenide 64x64 crosspoint switch. Preliminary data sheet, 1993.

    Google Scholar 

  41. A. C. Walker, M. P. Y. Desmulliez, F. A. P. Tooley, D. T. Neilson, J. A. B. Dines, D. A. Baillie, S. M. Prince, L. C. Wilkinson, M. R. Taghizadeh, P. Blair, J. F. Snowdon, B. S. Wherrett, C. Stanley, F. Pottier, I. Underwood, D. G. Vass, W. Sibbett, and M. H. Dunn. Construction of demonstration parallel optical processors based on CMOs/InGaAs smart pixel technology. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 180–187, San Antonio (USA), Oct. 1995. IEEE Computer Society Press.

    Google Scholar 

  42. T. K. Woodward, L. M. F. Chirovsky, A. L. Lentine, L. A. d’Asaro, E. Laskowski, M. Focht, G. Guth, S. Pei, F. Ren, G. Przybylek, L. Smith, R. Leibenguth, M. Asom, R. Kopf, J. Fuo, and M. Feuer. Operation of a fully integrated GaAsA1X Gal _x As FET-SEED–a basic optically addressed integrated circuit. IEEE Photonic Letters, 4: 616–618, 1992.

    ADS  Google Scholar 

  43. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, and L. M. F. Chirovsky. Optical receivers for optoelectronic VLSI. IEEE Journal on Selected Topics in Quantom Electronics, 2: 106–116, 1996.

    Article  Google Scholar 

  44. T. K. Woodward, A. L. Lentine, and L. M. F. Chirovsky. Experimental sensitivity studies of diode clamped FET-SEED smart pixels optical receivers. IEEE Journal of Quantum Electronics, 30: 2319–2324, 1994.

    Article  ADS  Google Scholar 

  45. A. Yu, M. Krainak, and G. Unger. 1047-nm laser diode master ocillato Nd:YLF power amplifier laser system. Electronic Letters, 29: 678–679, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Desmulliez, M.P.Y., Wherrett, B.S. (1998). Smart-Pixel Technology Current Status and Future Trends. In: Berthomé, P., Ferreira, A. (eds) Optical Interconnections and Parallel Processing: Trends at the Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2791-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2791-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4782-6

  • Online ISBN: 978-1-4757-2791-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics