Skip to main content

Chromatin Structure and Lineage Determination

  • Chapter
  • 260 Accesses

Part of the book series: Contemporary Immunology ((CONTIM))

Abstract

It is commonplace nowadays to state that the identity of a cell is determined by the expression of a subset of genes present in its nucleus. Many of these genes are necessary for the survival of the cell and are, by and large, expressed in all types of cells, regardless of lineage. They have come to be known as housekeeping genes. In addition, cells belonging to a particular tissue express a set of genes which is characteristic of the lineage to which they belong. Such genes are called tissue-specific genes, and their regulated expression defines the characteristic function and hence, the identity of the cell. An example of such tissue-specific genes are those that encode for surface molecules; antibodies recognizing these structures have made the analysis and identification of cells of particular lineage feasible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benoist, C. and Chambon, P. (1981) In vivo sequence requirements of the SV40 early promoter region. Nature 290, 304–310.

    Article  PubMed  CAS  Google Scholar 

  2. Lo, K. and Smale, S. T. (1996) Generality of a functional initiator consensus sequence. Gene 182, 13–22.

    Article  PubMed  CAS  Google Scholar 

  3. Banerji, J., Rusconi, S., and Schaffner, W. (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308.

    Article  PubMed  CAS  Google Scholar 

  4. Moreau, P. Hen, B., Waslylyk, R., Everett, M., Gaub, M. P., and Chambon, P. (1981) The SV40 72-bp repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res. 9 6047–6068.

    Google Scholar 

  5. Kennison, J. A. (1993) Transcriptional activation of Drosophila homeotic genes from distant regulatory elements. Trends Genet. 9, 75–79.

    Article  PubMed  CAS  Google Scholar 

  6. Serfling, E., Jasin, M., and Schaffner, W. (1985) Enhancers and eukaryotic gene transcription. Trends Genet. 1, 224–230.

    Article  CAS  Google Scholar 

  7. Donda, A., Schulz, M., Burki, K., De Libero, G., and Uematsu, Y. (1996) Identification and characterization of a human CD4 silencer. Eur. J. Immunol. 26, 493–500.

    Article  PubMed  CAS  Google Scholar 

  8. Sawada, S., Scarborough, J. D., Killeen, N., and Littman, D. R. (1994) A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell77, 917–929.

    Google Scholar 

  9. Siu, G., Wurster, A. L., Duncan, D. D., Soliman, T. M., and Hedrick, S. M. (1994) A transcriptional silencer controls the developmental expression of the CD4 gene. EMBO J. 13, 3570–3579.

    PubMed  CAS  Google Scholar 

  10. Eden, S. and Cedar, H. (1994) Role of DNA methylation in the regulation of transcription. Curr. Opin. Genet. Dev. 4, 255–259.

    Article  PubMed  CAS  Google Scholar 

  11. Gross, D. S. and Garrard, W. T. (1988) Nuclease hypersensitive sites in chromatin. Ann. Rev. Biochem. 57, 159–197.

    Article  PubMed  CAS  Google Scholar 

  12. Cook, P. R. (1973) Hypothesis on differentiation and the inheritance of gene superstructure. Nature 245, 23–25.

    Article  PubMed  CAS  Google Scholar 

  13. Grosveld, F. and Kollias, G. (1992) Transgenic Animals. ( London, Academic Press).

    Google Scholar 

  14. Palmiter, R. D. and Brinster, R. L. (1986) Germline transformation of mice. Ann. Rev. Genet. 20, 465–499.

    Article  PubMed  CAS  Google Scholar 

  15. Dobie, K., Mehtali, M., McClenaghan, M., and Lathe, R. (1997) Variegated gene expression in mice. Trends Genet. 13, 127–130.

    Article  PubMed  CAS  Google Scholar 

  16. Milot, E., Fraser, P., and Grosveld, F. (1996) Position effects and genetic disease. Trends Genet. 12, 123–126.

    Article  PubMed  CAS  Google Scholar 

  17. Dobzhansky, T. (1936) Position effects on genes. Biol. Rev. 11, 364–434.

    Article  Google Scholar 

  18. Lewis, E. B. (1950) The phenomenon of position effect. Adv. Genet. 3, 73–115.

    Article  PubMed  CAS  Google Scholar 

  19. Sturtevant, A. H. (1925) The effects of unequal cross-over at the Bar-locus in Drosophila. Genetics 10, 117–147.

    PubMed  CAS  Google Scholar 

  20. Grosveld, F., van Assendelft, G. B., Greaves, D. R., and Kollias, G. (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975–985.

    Article  PubMed  CAS  Google Scholar 

  21. Greaves, D. R., Wilson, F., Lang, G., and Kioussis, D. (1989) Human CD2 3’-flanking sequences confer high-level T-cell specific position independent gene expression in transgenic mice. Cell 56, 979.

    Article  PubMed  CAS  Google Scholar 

  22. Bonifer, C., Vidal, M., Grosveld, F., and Sippel, A. S. (1990) Tissue specific and position independent expression of complete gene domain for chicken lysozyme in transgenic mice. EMBO J. 9, 2843–2848.

    PubMed  CAS  Google Scholar 

  23. Carson, S., and Wiles, M. V. (1993) Far upstream regions of class II MHC Ea are necessary for position-independent, copy-dependent expression of Ea transgene. Nucleic Acids Res. 21, 2065–2072.

    Article  PubMed  CAS  Google Scholar 

  24. Dale, T. C., Krnacik, M. J., Schmidhauser, C., Yang, C. L., Bissell, M. J., and Rosen, J. M. (1992) High-level expression of the rat whey acidic protein gene is mediated by elements in the promoter and 3’ untranslated region. Mol. Cell Biol. 12, 905–914.

    PubMed  CAS  Google Scholar 

  25. Diaz, P., Cado, D., and Winoto, A. (1994) A Locus Control Region in the T cell receptor alpha/ delta locus. Immunity 1, 207–217.

    Article  PubMed  CAS  Google Scholar 

  26. Palmiter, R. D., Sandgren, E. P., Koeller, D. M., and Brinster, R. L. (1993) Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice. Mol. Cell. Biol. 13, 5266–5275.

    PubMed  CAS  Google Scholar 

  27. Reitman, M., Lee, E., Westphal, H., and Felsenfeld, G. (1990) Site-independent expression of the chicken beta A-globin gene in transgenic mice. Nature 348, 749–752.

    Article  PubMed  CAS  Google Scholar 

  28. Schedl, A., Montoliu, L., Kelsey, G., and Schutz, G. (1993) A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362, 258–261.

    Article  PubMed  CAS  Google Scholar 

  29. Strauss, W. M., Dausman, J., Beard, C., Johnson, C., Lawrence, J. B., and Jaenisch, R. (1993) Germ line transmission of a yeast artificial chromosome spanning the murine alpha 1(I) collagen locus. Science 259, 1904–1907.

    Article  PubMed  CAS  Google Scholar 

  30. Talbot, D., Descombes, P., and Schibler, U. (1994) The 5’ flanking region of the rat LAP (C/EBP beta) gene can direct high-level, position-independent, copy number-dependent expression in multiple tissues in transgenic mice. Nucleic Acids Res. 22, 756–766.

    Article  PubMed  CAS  Google Scholar 

  31. Whitelaw, C. B., Harris, S., McClenaghan, M., Simons, J. P., and Clark, A. J. (1992) Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. Biochem. J. 286, 31–39.

    PubMed  CAS  Google Scholar 

  32. Davis, M. M. and Bjorkman, P. J. (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–401.

    Article  PubMed  CAS  Google Scholar 

  33. Adkins, B. Mueller, C., Okada, C. Y., Reichert, R., Weissman, I. L., and Spangrude, G. J. (1987) Early events in T-cell maturation. Ann. Rev. Immunol. 5 325–365.

    Google Scholar 

  34. Blackman, M., Kappler, J., and Marrack, P. (1990) The role of the T cell receptor in positive and negative selection of developing T cells. Science 248, 1335–1341.

    Article  PubMed  CAS  Google Scholar 

  35. Kappler, J. W., Roehm, N., and Marrack, P. C. (1987) T cell tolerance by clonal elimination in the thymus. Cell 149, 273–280.

    Article  Google Scholar 

  36. Ritter, M. A. and Crispe, I. N. (1992) The thymus in focus. Book IRL Press 34–36.

    Google Scholar 

  37. Driscoll, P. C., Cyster, J. G., Campbell, I. D., and Williams, A. (1991) Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature 353, 762–765.

    Article  PubMed  CAS  Google Scholar 

  38. Killeen, N., Stuart, S. G., and Littman, D. R. (1992) Development and function of T cells in mice with a disrupted CD2 gene. EMBO J. 11, 4329–4336.

    PubMed  CAS  Google Scholar 

  39. Lang, G., Wotton, D., Owen, M. J., Sewell, W. A., Brown, M. H., Mason, D. Y., Crumpton, M. J., and Kioussis, D. (1988) The structure of the human CD2 gene and its expression in transgenic mice. EMBO J. 7, 1675–1682.

    Google Scholar 

  40. Lang, G., Mamalaki, C., Greenberg, D., Yannoutsos, N., and Kioussis, D. (1991) Deletion analysis of the human CD2 gene locus control region in transgenic mice. Nucleic Acids Res. 19, 5851–5856.

    Article  PubMed  CAS  Google Scholar 

  41. Lake, R. A. and Wotton, D. (1990) A 3’ transcriptional enhancer regulates tissue-specific expression of the human CD2 gene. EMBO J. 9, 3129–3136.

    PubMed  CAS  Google Scholar 

  42. Allshire, R. C., Javerzat, J.-P., Redhead, N. J., and Cranston, G. (1994) Position Effect Variegation at fission yeast centromeres. Cell 76, 157–169.

    Article  PubMed  CAS  Google Scholar 

  43. Karpen, G. H. (1994) Position-effect variegation and the new biology of heterochromatin. Curr. Opin. Genet. Dey. 4, 281–291.

    Article  CAS  Google Scholar 

  44. Singh, P. B., Miller, J. R., Pearce, J., Kothary, R., Burton, R. D., Paro, R., James, T. C., and Gaunt, S. J. (1991) A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res. 19, 789–794.

    Google Scholar 

  45. Henikoff, S. (1992) Position effect and related phenomena. Curr. Opin. Genet. Dey. 2, 907–912.

    Article  CAS  Google Scholar 

  46. Henikoff, S. (1990) Position-effect variegation after 60 years. Trends Genet. 12, 422–426.

    Article  Google Scholar 

  47. Festenstein, R. Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M., and Kioussis, D. (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271 1123–1125.

    Google Scholar 

  48. Elliott, J., Festenstein, R., Tolaini, M., and Kioussis, D. (1995) Random activation ofa transgene under the control ofa hybrid hCD2 locus control region/Ig enhancer regulatory element. EMBO J. 14, 575–584.

    PubMed  CAS  Google Scholar 

  49. Weintraub, H. (1988) Formation of stable transcription complexes as assayed by analysis of individual templates. Proc. Natl. Acad. Sci. USA 85, 5819–5823.

    Article  PubMed  CAS  Google Scholar 

  50. Moon, A. M. and Ley, T. J. (1991) Functional properties of the beta-globin locus control region in K562 erythroleukemia cells. Blood 77, 2272–2284.

    PubMed  CAS  Google Scholar 

  51. Walters, M. C., Fiering, S., Eidemiller, J., Magis, W., Groudine, M., and Martin, D. I. K. (1995) Enhancers increase the probability but not the level of gene expression. Proc. Natl. Acad. Sci. USA 92, 7125–7129.

    Article  PubMed  CAS  Google Scholar 

  52. Wijgerde, M., Grosveld, F., and Fraser, P. (1995) Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209–213.

    Article  CAS  Google Scholar 

  53. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres, reversible repression of Pol II transcription. Cell 63, 751–762.

    Article  PubMed  CAS  Google Scholar 

  54. Karpen, G. H. and Spradling, A. C. (1990) Reduced DNA polytenization ofa minichromosome region undergoing position-effect variegation in Drosophila. Cell 63, 97–107.

    Article  PubMed  CAS  Google Scholar 

  55. Wakimoto, B. T. and Hearn, M. G. (1990) The effects of chromosome rearrangement on the expression of heterochromosomal genes in Chromosome 2L in melanogaster, D. Genetics 125, 141–154.

    PubMed  CAS  Google Scholar 

  56. Locke, J., Kotarski, M. A., and Tartof, K. D. (1988) Dosage-dependent modifiers ofpositional effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120, 181–198.

    PubMed  CAS  Google Scholar 

  57. Aparicio, O. M., Billington, B. L., and Gottschling, D. E. (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279–1287.

    Article  PubMed  CAS  Google Scholar 

  58. Aparicio, O. M. and Gottschling, D. E. (1994) Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 8, 1133–1146.

    Article  PubMed  CAS  Google Scholar 

  59. Eissenberg, J. C., Morris, G. D., Reuter, G., and Hartnett, T. (1992) The heterochromatinassociated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131, 345–352.

    PubMed  CAS  Google Scholar 

  60. Renauld, H. Aparicio, O. M., Zierath, P. D., Billington, B. L., Chhablani, S. K., and Gottschling, D. E. (1993) Silent domains are assembled continuosly from the telomere and are defined by promoter distance and strength, and by SIRS dosage. Genes Dev. 7 1133–1145.

