Chromatin Structure and Lineage Determination

  • Dimitris Kioussis
  • Richard Festenstein
Part of the Contemporary Immunology book series (CONTIM)


It is commonplace nowadays to state that the identity of a cell is determined by the expression of a subset of genes present in its nucleus. Many of these genes are necessary for the survival of the cell and are, by and large, expressed in all types of cells, regardless of lineage. They have come to be known as housekeeping genes. In addition, cells belonging to a particular tissue express a set of genes which is characteristic of the lineage to which they belong. Such genes are called tissue-specific genes, and their regulated expression defines the characteristic function and hence, the identity of the cell. An example of such tissue-specific genes are those that encode for surface molecules; antibodies recognizing these structures have made the analysis and identification of cells of particular lineage feasible.


Transgenic Line Chromatin Structure Position Effect Histone Tail Locus Control Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benoist, C. and Chambon, P. (1981) In vivo sequence requirements of the SV40 early promoter region. Nature 290, 304–310.PubMedCrossRefGoogle Scholar
  2. 2.
    Lo, K. and Smale, S. T. (1996) Generality of a functional initiator consensus sequence. Gene 182, 13–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Banerji, J., Rusconi, S., and Schaffner, W. (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308.PubMedCrossRefGoogle Scholar
  4. 4.
    Moreau, P. Hen, B., Waslylyk, R., Everett, M., Gaub, M. P., and Chambon, P. (1981) The SV40 72-bp repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res. 9 6047–6068.Google Scholar
  5. 5.
    Kennison, J. A. (1993) Transcriptional activation of Drosophila homeotic genes from distant regulatory elements. Trends Genet. 9, 75–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Serfling, E., Jasin, M., and Schaffner, W. (1985) Enhancers and eukaryotic gene transcription. Trends Genet. 1, 224–230.CrossRefGoogle Scholar
  7. 7.
    Donda, A., Schulz, M., Burki, K., De Libero, G., and Uematsu, Y. (1996) Identification and characterization of a human CD4 silencer. Eur. J. Immunol. 26, 493–500.PubMedCrossRefGoogle Scholar
  8. 8.
    Sawada, S., Scarborough, J. D., Killeen, N., and Littman, D. R. (1994) A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell77, 917–929.Google Scholar
  9. 9.
    Siu, G., Wurster, A. L., Duncan, D. D., Soliman, T. M., and Hedrick, S. M. (1994) A transcriptional silencer controls the developmental expression of the CD4 gene. EMBO J. 13, 3570–3579.PubMedGoogle Scholar
  10. 10.
    Eden, S. and Cedar, H. (1994) Role of DNA methylation in the regulation of transcription. Curr. Opin. Genet. Dev. 4, 255–259.PubMedCrossRefGoogle Scholar
  11. 11.
    Gross, D. S. and Garrard, W. T. (1988) Nuclease hypersensitive sites in chromatin. Ann. Rev. Biochem. 57, 159–197.PubMedCrossRefGoogle Scholar
  12. 12.
    Cook, P. R. (1973) Hypothesis on differentiation and the inheritance of gene superstructure. Nature 245, 23–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Grosveld, F. and Kollias, G. (1992) Transgenic Animals. ( London, Academic Press).Google Scholar
  14. 14.
    Palmiter, R. D. and Brinster, R. L. (1986) Germline transformation of mice. Ann. Rev. Genet. 20, 465–499.PubMedCrossRefGoogle Scholar
  15. 15.
    Dobie, K., Mehtali, M., McClenaghan, M., and Lathe, R. (1997) Variegated gene expression in mice. Trends Genet. 13, 127–130.PubMedCrossRefGoogle Scholar
  16. 16.
    Milot, E., Fraser, P., and Grosveld, F. (1996) Position effects and genetic disease. Trends Genet. 12, 123–126.PubMedCrossRefGoogle Scholar
  17. 17.
    Dobzhansky, T. (1936) Position effects on genes. Biol. Rev. 11, 364–434.CrossRefGoogle Scholar
  18. 18.
    Lewis, E. B. (1950) The phenomenon of position effect. Adv. Genet. 3, 73–115.PubMedCrossRefGoogle Scholar
  19. 19.
    Sturtevant, A. H. (1925) The effects of unequal cross-over at the Bar-locus in Drosophila. Genetics 10, 117–147.PubMedGoogle Scholar
  20. 20.
    Grosveld, F., van Assendelft, G. B., Greaves, D. R., and Kollias, G. (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975–985.PubMedCrossRefGoogle Scholar
  21. 21.
    Greaves, D. R., Wilson, F., Lang, G., and Kioussis, D. (1989) Human CD2 3’-flanking sequences confer high-level T-cell specific position independent gene expression in transgenic mice. Cell 56, 979.PubMedCrossRefGoogle Scholar
  22. 22.
    Bonifer, C., Vidal, M., Grosveld, F., and Sippel, A. S. (1990) Tissue specific and position independent expression of complete gene domain for chicken lysozyme in transgenic mice. EMBO J. 9, 2843–2848.PubMedGoogle Scholar
  23. 23.
    Carson, S., and Wiles, M. V. (1993) Far upstream regions of class II MHC Ea are necessary for position-independent, copy-dependent expression of Ea transgene. Nucleic Acids Res. 21, 2065–2072.PubMedCrossRefGoogle Scholar
  24. 24.
    Dale, T. C., Krnacik, M. J., Schmidhauser, C., Yang, C. L., Bissell, M. J., and Rosen, J. M. (1992) High-level expression of the rat whey acidic protein gene is mediated by elements in the promoter and 3’ untranslated region. Mol. Cell Biol. 12, 905–914.PubMedGoogle Scholar
  25. 25.
    Diaz, P., Cado, D., and Winoto, A. (1994) A Locus Control Region in the T cell receptor alpha/ delta locus. Immunity 1, 207–217.PubMedCrossRefGoogle Scholar
  26. 26.
    Palmiter, R. D., Sandgren, E. P., Koeller, D. M., and Brinster, R. L. (1993) Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice. Mol. Cell. Biol. 13, 5266–5275.PubMedGoogle Scholar
  27. 27.
    Reitman, M., Lee, E., Westphal, H., and Felsenfeld, G. (1990) Site-independent expression of the chicken beta A-globin gene in transgenic mice. Nature 348, 749–752.PubMedCrossRefGoogle Scholar
  28. 28.
    Schedl, A., Montoliu, L., Kelsey, G., and Schutz, G. (1993) A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362, 258–261.PubMedCrossRefGoogle Scholar
  29. 29.
    Strauss, W. M., Dausman, J., Beard, C., Johnson, C., Lawrence, J. B., and Jaenisch, R. (1993) Germ line transmission of a yeast artificial chromosome spanning the murine alpha 1(I) collagen locus. Science 259, 1904–1907.PubMedCrossRefGoogle Scholar
  30. 30.
    Talbot, D., Descombes, P., and Schibler, U. (1994) The 5’ flanking region of the rat LAP (C/EBP beta) gene can direct high-level, position-independent, copy number-dependent expression in multiple tissues in transgenic mice. Nucleic Acids Res. 22, 756–766.PubMedCrossRefGoogle Scholar
  31. 31.
    Whitelaw, C. B., Harris, S., McClenaghan, M., Simons, J. P., and Clark, A. J. (1992) Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. Biochem. J. 286, 31–39.PubMedGoogle Scholar
  32. 32.
    Davis, M. M. and Bjorkman, P. J. (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–401.PubMedCrossRefGoogle Scholar
  33. 33.
    Adkins, B. Mueller, C., Okada, C. Y., Reichert, R., Weissman, I. L., and Spangrude, G. J. (1987) Early events in T-cell maturation. Ann. Rev. Immunol. 5 325–365.Google Scholar
  34. 34.
    Blackman, M., Kappler, J., and Marrack, P. (1990) The role of the T cell receptor in positive and negative selection of developing T cells. Science 248, 1335–1341.PubMedCrossRefGoogle Scholar
  35. 35.
    Kappler, J. W., Roehm, N., and Marrack, P. C. (1987) T cell tolerance by clonal elimination in the thymus. Cell 149, 273–280.CrossRefGoogle Scholar
  36. 36.
    Ritter, M. A. and Crispe, I. N. (1992) The thymus in focus. Book IRL Press 34–36.Google Scholar
  37. 37.
    Driscoll, P. C., Cyster, J. G., Campbell, I. D., and Williams, A. (1991) Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature 353, 762–765.PubMedCrossRefGoogle Scholar
  38. 38.
    Killeen, N., Stuart, S. G., and Littman, D. R. (1992) Development and function of T cells in mice with a disrupted CD2 gene. EMBO J. 11, 4329–4336.PubMedGoogle Scholar
  39. 39.
    Lang, G., Wotton, D., Owen, M. J., Sewell, W. A., Brown, M. H., Mason, D. Y., Crumpton, M. J., and Kioussis, D. (1988) The structure of the human CD2 gene and its expression in transgenic mice. EMBO J. 7, 1675–1682.Google Scholar
  40. 40.
    Lang, G., Mamalaki, C., Greenberg, D., Yannoutsos, N., and Kioussis, D. (1991) Deletion analysis of the human CD2 gene locus control region in transgenic mice. Nucleic Acids Res. 19, 5851–5856.PubMedCrossRefGoogle Scholar
  41. 41.
    Lake, R. A. and Wotton, D. (1990) A 3’ transcriptional enhancer regulates tissue-specific expression of the human CD2 gene. EMBO J. 9, 3129–3136.PubMedGoogle Scholar
  42. 42.
    Allshire, R. C., Javerzat, J.-P., Redhead, N. J., and Cranston, G. (1994) Position Effect Variegation at fission yeast centromeres. Cell 76, 157–169.PubMedCrossRefGoogle Scholar
  43. 43.
    Karpen, G. H. (1994) Position-effect variegation and the new biology of heterochromatin. Curr. Opin. Genet. Dey. 4, 281–291.CrossRefGoogle Scholar
  44. 44.
    Singh, P. B., Miller, J. R., Pearce, J., Kothary, R., Burton, R. D., Paro, R., James, T. C., and Gaunt, S. J. (1991) A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res. 19, 789–794.Google Scholar
  45. 45.
    Henikoff, S. (1992) Position effect and related phenomena. Curr. Opin. Genet. Dey. 2, 907–912.CrossRefGoogle Scholar
  46. 46.
    Henikoff, S. (1990) Position-effect variegation after 60 years. Trends Genet. 12, 422–426.CrossRefGoogle Scholar
  47. 47.
    Festenstein, R. Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M., and Kioussis, D. (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271 1123–1125.Google Scholar
  48. 48.
    Elliott, J., Festenstein, R., Tolaini, M., and Kioussis, D. (1995) Random activation ofa transgene under the control ofa hybrid hCD2 locus control region/Ig enhancer regulatory element. EMBO J. 14, 575–584.PubMedGoogle Scholar
  49. 49.
    Weintraub, H. (1988) Formation of stable transcription complexes as assayed by analysis of individual templates. Proc. Natl. Acad. Sci. USA 85, 5819–5823.PubMedCrossRefGoogle Scholar
  50. 50.
    Moon, A. M. and Ley, T. J. (1991) Functional properties of the beta-globin locus control region in K562 erythroleukemia cells. Blood 77, 2272–2284.PubMedGoogle Scholar
  51. 51.
    Walters, M. C., Fiering, S., Eidemiller, J., Magis, W., Groudine, M., and Martin, D. I. K. (1995) Enhancers increase the probability but not the level of gene expression. Proc. Natl. Acad. Sci. USA 92, 7125–7129.PubMedCrossRefGoogle Scholar
  52. 52.
    Wijgerde, M., Grosveld, F., and Fraser, P. (1995) Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209–213.CrossRefGoogle Scholar
  53. 53.
    Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres, reversible repression of Pol II transcription. Cell 63, 751–762.PubMedCrossRefGoogle Scholar
  54. 54.
    Karpen, G. H. and Spradling, A. C. (1990) Reduced DNA polytenization ofa minichromosome region undergoing position-effect variegation in Drosophila. Cell 63, 97–107.PubMedCrossRefGoogle Scholar
  55. 55.
    Wakimoto, B. T. and Hearn, M. G. (1990) The effects of chromosome rearrangement on the expression of heterochromosomal genes in Chromosome 2L in melanogaster, D. Genetics 125, 141–154.PubMedGoogle Scholar
  56. 56.
    Locke, J., Kotarski, M. A., and Tartof, K. D. (1988) Dosage-dependent modifiers ofpositional effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120, 181–198.PubMedGoogle Scholar
  57. 57.
    Aparicio, O. M., Billington, B. L., and Gottschling, D. E. (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279–1287.PubMedCrossRefGoogle Scholar
  58. 58.
    Aparicio, O. M. and Gottschling, D. E. (1994) Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 8, 1133–1146.PubMedCrossRefGoogle Scholar
  59. 59.
    Eissenberg, J. C., Morris, G. D., Reuter, G., and Hartnett, T. (1992) The heterochromatinassociated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131, 345–352.PubMedGoogle Scholar
  60. 60.
    Renauld, H. Aparicio, O. M., Zierath, P. D., Billington, B. L., Chhablani, S. K., and Gottschling, D. E. (1993) Silent domains are assembled continuosly from the telomere and are defined by promoter distance and strength, and by SIRS dosage. Genes Dev. 7 1133–1145.Google Scholar
  61. 61.
    Wustmann, G., Szidonya, J., Taubert, H., and Reuter, G. (1989) The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol. Gen. Genet. 217, 520–527.Google Scholar
  62. 62.
    Reuter, G. and Spierer, P. (1992) Position effect variegation and chromatin proteins. Bioessays 14, 605–612.PubMedCrossRefGoogle Scholar
  63. 63.
    Epstein, H., James, T. C., and Singh, P. B. (1992) Cloning and expression of Drosophila HP1 homologs from a mealybug, Planococcus citri. J. Cell. Sci. 101, 463–474.PubMedGoogle Scholar
  64. 64.
    Hamvas, R. M., Reik, W., Gaunt, S. J., Brown, S. D., and Singh, P. B. (1992) Mapping of a mouse homolog of a heterochromatin protein gene the X chromosome. Mamm. Genome 2, 72–75.PubMedCrossRefGoogle Scholar
  65. 65.
    Saunders, W. S., Chue, C., Goebl, M., Craig, C., Clark, R. F., Powers, J. A., Eissenberg, J. C., Elgin, S. C., Rothfield, N. F., and Earnshaw, W. C. (1993) Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J. Cell. Sci. 104, 573–582.PubMedGoogle Scholar
  66. 66.
    Paro, R. and Hogness, D. S. (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl. Acad. Sci. USA 88, 263–267.Google Scholar
  67. 67.
    Chang, Y. L., King, B. O., M. O’Connor, Mazo, A., and Huang, D. H. (1995) Functional reconstruction of trans regulation of the Ultrabithorax promoter by the products of two antagonistic genes, trithorax and Polycomb. Mol. Cell. Biol. 15, 6601–6612.PubMedGoogle Scholar
  68. 68.
    Simon, J., Chiang, A., Bender, W., Shimell, M. J., and O’Connor, M. (1993) Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev. Biol. 158, 131–144.PubMedCrossRefGoogle Scholar
  69. 69.
    Chan, C. S., Rastelli, L., and Pirrotta, V. (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 13, 2553–2564.PubMedGoogle Scholar
  70. 70.
    Platero, J. S., Hartnett, T., and Eissenberg, J. C. (1995) Functional analysis of the chromo domain of HP1. EMBO J. 14, 3977–3986.PubMedGoogle Scholar
  71. 71.
    Paro, R. (1990) Imprinting a determined state into the chromatin of Drosophila. Trends Genet. 6, 416–421.PubMedCrossRefGoogle Scholar
  72. 72.
    Muller, J., Gaunt, S., and Lawrence, P. A. (1995) Function of the Polycomb protein is conserved in mice and flies. Development 121, 2847–2852.PubMedGoogle Scholar
  73. 73.
    Simon, J. (1995) Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr. Opin. Cell. Biol. 7, 376–385.PubMedCrossRefGoogle Scholar
  74. 74.
    Chinwalla, V., Jane, E. P., and Harte, P. J. (1995) The Drosophila trithorax protein binds to specific chromosomal sites and is co-localized with Polycomb at many sites. EMBO J. 14, 2056–2065.PubMedGoogle Scholar
  75. 75.
    Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B., and Crabtree, G. R. (1993) BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174.PubMedCrossRefGoogle Scholar
  76. 76.
    Mbangkollo, D., Burnett, R., McCabe, N., Thirman, M., Gill, H., Yu, H., Rowley, J. D., and Diaz, M. O. (1995) The human MLL gene: nucleotide sequence, homology to the Drosophila trx zinc-finger domain, and alternative splicing. DNA Cell. Biol. 14, 475–483.Google Scholar
  77. 77.
    Randazzo, F. M., Khavari, P., Crabtree, G., Tamkun, J., and Rossant, J. (1994) Brg l: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev. Biol. 161, 229–242.PubMedCrossRefGoogle Scholar
  78. 78.
    Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A., and Korsmeyer, S. J. (1995) Altered Hox expression and segmental identity in M11-mutant mice. Nature 378, 505–508.Google Scholar
  79. 79.
    Kayne, P., Ung-Jin, K., Mullen, J. R., Yoshizaki, F., and Grunstein, M. (1988) Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55, 27–39.Google Scholar
  80. 80.
    Hebbes, T. R., Thorne, A. W., and Crane-Robinson, C. (1994) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402.Google Scholar
  81. 81.
    Jeppesen, P. and Turner, B. M. (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281–289.PubMedCrossRefGoogle Scholar
  82. 82.
    Brownell, J. E. and Allis, C. D. (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA 92, 6364–6368.PubMedCrossRefGoogle Scholar
  83. 83.
    Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y., and Allis, C. D. (1996) Tetrahymena histone acetyltransferase A: a homologue to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851.PubMedCrossRefGoogle Scholar
  84. 84.
    Kleff, S., Andrulis, E. D., Anderson, C. W., and Sternglanz, R. (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270, 24,674–24, 677.Google Scholar
  85. 85.
    Fanti, L., Berloco, M., and Pimpinelli, S. (1994) Carnitine suppression of position-effect variegation in Drosophila melanogaster. Mol. Gen. Genet. 244, 588–595.PubMedCrossRefGoogle Scholar
  86. 86.
    Taunton, J., Hassig, C. A., and Schreiber, S. L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411.PubMedCrossRefGoogle Scholar
  87. 87.
    Wolffe, A. P. and Pruss, D. (1996) Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84, 817–819.PubMedCrossRefGoogle Scholar
  88. 88.
    Alland, L., Muhle, R., Hou Jr, H., Potes, J., Chin, L., Schreiber-Agus, N., and DePinho, R. A. (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49–55.PubMedCrossRefGoogle Scholar
  89. 89.
    Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L., and Ayer, D. E. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347.PubMedCrossRefGoogle Scholar
  90. 90.
    Heinzel, T., Lavinsky, R. M., M. T-M., Soderstrom, M., Laherty, C. D., Torchia, J., Yang, W.-M., Brard, G., Ngo, S. D., Davie, J. R., Seto, E., Eisenman, R. N., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48.Google Scholar
  91. 91.
    Kadosh, D. and Struhl, K. (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371.PubMedCrossRefGoogle Scholar
  92. 92.
    Laherty, C. D., Yang, W.-M., Sun, J.-M., Davie, J. R., Seto, E., and Eisenman, R. N. (1997) Histone deacetylases associated with mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–3 56.Google Scholar
  93. 93.
    Nagy, L., Kao, H.-Y., Chakravarti, D., Lin, R. J., Hassig, C. A., Ayer, D. E., Schreiber, S. L., and Evans, R. M. (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380.PubMedCrossRefGoogle Scholar
  94. 94.
    Singh, P. B. (1994) Molecular mechanisms of cellular determination: their relation to chromatin structure. J. Cell. Sci. 107, 2653–2668.PubMedGoogle Scholar
  95. 95.
    Bartolomei, M. S., Webber, A. L., Brunkow, M. E., and Tilghman, S. M. (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dey. 7, 1663–1673.CrossRefGoogle Scholar
  96. 96.
    John, R. M. and Surani, M. A. (1996) Imprinted genes and regulation of gene expression by epigenetic inheritance. Curr. Opin. Cell. Biol. 8, 348–353.PubMedCrossRefGoogle Scholar
  97. 97.
    Engelkamp, D. and van Heyningen, V. (1996) Transcription factors in disease. Curr. Opin. Genet. Dey. 6, 334–342.CrossRefGoogle Scholar
  98. 98.
    Chan, S. H., Cosgrove, D., Waltzinger, C., Benoist, C., and Mathis, D. (1993) Another view of the selective model of thymocyte selection. Cell 73, 225–236.PubMedCrossRefGoogle Scholar
  99. 99.
    Corbella, P. Moskophidis, D., Spanopoulou, E., Mamalaki, C., Tolaini, M., Itano, A., Lans, D., Baltimore, D., Robey, E., and Kioussis, D. (1994) Functional commitment to helper T cell lineage precedes positive selection and is independent of T cell receptor MHC specificity. Immunity 1 269–276.Google Scholar
  100. 100.
    Davis, C. B., Killeen, N., Crooks, M. E. C., Raulet, D., and Littman, D. R. (1993) Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. Cell 73, 237–247.PubMedCrossRefGoogle Scholar
  101. 101.
    Itano, A., Kioussis, D., and Robey, E. (1994) Stochastic component to development of class I major histocompatibility complex-specific T cells. Proc. Natl. Acad. Sci. USA 91, 220–224.PubMedCrossRefGoogle Scholar
  102. 102.
    Robey, E., Chang, D., Itano, A., Cado, D., Alexander, H., Lans, D., Weinmaster, G., and Salmon, P. (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Dimitris Kioussis
  • Richard Festenstein

There are no affiliations available

Personalised recommendations