Endothelin pp 121-166 | Cite as

Mechanisms of Endothelin-Induced Mitogenesis in Vascular Smooth Muscle

  • Thomas Force
Part of the Contemporary Biomedicine book series (CB)


The study of signal transduction mechanisms of the endothelin (ET) family of vasoactive peptides is in its infancy compared to the study of growth factor activated pathways. The most proximal mechanisms activated by ETs are well known—activation of phospholipase C-β, and subsequently protein kinase C (PKC), and activation of plasma membrane Ca2+ channels. What is only starting to become clear is how these proximal signaling pathways, which are strikingly different from proximal mechanisms activated by growth factors, culminate in the activation of the same protein serine/threonine kinase cascade that has dominated the research on growth factor signaling over the past several years, the c-Raf-1 cascade. To understand ET-induced mitogenesis it is critical to understand how a G protein-coupled receptor activates this and potentially other kinase cascades, because it is primarily protein kinases that transduce signals from cell surface receptors to the nucleus, thus altering the transcription of genes which lead to the mitogenic response. In this chapter I will first explore the role of the ETs as growth factors and discuss candidate modulators or transducers of the mitogenic signal. Then I will focus on two major areas of ET signalling that putatively play major roles in transducing the mitogenic signal: the c-Raf-1/extracellularsignal regulated kinase (ERK), also known as mitogen-activated protein kinase (MAP) cascade, which is critical to the mitogenic response to growth factors, and activation of nonreceptor tyrosine kinases including Src, the focal adhesion kinase (FAK), and the Janus kinase (Jak) family with their substrates, the STAT (signal transducers and activators of transcription) family of transcription factors. Finally, I will discuss possible roles for other pathways in the mitogenic response to ETs, including phosphoinositide-3 kinases and protein kinase cascades culminating in the activation of other members of the MAP kinase superfamily such as the stress-activated protein kinases (SAPKs) and p38. Because the ETA, but not ETB receptor appears to be primarily responsible for ET signaling in vascular smooth muscle cells (1) much of the work that will be reviewed herein derives from studies in which endothelin-1 (ET-1) was used as agonist in cells which signal primarily via the ETA receptor. Although relatively little is known about signalling triggered by the other ETs acting via the ETB receptor, with the recent discovery of the role of the ETB receptor and ET-3 in megacolon (2,3) and the production of ETB-specific antagonists, this deficiency should soon be corrected.


Focal Adhesion Kinase Focal Adhesion Serum Response Factor Mitogenic Signal Mitogenic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chun, M., Lin, H. Y., Henis, Y. I., and Lodish, H. F. (1995) Endothelininduced endocytosis of cell surface ET-A receptors. J. Biol. Chem. 270: 10855–10860.PubMedCrossRefGoogle Scholar
  2. 2.
    Baynash, A. G., Hosoda, K., Giaid, A., Richardson, J. A., Emoto, N., Hammer, R. E., and Yanagisawa, M. (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79: 1277–1285.PubMedCrossRefGoogle Scholar
  3. 3.
    Puffenberger, E. G., Hosoda, K., Washington, S. S., Nakao, K., deWit, D., Yanagisawa, M., and Chakravarti, A. (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79: 1257–1266.PubMedCrossRefGoogle Scholar
  4. 4.
    Dubin, D., Pratt, R. E., Cooke, J. P., and Dzau, V. J. (1989) Endothelin, a potent vasoconstrictor, is a vascular smooth muscle mitogen. J. Vasc. Med. Biol. 1: 150–154.Google Scholar
  5. 5.
    Bobik, A., Grooms, A., Millar, J. A., Mitchell, A., and Grinpukel, S. (1990) Growth factor activity of endothelin on vascular smooth muscle. Am. J. Physiol. 258: C408 - C415.PubMedGoogle Scholar
  6. 6.
    Simonson, M. S., Wann, S., Mene, P., Dubyak, G. R., Kester, M., Nakazato, Y., Sedor, J. R., and Dunn, M. J. (1989) ET stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J. Clin. Invest. 83: 708–712.PubMedCrossRefGoogle Scholar
  7. 7.
    Jaffer, F. E., Knauss, T. C., Poptic, E., and Abboud, H. E. (1990) Endothelin stimulates PDGF secretion in cultured human mesangial cells. Kidney Int. 38: 1193–1198.PubMedCrossRefGoogle Scholar
  8. 8.
    Muldoon, L., Pribnow, D., Rodland, K. D., and Magun, B. (1990) ET-1 stimulates DNA synthesis and anchorage-independent growth of rat-1 fibroblasts through a protein kinase C-dependent mechanism. Cell Regul. 1: 379–390.PubMedGoogle Scholar
  9. 9.
    Takuwa, N., Takuwa, Y., Yanagisawa, M., Yamashita, K., and Masaki, T. (1989) A novel vasocative peptide stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts. J. Biol. Chem. 264: 7856–7861.PubMedGoogle Scholar
  10. 10.
    Weissberg, P. L., Witchell, C., Davenport, A. P., Hesketh, T. R., and Metcalfe, J. C. (1990) The endothelin peptides ET-1, ET-2, ET-3 and sarafotoxin S6b are co-mitogenic with PDGF for VSMC. Atherosclerosis 85: 257–262.PubMedCrossRefGoogle Scholar
  11. 11.
    Hirata, Y., Takagi, Y., Fukuda, Y., and Marumo, F. (1989) ET is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis 78: 225–228.PubMedCrossRefGoogle Scholar
  12. 12.
    Komuro, I., Kurihara, H., Sugiyama, T., Takaku, F., and Yazaki, Y. (1988) ET stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 238: 249–252.PubMedCrossRefGoogle Scholar
  13. 13.
    Battistini, B., Chailler, P., D’Orleans-Juste, P., Briere, N., and Sirois, P. (1993) Growth regulatory properties of endothelins. Peptides 14: 385–399.PubMedCrossRefGoogle Scholar
  14. 14.
    Simonson, M., Jones, J., and Dunn, M. (1992) Differential regulation of fos and jun gene expression and AP-1 cis-element activity by endothelin isopeptides. J. Biol. Chem. 267: 8643–8649.PubMedGoogle Scholar
  15. 15.
    Simonson, M. S. and Herman, W. H. (1993) Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin1. J. Biol. Chem. 13: 9347–9357.Google Scholar
  16. 16.
    Ohlstein, E. H., Arleth, A., Bryan, H., Elliott, J. D., and Sung, C. P. (1992) The selective endothelin receptor antagonist BQ123 antagonizes endothelin-l-mediated mitogensis. Eur. J. Pharm. 225: 347–350.CrossRefGoogle Scholar
  17. 17.
    Kanse, S., Wijelath, E., Kanthou, C., Newman, P., and Kakkar, V. (1995) The proliferative responsiveness of human vascular smooth muscle cells to endothelin correlates with endothelin receptor density. Lab. Invest. 72: 376–382.PubMedGoogle Scholar
  18. 18.
    Serradeil-Le Gal, C., Herbert, J. M., Garcia, C., Boutin, M., and Maffrand, (1991) Importance of the phenotypic state of vascular smooth muscle cells on the binding and mitogenic activity of endothelin. Peptides 12: 575–579.CrossRefGoogle Scholar
  19. 19.
    Weber, H., Webb, M. L., Serafino, R., Taylor, D. S., Moreland, S., Norman, J., and Molloy, C. J. (1994) Endothelin-1 and Angiotensin-II stimulate delayed mitogensis in cultured rat aortic smooth muscle cells: evidence for common signaling mechanisms. Mol. Endocrinol. 8: 148–156.PubMedCrossRefGoogle Scholar
  20. 20.
    Naftilan, A. J., Pratt, R. E., and Dzau, V. J. (1989) Induction of platelet derived growth factor A-chain and c-myc gene expression by angiotensin II in cultured rat vascular smooth muscle cells. J. Clin. Invest. 83: 1419–1424.PubMedCrossRefGoogle Scholar
  21. 21.
    Gibbons, G. H., Pratt, R. E., and Dzau, V. J. (1992) Vascular smooth muscle cell hypertrophy vs. hyperplasia. J. Clin. Invest. 90: 456–461.PubMedCrossRefGoogle Scholar
  22. 22.
    Weber, H., Taylor, D. S., and Molloy, C. J. (1994) Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells: correlation with the expression of specific endogenous growth factors and reversal by suramin. J. Clin. Invest. 93: 788–798.PubMedCrossRefGoogle Scholar
  23. 23.
    Simonson, M. S. and Dunn, M. J. (1990) Cellular signaling by peptides of the endothelin gene family. FASEB J. 4: 2989–3000.PubMedGoogle Scholar
  24. 24.
    Marrero, M., Paxton, W., Duff, J., Berk, B., and Bernstein, K. (1994) Angiotensin II stimulates tyrosine phosphorylation of phospholipase c-yl in vascular smooth muscle cells. J. Biol. Chem. 269: 10935–10939.PubMedGoogle Scholar
  25. 25.
    Clapham, D. E. (1995) Calcium signalling. Cell 80: 259–268.PubMedCrossRefGoogle Scholar
  26. 26.
    Ghosh, A. and Greenberg, M. E. (1995) Calcium signalling in neurons: molecular mechanisms and cellular consequences. Science 268: 239–247.PubMedCrossRefGoogle Scholar
  27. 27.
    Means, A. R. (1994) Calcium, calmodulin, and cell cycle regulation. FEBS Lett. 347: 1–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Nakaki, T., Nakayama, M., Yamamoto, S., and Kato, R. (1989) ET-mediated stimulation of DNA synthesis in VSMC. Biochem. Biophys. Res. Commun. 158: 880–883.PubMedCrossRefGoogle Scholar
  29. 29.
    Shichiri, M., Hirata, Y., Nakajima, T., Ando, K., Imai, T., Yanagisawa, M., Masaki, T., and Marumo, F. (1991) ET-1 is an autocrine/paracrine growth factor for human cancer cell lines. J. Clin. Invest. 87: 1867–1871.PubMedCrossRefGoogle Scholar
  30. 30.
    Muldoon, L., Rodland, K. D., Forsythe, M. L., and Magun, B. E. (1989) Stimulation of phosphatidylinositol hydrolysis, diacylglycerol release, and gene expression in response to endothelin, a potent new agonist for fibroblasts and smooth muscle cells. J. Biol. Chem. 264: 8529–8536.PubMedGoogle Scholar
  31. 31.
    Griendling, K., Tsuda, T., and Alexander, R. W. (1989) Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J. Biol. Chem. 264: 8237–8240.PubMedGoogle Scholar
  32. 32.
    Force, T., Kyriakis, J. M., Avruch, J., and Bonventre, J. V. (1991) Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and -independent pathways in glomerular mesangial cells. J. Biol. Chem. 266: 6650–6656.PubMedGoogle Scholar
  33. 33.
    Chua, B. H. L., Krebs, C. J., Chua, C. C., and Diglio, C. A. (1992) ET stimulates protein synthesis in SMC. Am. J. Physiol. 262: E412 - E416.PubMedGoogle Scholar
  34. 34.
    Huckle, W. R., Prokop, C. A., Dy, R. C., Herman, B., and Earp, S. (1990) Angiotensin II stimulates protein-tyrosine phosphorylation in a calcium-dependent manner. Mol. Cell. Biol. 10: 6290–6298.PubMedGoogle Scholar
  35. 35.
    Zachary, I., Sinnett-Smith, J., and Rozengurt, E. (1991) Stimulation of tyrosine kinase activity in anti-phosphotyrosine immune complexes of Swiss 3T3 cell lysates occurs rapidly after addition of bombesin, vasopressin, and endothelin to intact cells. J. Biol. Chem. 266: 24126–24133.PubMedGoogle Scholar
  36. 36.
    Zachary, I., Sinnett-Smith, J., and Rozengurt, E. (1992) Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. J. Biol. Chem. 267: 19031–19034.PubMedGoogle Scholar
  37. 37.
    Darnell, J. E., Kerr, I. M., and Stark, G. R. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421.PubMedCrossRefGoogle Scholar
  38. 38.
    Ihle, J. N., Witthuhn, B. A., Quelle, F. W., Yamamoto, K., Theirfelder, W. E., Kreider, B., and Silvennoinen, O. (1994) Signaling by the cytokine receptor superfamily: JAKs and STATs. TIBS 19: 222–227.PubMedGoogle Scholar
  39. 39.
    Ray, B. L. and Sturgill, T. W. (1988) Insulin-stimulated microtubuleassociated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc. Natl. Acad. Sci. USA 85: 3753–3757.PubMedCrossRefGoogle Scholar
  40. 40.
    Sturgill, T. W., Ray, L. B., Erikson, E., and Maller, J. L. (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334: 715–718.PubMedCrossRefGoogle Scholar
  41. 41.
    Rapp, U. R., Goldsborough, M. D., Mark, G. E., Bonner, T. I., Groffen, J., Reynolds, F. H., Jr., and Stephenson, J. R. (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl. Acad. Sci. USA 80: 4218–4222.PubMedCrossRefGoogle Scholar
  42. 42.
    Rapp, U. R., Heidecker, G., Huleihel, M., Cleveland, J. L., Chol, W. C., Pawson, T., Ihle, J. N., and Anderson, W. B. (1988) Raf family serine/ threonine protein kinases in mitogen signal transduction. Cold Spring Harbor Symp. Quant. Biol. 53: 173–184.PubMedCrossRefGoogle Scholar
  43. 43.
    Rapp, U. R. (1991) Role of Raf-1 serine/threonine protein kinase in growth factor signal transduction. Oncogene 6: 495–500.PubMedGoogle Scholar
  44. 44.
    Kyriakis, J. M., App, H., Zhang, X., Banerjee, P., Brautigan, D. L., Rapp, U. R., and Avruch, J. (1992) Raf-1 activates MAP kinase-kinase. Nature 358: 417–421.PubMedCrossRefGoogle Scholar
  45. 45.
    Dent, P., Haser, W., Haystead, T. A. J., Vincent, L. A., Roberts, T. M., and Sturgill, T. W. (1992) Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257: 1404–1407.PubMedCrossRefGoogle Scholar
  46. 46.
    Howe, L. R., Leevers, S. J., Gomez, N., Nakielny, S., Cohen, P., and Marshall, C. J. (1992) Activation of the MAP kinase pathway by the protein kinase raf. Cell 71: 335–342.PubMedCrossRefGoogle Scholar
  47. 47.
    Pages, G., Lenormand, P., L’Allemain, G., Chambard, J.-C., Meloche, S., and Pouyssegur, J. (1993) Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. USA 90: 8319–8323.PubMedCrossRefGoogle Scholar
  48. 48.
    Cowley, S., Paterson, H., Kemp, P., and Marshall, C. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC 12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841–852.PubMedCrossRefGoogle Scholar
  49. 49.
    Mansour, S., Matten, W., Hermann, A., Candia, J., Rong, S., Fukasawa, K., Woude, G., and Ahn, N. (1994) Transformation of mammalian cells by contitutively active MAP kinase kinase. Science 265: 966–970.PubMedCrossRefGoogle Scholar
  50. 50.
    Marshall, C. (1995) Specificity of receptor tyrosine kinase signalling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185.PubMedCrossRefGoogle Scholar
  51. 51.
    Kyriakis, J. M., Force, T. L., Rapp, U. R., Bonventre, J. V., and Avruch, J. (1993) Mitogen regulation of c-Raf-1 protein kinase activity toward mitogen-activated protein kinase kinase. J. Biol. Chem. 268: 16009–16019.PubMedGoogle Scholar
  52. 52.
    Herman, W. H. and Simonson, M. S. (1995) Nuclear signaling by endothelin-1. J. Biol. Chem. 270: 11654–11661.PubMedCrossRefGoogle Scholar
  53. 53.
    Shapiro, P. S., Evans, J. N., Davis, R. J., and Posada, J. A. (1996) The seven-transmembrane-spanning receptors for endothelin and thrombin cause proliferation of airway smooth muscle cells and activation of the extracellular regulated kinase and c-Jun NH2-terminal kinase groups of mitogen-activated protein kinases. J. Biol. Chem. 271: 5750–5754.PubMedCrossRefGoogle Scholar
  54. 54.
    Heldin, C.-H. (1995) Dimerization of cell surface receptors in signal transduction. Cell 80: 213–223.PubMedCrossRefGoogle Scholar
  55. 55.
    Ullrich, A. and Schlessinger, J. (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212.PubMedCrossRefGoogle Scholar
  56. 56.
    Songyang, Z., Shoelson, S. E., Chauduri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B., and Cantley, L. C. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778.PubMedCrossRefGoogle Scholar
  57. 57.
    Cohen, G. B., Ren, R., and Baltimore, D. (1995) Modular binding domains in signal transduction proteins. Cell 80: 237–248.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang, X.-F., Settleman, J., Kyriakis, J. M., Takeuchi-Suzuki, E., Elledge, S. J., Marshall, M., Bruder, J. T., Rapp, U. R., and Avruch, J. (1993) Normal and oncogenic p2 iras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364: 308–313.PubMedCrossRefGoogle Scholar
  59. 59.
    Bruder, J. T., Heidecker, G., and Rapp, U. R. (1992) Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Devl. 6: 545–556.CrossRefGoogle Scholar
  60. 60.
    Leevers, S. J., Paterson, H. F., and Marshall, C. J. (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369: 411–414.PubMedCrossRefGoogle Scholar
  61. 61.
    Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M., and Hancock, J. F. (1994) Activation of Raf as a result of recruitment to the plasma membrane. Science 264: 1463–1467.PubMedCrossRefGoogle Scholar
  62. 62.
    Daum, G., Eisenmann-Tappe, I., Fries, H.-W., Troppmair, J., and Rapp, U. R. (1994) The ins and outs of Raf kinases. TIBS 19: 474–480.PubMedGoogle Scholar
  63. 63.
    Li, S., Janosch, P., Tanji, M., Rosenfeld, G., Waymire, J. C., Mischak, H., Kolch, W., and Sedivy, J. M. (1995) Regulation of Raf–1 kinase activity by the 14–3–3 family of proteins. EMBO J. 14: 685 – 696.PubMedGoogle Scholar
  64. 64.
    Marshall, C. J. (1996) Raf gets it together. Nature 383: 127, 128.Google Scholar
  65. 65.
    Winitz, S., Russell, M., Qian, N.-X., Gardner, A., Dwyer, L., and Johnson, G. L. (1993) Involvement of Ras and Raf in the Gi-coupled acetylcholine muscarininc m2 receptor activation of mitogen-activated protein (MAP) kinase kinase and MAP kinase. J. Biol. Chem. 268: 19196–19199.PubMedGoogle Scholar
  66. 66.
    Van Corven, E. J., Hordijk, P. L., Medema, R. H., Bos, J. L., and Moolenaar, W. H. (1993) Pertussis toxin-sensitive activation of p2lras by G protein-coupled receptor agonists in fibroblasts. Proc. Natl. Acad. Sci. USA 90: 1257–1261.PubMedCrossRefGoogle Scholar
  67. 67.
    Ablas, J., van Corven, E. J., Hordijk, P. L., Milligan, G., and Moolenaar, W. H. (1993) Gi-mediated activation of the p2lras-mitogen-activated protein kinase pathway by a2-adrenergic receptors expressed in fibroblasts. J. Biol. Chem. 268: 22235–22238.Google Scholar
  68. 68.
    Crespo, P., Xu, N., Daniotti, J. L., Troppmair, J., Rapp, U. R., and Gutkind, J. S. (1994) Signaling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. J. Biol. Chem. 269: 21103–21109.PubMedGoogle Scholar
  69. 69.
    Crespo, P., Xu, N., Simonds, W., and Gutkind, S. (1994) Ras-dependent activation of MAP kinase pathway mediated by G-protein fry subunits. Nature 369: 418–420.PubMedCrossRefGoogle Scholar
  70. 70.
    Boguski, M. S. and McCormick, F. (1993) Proteins regulating Ras and its relatives. Nature 366: 643–654.PubMedCrossRefGoogle Scholar
  71. 71.
    Sozeri, O., Vollmer, K., Kiyanage, M., Frith, D., Kour, G., Mark, G. E., and Stabel, S. (1992) Activation of the c-Raf protein kinase by protein kinase C phosphorylation. Oncogene 7: 2259–2262.PubMedGoogle Scholar
  72. 72.
    Kocch, W., Heidecker, G., Kochs, G., Hummel, R., Vahldi, H., Mischak, H., Finkenzeller, G., Marme, D., and Rapp, U. R. (1993) Protein kinase Ca activates RAF-1 by direct phosphorylation. Nature 364: 249–252.CrossRefGoogle Scholar
  73. 73.
    MacDonald, S. G., Crews, C. M., Wu, L., Driller, J., Clark, R., Erikson, R. L., and McCormick, F. (1993) Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Mol. Cell. Biol. 13: 6615–6620.PubMedGoogle Scholar
  74. 74.
    Kribben, A., Wieder, E. D., Li, X., Van Putten, V., Granot, Y., Schrier, R. W., and Nemenoff, R. A. (1993) AVP-induced activation of MAP kinase in vascular smooth muscle cells is mediated through protein kinase C. Am. J. Physiol. 265: C939 - C945.PubMedGoogle Scholar
  75. 75.
    Qian, N.-X., Winitz, S., and Johnson, G. L. (1993) Epitope-tagged Gq alpha subunits: expression of GTPase-deficient alpha subunits persistently stimulates phosphatidylinositol-specific phospholipase C but not mitogen-activated protein kinase activity regulated by the M1 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 90: 4077–4081.PubMedCrossRefGoogle Scholar
  76. 76.
    Exton, J. H. (1994) Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta. 1212: 26–42.Google Scholar
  77. 77.
    Cai, H., Erhardt, P., Troppmair, J., Diaz-Meco, M. T., Sithanandam, G., Rapp, U. R., Moscat, J., and Cooper, G. M. (1993) Hydrolysis of phosphatidylcholine couples Ras to activation of Raf protein kinase during mitogenic signal transduction. Mol. Cell. Biol. 13: 7645–7651.PubMedGoogle Scholar
  78. 78.
    Force, T., Bonventre, J. V., Heidecker, G., Rapp, U., Avruch, J., and Kyriakis, J. M. (1994) Enzymatic characteristics of the c-Raf-1 protein kinase. Proc. Natl. Acad. Sci. USA 91: 1270–1274.PubMedCrossRefGoogle Scholar
  79. 79.
    Wu, J., Dent, P., Jelinek, T., Wolfman, A., Weber, M. J., and Sturgill, T. W. (1993) Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3’,5’ monophosphate. Science 262: 1065–1069.PubMedCrossRefGoogle Scholar
  80. 80.
    Cook, S. J. and McCormick, F. (1993) Inhibition by cAMP of Ras-dependent activation of Raf. Science 262: 1069–1072.PubMedCrossRefGoogle Scholar
  81. 81.
    Jelinek, T., Catling, A. D., Reuter, C. W., Moodie, S. A., Wolfman, A., and Weber, M. J. (1994) RAS and RAF-1 form a signalling complex with MEK-1 but not MEK-2. Mol. Cell. Biol. 14: 8212–8218.PubMedGoogle Scholar
  82. 82.
    Zheng, C.-F. and Guan, K.-L. (1994) Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J. 13: 1123–1131.PubMedGoogle Scholar
  83. 83.
    Lange-Carter, C. A., Pleiman, C. M., Gardner, A. M., Blumer, K. J., and Johnson, G. L. (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319.PubMedCrossRefGoogle Scholar
  84. 84.
    Herskowitz, I. (1995) MAP kinase pathways in yeast: for mating and more. Cell 80: 187–197.PubMedCrossRefGoogle Scholar
  85. 85.
    Yan, M., Dai, T., Deak, J. C., Kyriakis, J. M., Zon, L. I., Woodgett, J. R., and Templeton, D. J. (1994) Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372: 798–800.PubMedGoogle Scholar
  86. 86.
    Payne, D. M., Rossomando, A. J., Martino, P., Erickson, A. K., Shabanowitz, J., Hunt, D. F., Weber, M. J., and Sturgill, T. W. (1991) Identification of the regulatory phosphorylation sites in pp42/mitogenactivated protein kinase (MAP kinase). EMBO J. 10: 885–892.PubMedGoogle Scholar
  87. 87.
    Lenormand, P., Sardet, C., Pages, G., L’Allemain, G., Brunet, A., and Pouyssegur, J. (1993) Growth factors induce nuclear translocation of MAP kinases (p42 and p44) but not of their activator MAP kinase kinase (p45) in fibroblasts. J. Cell Biol. 122: 1079–1088.PubMedCrossRefGoogle Scholar
  88. 88.
    Gonzalez, F., Seth, A., Raden, D., Bowman, D., Fay, F., and Davis, R. (1993) Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J. Cell Biol. 122: 1089–1101.PubMedCrossRefGoogle Scholar
  89. 89.
    Meloche, S., Pages, G., and Pouyssegur, J. (1992) Biphasic and synergistic activation of p44MAPK (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol. Endocrinol. 6: 845–854.PubMedCrossRefGoogle Scholar
  90. 90.
    Sakurai, T., Abe, Y., Jasytam, T., Takuwa, N., Shiba, R., Yamashita, T., Endo, T., and Goto, K. (1994) Activin A stimulates mitogenesis in Swiss 3T3 fibroblasts without activation of mitogen-activated protein kinases. J. Biol. Chem. 269: 14118–14122.PubMedGoogle Scholar
  91. 91.
    Karin, M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270: 16483–16486.PubMedGoogle Scholar
  92. 92.
    Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R. J., Rahmsdorf, H. J., Jonat, C., Herrlich, P., and Karin, M. (1987) Phorbol ester inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49: 729–739.PubMedCrossRefGoogle Scholar
  93. 93.
    Treisman, R. (1990) The SRE: A growth factor-responsive transcriptional regulator. Sem. Cancer Biol. 1: 47–58.Google Scholar
  94. 94.
    Marais, R., Wynne, J., and Treisman, R. (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73: 381–393.PubMedCrossRefGoogle Scholar
  95. 95.
    Gille, H., Sharrocks, A. D., and Shaw, P. E. (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358: 414–416.PubMedCrossRefGoogle Scholar
  96. 96.
    Janknecht, R., Wolfram, E. H., Pingoud, V., and Nordheim, A. (1993) Activation of ternary complex factor Elk-1 by MAP kinase. EMBO J. 12: 5097–5104.PubMedGoogle Scholar
  97. 97.
    Deng, T. and Karin, M. (1994) c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 371: 171–175.Google Scholar
  98. 98.
    Hunter, T. and Karin, M. (1992) The regulation of transcription by phosphorylation. Cell 70: 375–387.PubMedCrossRefGoogle Scholar
  99. 99.
    Boyle, W. J., Smeal, T., Defize, L. H., Angel, P., Woodgett, J. R., Karin, M., and Hunter, T. (1991) Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64: 573–584.PubMedCrossRefGoogle Scholar
  100. 100.
    Sutherland, C., Leighton, I. A., and Cohen, P. (1993) Inactivation of glycogen synthase kinase-3ß by phosphorylation: new kinase connections in insulin and growth factor signalling. Biochem. J. 296: 15–19.PubMedGoogle Scholar
  101. 101.
    Binetruy, B., Smeal, T., and Karin, M. (1991) Ha-Ras augments c-jun activity and stimulates phosphorylation of its activation domain. Nature 351: 122–127.PubMedCrossRefGoogle Scholar
  102. 102.
    Pulverer, B., Kyriakis, J. M., Avruch, J., Nikolakaki, E., and Woodgett, J. R. (1991) Phophorylation of c-jun mediated by MAP kinases. Nature 353: 670–674.PubMedCrossRefGoogle Scholar
  103. 103.
    Ito, H., Hirata, Y., Hiroe, M., Tsujino, M., Adachi, S., Takamoto, T., Nitta, M., Taniguchi, K., and Marumo, F. (1991) ET-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ. Res. 69: 209–215.PubMedCrossRefGoogle Scholar
  104. 104.
    Neyses, L., Nouskas, J., and Vetter, H. (1991) Inhibition of ET-1 induced myocardial protein synthesis by an antisense oligonucleotide against the early growth response gene-l. Biochem. Biophys. Res. Commun. 181: 22–27.PubMedCrossRefGoogle Scholar
  105. 105.
    Blackwood, E. M., Kretzner, L., and Eisenman, R. N. (1992) Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dey. 2: 227–235.CrossRefGoogle Scholar
  106. 106.
    Ayer, D. E., Lawrence, Q. A., and Eisenman, R. N. (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 767–776.PubMedCrossRefGoogle Scholar
  107. 107.
    Kato, G. J., Barret, J., VillaGarcia, M., and Dang, C. V. (1990) An amino-terminal c-Myc domain required for neoplastic transformation activates transcription. Mol. Cell. Biol. 10: 5914–5924.PubMedGoogle Scholar
  108. 108.
    Seth, A., Alverez, E., Gupta, S., and Davis, R. J. (1991) A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression. J. Biol. Chem. 266: 23521–23524.PubMedGoogle Scholar
  109. 109.
    Brunner, D., Ducker, K., Oellers, N., Hafen, E., Scholz, H., and Klambt, C. (1994) The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370: 386–389.PubMedCrossRefGoogle Scholar
  110. 110.
    O’Neill, E. M., Rebay, I., Tjian, R., and Rubin, G. M. (1994) The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78: 137–147.PubMedCrossRefGoogle Scholar
  111. 111.
    Abdel-Hafiz, H. A., Heasley, L. E., Kyriakis, J. M., Avruch, J., Kroll, D. J., Johnson, G. L., and Hoeffler, J. P. (1992) Activating transcription factor-2 DNA-binding activity is stimulated by phosphorylation catalyzed by p42 and p54 microtubule-associated protein kinases. Mol. Endocrinol. 6: 2079–2089.PubMedCrossRefGoogle Scholar
  112. 112.
    Abdel-Hafiz, H. A., Chen, C. Y., Marcell, T., Kroll, D. J., and Hoeffler, J. P. (1993) Structural determinants outside of the leucine zipper influence the interactions of CREB and ATF-2: interaction of CREB with ATF2 blocks Ela-ATF-2 complex formation. Oncogene 8: 1161–1174.PubMedGoogle Scholar
  113. 113.
    Morooka, H., Bonventre, J. V., Pombo, C. M., Kyriakis, J. M., and Force, T. (1995) Ischemia and reperfusion enhance ATF-2 and c-Jun binding to cAMP response elements and to an AP-1 binding site from the c-jun promoter. J. Biol. Chem. 270: 30084–30092.PubMedCrossRefGoogle Scholar
  114. 114.
    Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Avruch, J., and Woodgett, J. R. (1994) A MAP kinase subfamily activated by cellular stress and tumour necrosis factor. Nature 369: 156–160.PubMedCrossRefGoogle Scholar
  115. 115.
    Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R. J. (1994) JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.PubMedCrossRefGoogle Scholar
  116. 116.
    Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808–811.PubMedCrossRefGoogle Scholar
  117. 117.
    Lin, T.-A., Kong, X., Haystead, T., Pause, A., Belsham, G., Sonenberg, N., and Lawrence, J. (1994) PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266: 653–656.PubMedCrossRefGoogle Scholar
  118. 118.
    Sun, H., Tonks, N. K., and Bar-Sagi, D. (1994) Inhibition of Ras-induced DNA synthesis by expression of the phosphatase MKP-1. Science 266: 285–288.PubMedCrossRefGoogle Scholar
  119. 119.
    Sun, H., Charles, C., Lau, L., and Tonks, N. (1993) MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephophorylates MAP kinase in vivo. Cell 75: 487–493.PubMedCrossRefGoogle Scholar
  120. 120.
    Rossomando, A. J., Dent, P., Sturgill, T. W., and Marshak, D. R. (1994) Mitogen-activated protein kinase kinase 1 (MKK1) is negatively regulated by threonine phosphorylation. Mol. Cell. Biol. 14: 1594–1602.PubMedGoogle Scholar
  121. 121.
    Lavoie, J. N., L’Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) Cyclin D1 expression is regulated positively by the p42/44 MAPK and negatively by the p39/HOG MAPK pathway. J. Biol. Chem. 271: 20608–20616.PubMedCrossRefGoogle Scholar
  122. 122.
    Force, T. and Bonventre, J. V. (1992) Endothelin activates Src tyrosine kinase in glomerular mesangial cells. J. Am. Soc. Nephrol. 3: 491.Google Scholar
  123. 123.
    Kypta, R. M., Goldberg, Y., Ulug, E. T., and Courtneidge, S. A. (1990) Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62: 481–492.PubMedCrossRefGoogle Scholar
  124. 124.
    Gould, K. and Hunter, T. (1988) Platelet-derived growth factor induces multisite phosphorylation of pp60“« and increases its protein-tyrosine kinase activity. Mol. Cell. Biol. 8: 3345–3356.PubMedGoogle Scholar
  125. 125.
    Courtneidge, S. A., Dhand, R., Pilat, D., Twamley-Stein, G. M., Waterfield, M. D., and Roussel, M. F. (1993) Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor. EMBO J. 12: 943–950.PubMedGoogle Scholar
  126. 126.
    Twamley-Stein, G. M., Pepperkok, R., Ansorge, W., and Courtneidge, S. A. (1993) The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH3T3 cells. Proc. Natl. Acad. Sci. USA 90: 7696–7700.PubMedCrossRefGoogle Scholar
  127. 127.
    Wilson, L. K., Luttrell, D. K., Parsons, J. T., and Parsons, S. J. (1989) Src tyrosine kinase, myristylation, and modulatory domains are required for enhanced mitogenic responsiveness to epidermal growth factor seen in cells overexpressing c-src. Mol. Cell. Biol. 9: 1536–1544.PubMedGoogle Scholar
  128. 128.
    Roche, S., Koegl, M., Barone, M. V., Roussel, M. F., and Courtneidge, S. A. (1995) DNA synthesis induced by some but not all growth factors requires Src family protein tyrosine kinases. Mol. Cell. Biol. 15: 1102–1109.PubMedGoogle Scholar
  129. 129.
    Soriano, P., Montgomery, C., Geske, R., and Bradley, A. (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64: 693–702.PubMedCrossRefGoogle Scholar
  130. 130.
    Shenoy, S., Chackalaparampil, I., Bagrodia, S., Lin, P.-H., and Shalloway, D. (1992) Role of p34odo2-mediated phosphorylations in two-step activation of pp60“ic during mitosis. Proc. Natl. Acad. Sci. USA 89: 7237–7241.PubMedCrossRefGoogle Scholar
  131. 131.
    Chackalaparamil, I., Bagrodia, S., and Shalloway, D. (1994) Tyrosine dephosphorylation of pp60c-Src is stimulated by a serine/threonine phosphatase inhibitor. Oncogene 9: 1947–1955.Google Scholar
  132. 132.
    Sabe, H., Hata, A., Okada, M., Nakagawa, H., and Hanafusa, H. (1994) Analysis of the binding of the Src homology 2 domain of Csk to tyrosinephosphorylated proteins in the suppression and mitotic activation of c-Src. Proc. Natl. Acad. Sci. USA 91: 3984–3988.PubMedCrossRefGoogle Scholar
  133. 133.
    Nada, S., Okada, M., MacAuley, A., Cooper, J. A., and Nakagawa, H. (1991) Cloning of a complementary DNA for a protein -tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351: 69–72.PubMedCrossRefGoogle Scholar
  134. 134.
    Chow, L. M. L., Foumel, M., Davidson, D., and Veillette, A. (1993) Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature 365: 156–160.PubMedCrossRefGoogle Scholar
  135. 135.
    Cooper, J. A. and Howell, B. (1993) The when and how of Src regulation. Cell 73: 1051–1054.PubMedCrossRefGoogle Scholar
  136. 136.
    den Hertog, J., Pals, C., Peppelenbosch, M. P., Tertoolen, L. G. J., de Laat, S., and Kruijer, W. (1993) Receptor protein tyrosine phosphatase activates pp60-c-src and is involved in neuronal differentiation. EMBO J. 12: 3789–3798.Google Scholar
  137. 137.
    Bibbins, K. B., Boeuf, H., and Varmus, H. E. (1993) Binding of the Src SH2 domain to phosphopeptides is determined by residues in both the SH2 domain and the phosphopeptides. Mol. Cell. Biol. 13: 7278–7287.PubMedGoogle Scholar
  138. 138.
    Koch, C. A., Moran, M. F., Anderson, D., Liu, X., Mbamalu, G., and Pawson, T. (1992) Multiple SH2-mediated interactions in v-src-transformed cells. Mol. Cell. Biol. 12: 1366–1374.PubMedGoogle Scholar
  139. 139.
    Fukui, Y. and Hanafusa, H. (1991) Requirement of phosphatidylinositol3 kinase modification for its association with p60sre Mol. Cell. Biol. 11: 1972–1979.PubMedGoogle Scholar
  140. 140.
    Weng, Z., Thomas, S. M., Rickles, R. J., Taylor, J. A., Brauer, A. W., Seidel-Dugan, C., Michael, W. M., Dreyfuss, G., and Brugge, J. S. (1994) Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains. Mol. Cell. Biol. 14: 4509–4521.PubMedGoogle Scholar
  141. 141.
    Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S. (1991) Oncogenes and signal transduction. Cell 64: 281–302.PubMedCrossRefGoogle Scholar
  142. 142.
    Li, W., Hu, P., Skolnik, E. Y., Ullrich, A., and Schlessinger, J. (1992) The SH2 and SH3 domain-containing Nck protein is oncogenic and a common target for phosphorylation by different surface receptors. Mol. Cell. Biol. 12: 5824–5833.PubMedGoogle Scholar
  143. 143.
    Chou, M. M., Fajardo, J. E., and Hanafusa, H. (1992) The SH2- and SH3containing Nck protein transforms mammalian fibroblasts in the absence of elevated phosphotyrosine levels. Mol. Cell. Biol. 12: 5834–5842.PubMedGoogle Scholar
  144. 144.
    Meisenhelder, J. and Hunter, T. (1992) The SH2/SH3 domain-containing protein Nck is recognized by certain anti-phospholipase C-gammal monoclonal antibodies and its phosphorylation on tyrosine is stimulated by platelet-derived growth factor and epidermal growth factor treatment. Mol. Cell. Biol. 12: 5843–5856.PubMedGoogle Scholar
  145. 145.
    Pelicci, G., Lanfrancone, L., Grignani, F., McGlade, J., Cavallo, F., Forni, G., Nicoletti, I., Grignani, F., Pawson, T., and Pelicci, P. G. (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70: 93–104.PubMedCrossRefGoogle Scholar
  146. 146.
    McGlade, J., Cheng, A., Pelicci, G., Pelicci, P. G., and Pawson, T. (1992) Shc proteins are phosphorylated and regulated by the v-Src and v-Fps protein-tyrosine kinases. Proc. Natl. Acad. Sci. USA 89: 8869–8873.PubMedCrossRefGoogle Scholar
  147. 147.
    Della Rocca, G. J., van Biessen, T., Daaka, Y., Luttrell, D. K., Luttrell, L. M., and Lefkowitz, R. J. (1997) Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. J. Biol. Chem. 272, 19125–19132.PubMedCrossRefGoogle Scholar
  148. 148.
    Feng, G.-S., Hui, C.-C., and Pawson, T. (1993) SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 259: 1607–1611.PubMedCrossRefGoogle Scholar
  149. 149.
    Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A. (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410.PubMedCrossRefGoogle Scholar
  150. 150.
    Ridley, A. J. and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399.PubMedCrossRefGoogle Scholar
  151. 151.
    Settleman, J., Albright, C. F., Foster, L. C., and Weinberg, R. A. (1992) Association between GTPase activators for Rho and Ras families. Nature 359: 153, 154.Google Scholar
  152. 152.
    Ridley, A. J. and Hall, A. (1994) Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J. 13: 2600–2610.PubMedGoogle Scholar
  153. 153.
    Schaller, M. D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., and Parsons, J. T. (1992) pp125FAK, a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. Sci. USA 89: 5192–5196.Google Scholar
  154. 154.
    Hanks, S. K., Calalb, M. B., Harper, M. C., and Patel, S. K. (1992) Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc. Natl. Acad. Sci. USA 89: 8487–8491.PubMedCrossRefGoogle Scholar
  155. 155.
    Seufferlein, T. and Rozengurt, E. (1994) Lysophosphatidic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130. J. Biol. Chem. 269: 9345–9351.PubMedGoogle Scholar
  156. 156.
    Zachary, I. and Rozengurt, E. (1992) Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 71: 891–894.PubMedCrossRefGoogle Scholar
  157. 157.
    Hamaguchi, M. and Hanafusa, H. (1987) Association of p60s« with Triton X-100-resistant cellular structures correlates with morphological transformation. Proc. Natl. Acad. Sci. USA 84: 2312–2316.PubMedCrossRefGoogle Scholar
  158. 158.
    Clark, E. A. and Brugge, J. S. (1993) Redistribution of activated pp60osrc to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets. Mol. Cell. Biol. 13: 1863–1871.PubMedGoogle Scholar
  159. 159.
    Clark, E. A. and Brugge, J. S. (1995) Integrins and signal transduction pathways: the road taken. Science 268: 233–239.PubMedCrossRefGoogle Scholar
  160. 160.
    Kaplan, K. B., Bibbins, K. B., Swedlow, J. R., Arnaud, M., Morgan, D. O., and Varmus, H. E. (1994) Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO J. 13: 4745–4756.PubMedGoogle Scholar
  161. 161.
    Cobb, B., Schaller, M., Leu, T., and Parsons, J. (1994) Stable Association of pp60src and pp59fYrs with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol. Cell. Biol. 14: 147–155.PubMedGoogle Scholar
  162. 162.
    Schaller, M., Hildebrand, J., Shannon, J., Fox, J., Vines, R., and Parsons, J. (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK directs SH2-dependent binding of pp60’ Mol. Cell. Biol. 14: 1680–1688.PubMedGoogle Scholar
  163. 163.
    Calalb, M., Polte, T., and Hanks, S. (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. Cell. Biol. 15: 954–963.PubMedGoogle Scholar
  164. 164.
    Sinnett-Smith, J., Zachary, I., Valverde, A. M., and Rozengurt, E. (1993) Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. J. Biol. Chem. 268: 14261–14268.PubMedGoogle Scholar
  165. 165.
    Seckl, M. and Rozengurt, E. (1993) Tyrphostin inhibits bombesin stimulation of tyrosine phosphorlation, c-fos expression, and DNA synthesis in Swiss 3T3 cells. J. Biol. Chem. 268: 9548–9554.PubMedGoogle Scholar
  166. 166.
    Burridge, K., Turner, C. E., and Romer, L. H. (1992) Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extra-cellular matrix: a role in cytoskeletal assembly. J. Cell Biol. 119: 893–903.PubMedCrossRefGoogle Scholar
  167. 167.
    Taniguchi, T. (1995) Cytokine signalling through nonreceptor protein tyrosine kinases. Science 268: 251–255.PubMedCrossRefGoogle Scholar
  168. 168.
    Marrero, M., Schleffer, B., Paxton, W., Heerdt, L., Berk, B., Delafontaine, P., and Bernstein, K. (1995) Direct stimulation of JAK/STAT pathway by the angiotensin II AT1 receptor. Nature 375: 247–250.PubMedCrossRefGoogle Scholar
  169. 169.
    Freshney, N. W., Rawlinson, L., Guesdon, F., Jones, E., Cowley, S., Hsuan, J., and Saklatvala, J. (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 71: 1039–1049.CrossRefGoogle Scholar
  170. 170.
    Rouse, J., Cohen, P., Trigon, S., Morange, M., Alonso-Llamazares, A., Zamanillo, D., Hunt, T., and Nebreda, A. R. (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78: 1027–1037.PubMedCrossRefGoogle Scholar
  171. 171.
    Zhou, G., Bao, Z. Q., and Dixon, J. E. (1995) Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270: 12665–12669.PubMedGoogle Scholar
  172. 172.
    Pombo, C. P., Bonventre, J. V., Avruch, J., Woodgett, J. R., Kyriakis, J. M., and Force, T. (1994) The stress-activated protein kinases (SAPKs) are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J. Biol. Chem. 269: 26546–26551.PubMedGoogle Scholar
  173. 173.
    van Dam, H., Wilhelm, D., Herr, I., Steffen, A., Herrlich, P., and Angel, P. (1995) ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J. 14: 1798–1811.PubMedGoogle Scholar
  174. 174.
    Livingstone, C., Patel, G., and Jones, N. (1995) ATF2 contains a phosphorylation dependent transcriptional activation domain. EMBO J. 14: 1785–1797.PubMedGoogle Scholar
  175. 175.
    Gupta, S., Campbell, D., Derijard, B., and Davis, R. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267: 389–393.PubMedCrossRefGoogle Scholar
  176. 176.
    Derijard, B., Raingeaud, J., Barrett, T., Wu, I.-H., Han, J., Ulevitch, R., and Davis, R. (1995) Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685.PubMedCrossRefGoogle Scholar
  177. 177.
    Coso, O. A., Chiariello, M., Kalinec, G., Kyriakis, J. M., Woodgett, J., and Gutkind, J. S. (1995) Transforming G protein-coupled receptors potently activate JNK (SAPK). J. Biol. Chem. 270: 5620–5624.PubMedCrossRefGoogle Scholar
  178. 178.
    Heasley, L. E., Storey, B., Fanger, G., Butterfield, L., Zamarripa, J., Blumberg, D., and Maue, R. A. (1996) GTPase-deficient Ga16 and Gaq induce PC 12 cell differentiation and persistent activation of cJun Nh2terminal kinases. Mol. Cell. Biol. 16: 648–656.PubMedGoogle Scholar
  179. 179.
    Zohn, I. E., Yu, H., Li, X., Cox, A. D., and Earp, H. S. (1995) Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase. Mol. Cell. Biol. 15: 6160–6168.PubMedGoogle Scholar
  180. 180.
    Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331.PubMedCrossRefGoogle Scholar
  181. 181.
    Johnson, N. L., Gardner, A. M., Diener, K. M., Lange-Carter, C. A., Gleavy, J., Jarpe, M. B., Minden, A., Karin, M., Zon, L. I., and Johnson, G. L. (1996) Signal transduction pathways regulated by mitogen-activated/ extracellular response kinase kinase kinase induce cell death. J. Biol. Chem. 271: 3229–3237.PubMedCrossRefGoogle Scholar
  182. 182.
    Verheij, M., Bose, R., Hua Lin, X., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zon, L. I., Kyriakis, J. M., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. N. (1996) Requirement for ceramide-initiated in stress-induced apoptosis. Nature 380: 75–79.PubMedCrossRefGoogle Scholar
  183. 183.
    Kapeller, R. and Cantley, L. C. (1994) Phosphatidylinositol 3-kinase. Bioessays 16: 565–576.PubMedCrossRefGoogle Scholar
  184. 184.
    Rodriquez-Viciana, P., Waren, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J. (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532.CrossRefGoogle Scholar
  185. 185.
    Stephens, L., Smrcka, A., Cooke, F. T., Jackson, T. R., Sternweis, C., and Hawkins, P. T. (1994) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein by subunits. Cell 77: 83–93.PubMedCrossRefGoogle Scholar
  186. 186.
    Pombo, C., Kehrl, J., Sanchez, I., Katz, P., Avruch, J., Zon, L., Woodgett, J., Force, T., and Kyriakis, J. (1995) Activation of the SAPK pathway by the human STE20 homolog germinal centre kinase. Nature 377: 750–754.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Thomas Force

There are no affiliations available

Personalised recommendations