    Google Scholar 

  61. Wustmann, G., Szidonya, J., Taubert, H., and Reuter, G. (1989) The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol. Gen. Genet. 217, 520–527.

    Google Scholar 

  62. Reuter, G. and Spierer, P. (1992) Position effect variegation and chromatin proteins. Bioessays 14, 605–612.

    Article  PubMed  CAS  Google Scholar 

  63. Epstein, H., James, T. C., and Singh, P. B. (1992) Cloning and expression of Drosophila HP1 homologs from a mealybug, Planococcus citri. J. Cell. Sci. 101, 463–474.

    PubMed  CAS  Google Scholar 

  64. Hamvas, R. M., Reik, W., Gaunt, S. J., Brown, S. D., and Singh, P. B. (1992) Mapping of a mouse homolog of a heterochromatin protein gene the X chromosome. Mamm. Genome 2, 72–75.

    Article  PubMed  CAS  Google Scholar 

  65. Saunders, W. S., Chue, C., Goebl, M., Craig, C., Clark, R. F., Powers, J. A., Eissenberg, J. C., Elgin, S. C., Rothfield, N. F., and Earnshaw, W. C. (1993) Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J. Cell. Sci. 104, 573–582.

    PubMed  Google Scholar 

  66. Paro, R. and Hogness, D. S. (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl. Acad. Sci. USA 88, 263–267.

    Google Scholar 

  67. Chang, Y. L., King, B. O., M. O’Connor, Mazo, A., and Huang, D. H. (1995) Functional reconstruction of trans regulation of the Ultrabithorax promoter by the products of two antagonistic genes, trithorax and Polycomb. Mol. Cell. Biol. 15, 6601–6612.

    PubMed  CAS  Google Scholar 

  68. Simon, J., Chiang, A., Bender, W., Shimell, M. J., and O’Connor, M. (1993) Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev. Biol. 158, 131–144.

    Article  PubMed  CAS  Google Scholar 

  69. Chan, C. S., Rastelli, L., and Pirrotta, V. (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 13, 2553–2564.

    PubMed  CAS  Google Scholar 

  70. Platero, J. S., Hartnett, T., and Eissenberg, J. C. (1995) Functional analysis of the chromo domain of HP1. EMBO J. 14, 3977–3986.

    PubMed  CAS  Google Scholar 

  71. Paro, R. (1990) Imprinting a determined state into the chromatin of Drosophila. Trends Genet. 6, 416–421.

    Article  PubMed  CAS  Google Scholar 

  72. Muller, J., Gaunt, S., and Lawrence, P. A. (1995) Function of the Polycomb protein is conserved in mice and flies. Development 121, 2847–2852.

    PubMed  CAS  Google Scholar 

  73. Simon, J. (1995) Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr. Opin. Cell. Biol. 7, 376–385.

    Article  PubMed  CAS  Google Scholar 

  74. Chinwalla, V., Jane, E. P., and Harte, P. J. (1995) The Drosophila trithorax protein binds to specific chromosomal sites and is co-localized with Polycomb at many sites. EMBO J. 14, 2056–2065.

    PubMed  CAS  Google Scholar 

  75. Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B., and Crabtree, G. R. (1993) BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174.

    Article  PubMed  CAS  Google Scholar 

  76. Mbangkollo, D., Burnett, R., McCabe, N., Thirman, M., Gill, H., Yu, H., Rowley, J. D., and Diaz, M. O. (1995) The human MLL gene: nucleotide sequence, homology to the Drosophila trx zinc-finger domain, and alternative splicing. DNA Cell. Biol. 14, 475–483.

    Google Scholar 

  77. Randazzo, F. M., Khavari, P., Crabtree, G., Tamkun, J., and Rossant, J. (1994) Brg l: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev. Biol. 161, 229–242.

    Article  PubMed  Google Scholar 

  78. Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A., and Korsmeyer, S. J. (1995) Altered Hox expression and segmental identity in M11-mutant mice. Nature 378, 505–508.

    Google Scholar 

  79. Kayne, P., Ung-Jin, K., Mullen, J. R., Yoshizaki, F., and Grunstein, M. (1988) Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55, 27–39.

    CAS  Google Scholar 

  80. Hebbes, T. R., Thorne, A. W., and Crane-Robinson, C. (1994) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402.

    Google Scholar 

  81. Jeppesen, P. and Turner, B. M. (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281–289.

    Article  PubMed  CAS  Google Scholar 

  82. Brownell, J. E. and Allis, C. D. (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA 92, 6364–6368.

    Article  PubMed  CAS  Google Scholar 

  83. Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y., and Allis, C. D. (1996) Tetrahymena histone acetyltransferase A: a homologue to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851.

