Models for Optically Interconnected Networks

  • Pascal Berthomé
  • Michel Syska
Chapter

Abstract

Switching techniques used in optically interconnected networks differ from those used in classical electronically interconnected networks. This yields new communication models. The aim of this chapter is to survey the results of communication models in three fields: the design of networks, the algorithmics of data communication and the computational models of multiprocessor systems interconnected with optical networks.

Keywords

Optical Network Wavelength Division Multiplex Interconnection Network Conflict Graph Collective Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber, and M. Sudan. Efficient routing in optical networks. Journal of the ACM,46(6):973–1001, November 1996.Google Scholar
  2. [2]
    A. Aho, J. Hoperoft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Co., 1974.Google Scholar
  3. [3]
    R. Anderson and G. Miller. Optical communication for pointer based algorithms. Technical Report CRI 88–14, Computer Science Department, University of Southern California, Los Angeles, CA 90089–0782 USA, 1988.Google Scholar
  4. [4]
    B. Beauquier, J.-C. Bermond, L. Gargano, P. Hell, S. Pérennes, and U. Vaccaro. Graph problems arising from wavelength-routing in all-optical networks. In Proc. Conference WOCS97, Geneva, April 1997.Google Scholar
  5. [5]
    B. Beauquier, P. Hell, and S. Pérennes. Optimal wavelength-routed multicasting. Discrete Applied Mathematics, to appear.Google Scholar
  6. [6]
    C. Berge. Graphs and Hypergraphs. North-Holland, 1973.Google Scholar
  7. [7]
    J.-C. Bermond, J. Bond, M. Paoli, and C. Peyrat. Graphs and interconnection networks• diameter and vulnerability. In E. Lloyd, editor, Surveys in Combinatorics, Invited Papers for the Ninth British Combinatorial Conference, volume 82 of London Math. Society Lecture Note Series, pages 1–30. Cambridge University Press, 1983.Google Scholar
  8. [8]
    J.-C. Bermond, J. Bond, and C. Peyrat. Interconnection network with each node on two buses. In Proc. of the Internat. Workshop on Parallel Algorithms 8 Architectures, Luminy France., pages 155–167. North Holland, April 1986.Google Scholar
  9. [9]
    J.-C. Bermond, R. Dawes, and F. Ergincan. de Bruijn and Kautz bus networks. Technical Report 94–32, I3S (to appear in Networks), 1994.Google Scholar
  10. [10]
    J.-C. Bermond, C. Delorme, and J.-J. Quisquater. Strategies for interconnection networks: Some methods from graph theory. Journal of Parallel and Distributed Computing, 3: 433–449, 1986.CrossRefGoogle Scholar
  11. [11]
    J.-C. Bermond, C. Delorme, and J.-J. Quisquater. Table of large (A, d)-graphs. Discrete Applied Mathematics, 37 /38: 575–577, 1992.MathSciNetCrossRefGoogle Scholar
  12. [12]
    J.-C. Bermond and F. Ergincan. Bus interconnection networks. Discrete Applied Mathematics, (68): 1–15, 1996.Google Scholar
  13. [13]
    J.-C. Bermond, L. Gargano, S. Perennes, A. A. Rescigno, and U. Vaccaro. Efficient collective communication in optical networks. Lecture Notes in Computer Science, 1099: 574–585, 1996.MathSciNetCrossRefGoogle Scholar
  14. [14]
    P. Berthomé, T. Duboux, T. Hagerup, I. Newman, and A. Schuster. Self-simulation for the passive optical star model. In P. Spirakis, editor, European Symposium on Algorithms, number 979 in Lecture Notes in Computer Science. Springer-Verlag, 1995.Google Scholar
  15. [15]
    P. Berthomé and A. Ferreira. Communication issues in parallel systems with optical interconnections. International Journal of Foundations of Computer Science, 1997. To appear in Special Issue on Interconnection Networks.Google Scholar
  16. [16]
    H. Bourdin, A. Ferreira, and K. Marcus. A comparative study of one-to-many WDM lightwave interconnection network for multiprocessors. In Second International Workshop on Massively Parallel Processing using Optical Interconnections,pages 257–264, San Antonio (USA), October 1995. IEEE Press.Google Scholar
  17. [17]
    C. A. Brackett. Foreword. is there an emerging concensus on WDM networking. Journal of Lightwave Technology, 14 (6): 936–941, June 1996.ADSGoogle Scholar
  18. [18]
    D. M. Chiarulli, S. P. Levitan, R. P. Melhem, J. P. Teza, and G. Gravenstreter. Partitioned Optical Passive Stars (POPS) multiprocessor interconnection networks with distributed control. Journal of Lightwave Technology,14(7):16011612, July 1996.Google Scholar
  19. [19]
    M. Cosnard and A. Ferreira. Designing parallel non numerical algorithms. In G. J. D.J. Evans and H. Liddell, editors, Parallel Computing’91, pages 3–18. Elsevier Science Publishers B.V., 1992.Google Scholar
  20. [20]
    J. de Rumeur. Communications dans les réseaux de processeurs. Masson, Paris, 1994.Google Scholar
  21. [21]
    O. Delmas and S. Perennes. Circuit-Switched Gossiping in 3-Dimensional Torus Networks. In L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Proceedings of the Euro-Par’96 Parallel Processing/Second International EUROPAR Conference, volume 1123 of Lecture Notes in Computer Science, pages 370–373, Lyon, France, Aug. 1996. Springer Verlag.Google Scholar
  22. [22]
    P. W. Dowd. Wavelength division multiple access channel hypercube processor interconnection. IEEE Transactions on Computers, 41 (10): 1223–1241, October 1992.CrossRefGoogle Scholar
  23. [23]
    T. Erlebach and K. Jansen. Scheduling of virtual connections in fast networks. In Proc. of Parallel Systems and Algorithms (PA SA), pages 13–32, 1996.Google Scholar
  24. [24]
    T. Erlebach and K. Jansen. Call scheduling in trees, rings and meshes. In Proc. of HICSS, 1997.Google Scholar
  25. [25]
    S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. SIAM J. of Computing, 5 (4): 691–703, Dec. 1976.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    M. Geréb-Grauss and T. Tsantilas. Efficient optical communication in parallel computers. In ACM Symposium on Parallel Algorithms and Architectures, pages 41–48, June 1992.Google Scholar
  27. [27]
    J. Gil and Y. Matias. Fast and efficient simulations among CRCW PRAMs. Journal of Parallel and Distributed Computing, 23 (2): 135–148, Nov. 1994.CrossRefGoogle Scholar
  28. [28]
    L. Goldberg, M. Jerrum, T. Leighton, and S. Rao. A doubly logarithmic communication algorithm for the completely connected optical communication parallel computer. In ACM Symposium on Parallel Algorithms and Architectures, pages 300–309, June 1993.CrossRefGoogle Scholar
  29. [29]
    L. Goldberg, M. Jerrum, and P. MacKenzie. An S2(Vlog log n) lower bound for routing in optical networks. In ACM Symposium on Parallel Algorithms and Architectures, June 1994.Google Scholar
  30. [30]
    L. Goldberg, Y. Matias, and S. Rao. An optical simulation of shared memory. In ACM Symposium on Parallel Algorithms and Architectures, June 1994.Google Scholar
  31. [31]
    M. C. Golumbic and R. E. Jamison. The edge intersection graphs of paths in a tree. J. of Combinatorial Theory, Series B, 38: 8–22, 1985.MathSciNetMATHGoogle Scholar
  32. [32]
    M. S. Goodman, H. Kobrinski, M. P. Vecchi, R. M. Bulley, and J. L. Gimlett. The lambdanet multiwavelength network: Architecture, applications, and demonstrations. IEEE Journal on Selected Areas in Communications, 8(6):995–1004, August 1990.CrossRefGoogle Scholar
  33. [33]
    A. Hily and D. Sotteau. Gossiping in d-dimensional mesh-bus networks. Parallel Processing Letter, 6 (1): 101–113, March 1996.CrossRefGoogle Scholar
  34. [34]
    A. Hoffman and R. Singleton. On Moore graphs with diameters 2 and 3. IBM J. Research and Development, 4: 497–504, 1960.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    I. Holyer. The NP—completeness of edge coloring. SIAM J. of Computing, 10 (4): 718–720, 1981.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    F. J. Janniello, R. Ramaswami, and D. G. Steinberg. A prototype circuit-switched multi-wavelength optical metropolitan-area network. Journal of Light-wave Technology, May/June 1993.Google Scholar
  37. [37]
    S. Jiang, T. E. Stern, and E. Bouillet. Design of multicast multilayered lightwave networks. IEEE GLOBECOM’93 Houston Texas, pages 452–457, 1993.Google Scholar
  38. [38]
    P. Kermani and L. Kleinrock. Virtual cut-through: a new computer communication switching technique. Computers Networks, 3: 267–286, 1979.MathSciNetMATHGoogle Scholar
  39. [39]
    F. T. Leighton. Introduction to parallel algorithms and architectures. Morgan Kaufmann, 1992.Google Scholar
  40. [40]
    A. Louri and H. Sung. Optical binary de bruijn networks for massively parallel computing: Design methodology and feasibility study. Technical Report AZ85721, University of Arizona, 1994.Google Scholar
  41. [41]
    A. Louri and H. Sung. Scalable optical hypercube-based interconnection network for massively parallel computing. Applied Optics, 33 (32): 7588–7598, November 1994.ADSCrossRefGoogle Scholar
  42. [42]
    P. MacKenzie, C. Plaxton, and R. Rajamaran. On contention resolution protocols and associated probabilistic phenomena. In ACM Symposium On Theory of Computing, 1994.Google Scholar
  43. [43]
    P. D. MacKenzie and V. Ramachandran. ERCW PRAMs and optical communications. In EUROPAR: Parallel Processing, 2nd International EURO-PAR Conference. LNCS, 1996.Google Scholar
  44. [44]
    F. Meyer auf der Heide and C. S. Scheiderler. Fast simple dictionaries and shared memory simulation on distributed memory machines; upper and lower bounds. Pre-print, 1994.Google Scholar
  45. [45]
    B. Mukherjee. WDM-based local lightwave networks, Part I: Single-hop systems. IEEE Network Magazine, 6 (3): 12–27, May 1992.CrossRefGoogle Scholar
  46. [46]
    B. Mukherjee. WDM-based local lightwave networks, Part II: Multi-hop systems. IEEE Network Magazine, 6 (4): 20–32, July 1992.CrossRefGoogle Scholar
  47. [47]
    R. Ramaswaini. Multiwavelength lightwave networks for computer communication. IEEE Communications Magazine, pages 78–88, February 1993.Google Scholar
  48. [48]
    M. Snir. On parallel searching. SIAM Journal of Computing, 14 (4): 688–708, Aug. 1985. Also appeared in ACM Symposium on Principles of Distributed Computing, 1982.MathSciNetGoogle Scholar
  49. [49]
    P. Solé. Expanding and forwarding. Discrete Applied Mathematics, 58: 67–78, 1995.MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    T. Szymanski. “Hypermeshes”: Optical interconnection networks for parallel computing. Journal of Parallel and Distributed Computing, 26 (1): 1–23, April 1995.MATHCrossRefGoogle Scholar
  51. [51]
    S.-R. Tong, D. H. C. Du, and R. J. Vetter. Design principles for multi-hop wavelength and time division multiplexed optical passive star networks. IEEE Journal on Selected Areas in. Communications, 4 (2), 1995.Google Scholar
  52. [52]
    L. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, pages 943–971. Elsevier/MIT Press, 1990.Google Scholar
  53. [53]
    L. D. Wittíe. Communication structures for large networks of microcomputers. IEEE Transactions on Computers, C-30(4): 264–273, April 1981.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Pascal Berthomé
    • 1
  • Michel Syska
    • 2
  1. 1.LRI, Université Paris-SudOrsayFrance
  2. 2.SlooP: joint project I3S-CNRSINRIA and University of Nice — Sophia AntipolisFrance

Personalised recommendations