    Article  PubMed  CAS  Google Scholar 

  84. Kleff, S., Andrulis, E. D., Anderson, C. W., and Sternglanz, R. (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270, 24,674–24, 677.

    Google Scholar 

  85. Fanti, L., Berloco, M., and Pimpinelli, S. (1994) Carnitine suppression of position-effect variegation in Drosophila melanogaster. Mol. Gen. Genet. 244, 588–595.

    Article  PubMed  CAS  Google Scholar 

  86. Taunton, J., Hassig, C. A., and Schreiber, S. L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411.

    Article  PubMed  CAS  Google Scholar 

  87. Wolffe, A. P. and Pruss, D. (1996) Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84, 817–819.

    Article  PubMed  CAS  Google Scholar 

  88. Alland, L., Muhle, R., Hou Jr, H., Potes, J., Chin, L., Schreiber-Agus, N., and DePinho, R. A. (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49–55.

    Article  PubMed  CAS  Google Scholar 

  89. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L., and Ayer, D. E. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347.

    Article  PubMed  CAS  Google Scholar 

  90. Heinzel, T., Lavinsky, R. M., M. T-M., Soderstrom, M., Laherty, C. D., Torchia, J., Yang, W.-M., Brard, G., Ngo, S. D., Davie, J. R., Seto, E., Eisenman, R. N., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48.

    CAS  Google Scholar 

  91. Kadosh, D. and Struhl, K. (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371.

    Article  PubMed  CAS  Google Scholar 

  92. Laherty, C. D., Yang, W.-M., Sun, J.-M., Davie, J. R., Seto, E., and Eisenman, R. N. (1997) Histone deacetylases associated with mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–3 56.

    Google Scholar 

  93. Nagy, L., Kao, H.-Y., Chakravarti, D., Lin, R. J., Hassig, C. A., Ayer, D. E., Schreiber, S. L., and Evans, R. M. (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380.

    Article  PubMed  CAS  Google Scholar 

  94. Singh, P. B. (1994) Molecular mechanisms of cellular determination: their relation to chromatin structure. J. Cell. Sci. 107, 2653–2668.

    PubMed  CAS  Google Scholar 

  95. Bartolomei, M. S., Webber, A. L., Brunkow, M. E., and Tilghman, S. M. (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dey. 7, 1663–1673.

    Article  CAS  Google Scholar 

  96. John, R. M. and Surani, M. A. (1996) Imprinted genes and regulation of gene expression by epigenetic inheritance. Curr. Opin. Cell. Biol. 8, 348–353.

    Article  PubMed  CAS  Google Scholar 

  97. Engelkamp, D. and van Heyningen, V. (1996) Transcription factors in disease. Curr. Opin. Genet. Dey. 6, 334–342.

    Article  CAS  Google Scholar 

  98. Chan, S. H., Cosgrove, D., Waltzinger, C., Benoist, C., and Mathis, D. (1993) Another view of the selective model of thymocyte selection. Cell 73, 225–236.

    Article  PubMed  CAS  Google Scholar 

  99. Corbella, P. Moskophidis, D., Spanopoulou, E., Mamalaki, C., Tolaini, M., Itano, A., Lans, D., Baltimore, D., Robey, E., and Kioussis, D. (1994) Functional commitment to helper T cell lineage precedes positive selection and is independent of T cell receptor MHC specificity. Immunity 1 269–276.

    Google Scholar 

  100. Davis, C. B., Killeen, N., Crooks, M. E. C., Raulet, D., and Littman, D. R. (1993) Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. Cell 73, 237–247.

    Article  PubMed  CAS  Google Scholar 

  101. Itano, A., Kioussis, D., and Robey, E. (1994) Stochastic component to development of class I major histocompatibility complex-specific T cells. Proc. Natl. Acad. Sci. USA 91, 220–224.

    Article  PubMed  CAS  Google Scholar 

  102. Robey, E., Chang, D., Itano, A., Cado, D., Alexander, H., Lans, D., Weinmaster, G., and Salmon, P. (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kioussis, D., Festenstein, R. (1998). Chromatin Structure and Lineage Determination. In: Monroe, J.G., Rothenberg, E.V. (eds) Molecular Biology of B-Cell and T-Cell Development. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2778-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2778-4_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-065-6

  • Online ISBN: 978-1-4757-2778-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics