Role of the Transcription Factor BSAP (Pax-5) in B-Cell Development

  • Meinrad Busslinger
  • Stephen L. Nutt
Part of the Contemporary Immunology book series (CONTIM)


The development of B-lymphocytes from hematopoietic stem cells is a highly ordered and coordinated process that results in antigen-responsive B-cells with individual immunoglobulin receptors. This developmental pathway can be dissected into several stages according to the differential expression of specific cell surface markers, the distinctive growth factor requirements, and the sequential rearrangement of immunoglobulin heavy (IgH) and light (IgL) chain genes (reviewed in ref. 1). To date, two different classification schemes are in use that rely on the analysis of different sets of cell surface markers (Fig. 1). Hardy et al. (2,3) have employed the differential expression of CD43, heat stable antigen (HSA), BP-1, IgM, and IgD to divide B-cell development into seven distinct stages (A—F) (Fig. 1, bottom). Instead, Rolink et al. (4) have ordered the different B-lymphocyte subpopulations in the bone marrow by cell size and expression of c-kit,CD25, and the surrogate light chains VpreB and λ5 (Fig. 1, top). These analyses demonstrated that the earliest B-cell progenitors are large cycling cells and are in the process of DH-to-JH rearrangement of the IgH locus and can be cloned in vitro on stromal cells in the presence of IL-7. An important checkpoint in early B-cell development ensures the positive selection of those late pro-B- (pre-Bll-) cells that have completed a productive VH-to-DHJH rearrangement, and thus transiently express the µ protein as part of the preB-cell receptor complex (Fig. 1). Signaling through this pre-B-cell receptor promotes allelic exclusion at the IgH locus, triggers proliferative cell expansion and induces differentiation to small pre-B-cells, which undergo IgL (κ or λ) gene rearrangements. Immature B-cells subsequently emerge that synthesize the IgM form of the B-cell receptor and become subjected to selection by antigen. The expression of homing receptors enables these cells to populate peripheral lymphoid organs where they participate as mature B-cells in immunological reactions and undergo terminal differentiation to immunoglobulin-secreting plasma cells (reviewed in ref. 5).


Plasma Cell Fetal Liver Paired Domain Monoallelic Expression Recombination Signal Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rolink, A. and Melchers, F. (1991) Molecular and cellular origins of B lymphocyte diversity. Cell 66, 1081–1094.PubMedCrossRefGoogle Scholar
  2. 2.
    Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D., and Kayakawa, K. (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225.PubMedCrossRefGoogle Scholar
  3. 3.
    The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178 951–960.Google Scholar
  4. 4.
    Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., and Melchers, F. (1994) IL-2 receptor a chain (CD25,TAC) expression defines a crucial stage in pre-B cell development. Int. Immunol. 6, 1257–1264.PubMedCrossRefGoogle Scholar
  5. 5.
    Melchers, F., Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., Ghia, P., and Andersson, J. (1995) Positive and negative selection events during B lymphopoiesis. Curr. Opin. Immunol. 7, 214–227.Google Scholar
  6. 6.
    Hagman, J. and Grosschedl, R. (1994) Regulation of gene expression at early stages of B-cell differentiation. Curr. Opin. Immunol. 6, 222–230.PubMedCrossRefGoogle Scholar
  7. 7.
    Busslinger, M. and Urbânek, P. (1995) The role of BSAP (Pax-5) in B cell development. Curr. Opin. Genet. Dey. 5, 595–601.CrossRefGoogle Scholar
  8. 8.
    Clevers, H. C. and Grosschedl, R. (1996) Transcriptional control of lymphoid development: lessons from gene targeting. Immunol. Today 17, 336–343.PubMedCrossRefGoogle Scholar
  9. 9.
    Singh, H. (1996) Gene targeting reveals a hierarchy of transcription factors regulating specification of lymphoid cell fates. Curr. Opin. Immunol. 8, 160–165.PubMedCrossRefGoogle Scholar
  10. 10.
    Barberis, A., Superti-Furga, G., Vitelli, L., Kemler, I., and Busslinger, M. (1989) Developmental and tissue-specific regulation of a novel transcription factor of the sea urchin. Genes Dey. 3, 663–675.Google Scholar
  11. 11.
    Barberis, A., Widenhorn, K., Vitelli, L., and Busslinger, M. (1990) A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dey. 4, 849–859.Google Scholar
  12. 12.
    Adams, B., Dörfler, P., Aguzzi, A., Kozmik, Z., Urbânek, P., Maurer-Fogy. I., and Busslinger, M. (1992) Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dey. 6, 1589–1607.Google Scholar
  13. 13.
    Bopp, D., Burri, M., Baumgartner, S., Frigerio, G., and Noll, M. (1986) Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47, 1033–1040.CrossRefGoogle Scholar
  14. 14.
    Treisman, J., Harris, E., and Desplan, C. (1991) The paired box encodes a second DNA-binding domain in the Paired homeo domain protein. Genes Dey. 5, 594–604.CrossRefGoogle Scholar
  15. 15.
    Czerny, T., Bouchard, M., Kozmik, Z, and Busslinger, M. (1997) The characterization of novel Pax genes of the sea urchin and Drosophila reveal an ancient evolutionary origin of the Pax2/5/8 family. Mech. Dey. 67, 179–192.Google Scholar
  16. 16.
    Weaver, D. and Baltimore, D. (1987) B lymphocyte-specific protein binding near an immunoglobulin x-chain gene J segment. Proc. Natl. Acad. Sci. USA 84, 1516–1520.PubMedCrossRefGoogle Scholar
  17. 17.
    Waters, S. J., Saikh, K. U., and Stavnezer, J. (1989) A B-cell-specific nuclear protein that binds to DNA sites 5’ to immunoglobulin Sa tandem repeats is regulated during differentiation. Mol. Cell. Biol. 9, 5594–5601.PubMedGoogle Scholar
  18. 18.
    Liao, F., Giannini, S. L., and Birshtein, B. K. (1992) A nuclear DNA-binding protein expressed during early stages of B-cell differentiation interacts with diverse segments within and 3’ of the IgH chain gene cluster. J. Immunol. 148, 2909–2917.PubMedGoogle Scholar
  19. 19.
    Xu, L., Kim, M. G., and Marcu, K. B. (1992) Properties of B cell stage specific and ubiquitous nuclear factors binding to immunoglobulin heavy chain gene switch regions. Int. Immunol. 4, 875–887.PubMedCrossRefGoogle Scholar
  20. 20.
    Okabe, T., Watanabe, T., and Kudo, A. (1992) A pre-B- and B cell-specific DNA-binding protein, EBB-1, which binds to the promoter of the V rB1 gene. Eur. J. Immunol. 22, 37–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Czerny, T., Schaffner, G., and Busslinger, M. (1993) DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dey. 7, 2048–2061.CrossRefGoogle Scholar
  22. 22.
    Liao, F., Birshtein, B. K., Busslinger, M., and Rothman, P. (1994) The transcription factor BSAP (NF-HB) is essential for immunoglobulin germ-line transcription. J. Immunol. 152, 2904–2911.PubMedGoogle Scholar
  23. 23.
    Tian, J., Okabe, T., Miyazaki, T., Takeshita, S., and Kudo, A. (1997) Pax-5 is identical to EBB-1 /KLP and binds to the VpreB and X5 promoters as well as the KI and KII sites upstream of the Jic genes. Eur. J. Immunol. 27, 750–755.PubMedCrossRefGoogle Scholar
  24. 24.
    Dörfler, P. and Busslinger, M. (1996) C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J. 15, 1971–1982.PubMedGoogle Scholar
  25. 25.
    Chalepakis, G., Fritsch, R., Fickenscher, H., Deutsch, U., Goulding, M., and Gruss, P. (1991) The molecular basis of the undulated/Pax-1 mutation. Cell 66, 873–884.PubMedCrossRefGoogle Scholar
  26. 26.
    Xu, W., Rould, M. A., Jun, S., Desplan, C., and Pabo, C. O. (1995) Crystal structure of the paired domain-DNA complex at 2.5 resolution reveals structural basis for Pax developmental mutations. Cell 80, 639–650.PubMedCrossRefGoogle Scholar
  27. 27.
    Borst, J., Jacobs, H., and Brouns, G. (1996) Composition and function of T-cell receptor and B-cell receptor complexes on precursor lymphocytes. Curr. Opin. Immunol. 8, 181–190.PubMedCrossRefGoogle Scholar
  28. 28.
    Rolink, A., ten Boekel, E., Melchers, F., Fearon, D. T., Krop, I., and Andersson, J. (1996) A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194.PubMedCrossRefGoogle Scholar
  29. 29.
    Li, Y.-S., Wasserman, R., Hayakawa, K., and Hardy, R. R. (1996) Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535.PubMedCrossRefGoogle Scholar
  30. 30.
    Shaffer, A. L., Peng, A., and Schlissel, M. S. (1997) In vivo occupancy of the x light chain enhancers in primary pro-and pre-B cells: a model of x locus activation. Immunity 6, 131–143.PubMedCrossRefGoogle Scholar
  31. 31.
    Wakatsuki, Y. W., Neurath, M. F., Max, E. E., and Strober, W. (1994) The B cell-specific transcription factor BSAP regulates B cell proliferation. J. Exp. Med. 179, 1099–1108.PubMedCrossRefGoogle Scholar
  32. 32.
    Harada, H., Kawano, M. M., Huang, N., Harada, Y., Iwato, K., Tanabe, 0., Tanaka, H., Sakai, A., Asaoku, H., and Kuramoto, A. (1993) Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 81, 2658–2663.Google Scholar
  33. 33.
    Pellat-Deceunynck, C., Bataille, R., Robillard, N., Harousseau, J.-L., Rapp, M.-J., JugeMorineau, N., Wijdenes, J., and Amiot, M. (1994) Expression of CD28 and CD40 in human myeloma cells: a comparative study wit normal plasma cells. Blood 84, 2597–2603.PubMedGoogle Scholar
  34. 34.
    Mahmoud, M. S., Huang, N., Nobuyoshi, M., Lisukov, I. A., Tanaka, H., and Kawano, M. M. (1996) Altered expression of Pax-5 gene in human myeloma cells. Blood 87, 4311–4315.PubMedGoogle Scholar
  35. 35.
    Andersson, T., Neurath, M. F., Grant, P. A., and Pettersson, S. (1996) Physiological activation of the IgH 3’ enhancer in B lineage cells is not blocked by Pax-5. Eur. J. Immunol. 26, 2499–2507.Google Scholar
  36. 36.
    Stüber, E., Neurath, M., Calderhead, D., Fell, H. P., and Strober, W. (1995) Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2, 507–521.PubMedCrossRefGoogle Scholar
  37. 37.
    Busslinger, M., Klix, N., Pfeffer, P., Graninger, P. G., and Kozmik, Z. (1996) Deregulation of PAX-5 by translocation of the Eµ enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc. Natl. Acad. Sci. USA 93, 6129–6134.PubMedCrossRefGoogle Scholar
  38. 38.
    Urbânek, P., Wang, Z.-Q., Fetka, I., Wagner, E. F., and Busslinger, M. (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking PaxS/BSAP. Cell 79, 901–912.PubMedCrossRefGoogle Scholar
  39. 39.
    Urbânek, P., Fetka, I., Meister, M. H., and Busslinger, M. (1997) Cooperation ofPax2 and Pax5 in midbrain and cerebellum development. Proc. Natl. Acad. Sci. USA 94, 5703–5708.PubMedCrossRefGoogle Scholar
  40. 40.
    Nutt, S. L., Urbânek, P., Rolink, A., and Busslinger, M. (1997) Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dey. 11, 476–491.Google Scholar
  41. 41.
    Wang, J.-H., Nichogiannopoulou, A., Wu, L., Sun, L., Sharpe, A. H., Bigby, M., and Georgopoulos, K. (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549.PubMedCrossRefGoogle Scholar
  42. 42.
    Bain, G., Maandag, E. C. R., Izon, D. J., Amsen, D., Kruisbeek, A. M., Weintraub, B. C., Krop, I., Schlissel, M. S., Feeney, A. J., van Roon, M., van der Valk. M., to Riele, H. P. J., Berns, A., and Murre, C. (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892.Google Scholar
  43. 43.
    Zhuang, Y., Soriano, P., and Weintraub, H. (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884.PubMedCrossRefGoogle Scholar
  44. 44.
    Lin, H. and Grosschedl, R. (1995) Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267.PubMedCrossRefGoogle Scholar
  45. 45.
    Schlissel, M., Voronova, A., and Baltimore, D. (1991) Helix-loop-helix transcription factor E47 activates germ-line immunoglobulin heavy-chain gene transcription and rearrangement in a pre-T cell line. Genes Dev. 5, 1367–1376.PubMedCrossRefGoogle Scholar
  46. 46.
    Ehlich, A., Schaal, S., Gu, H., Kitamura, D., Müller, W., and Rajewsky, K. (1993) Immunoglobulin heavy and light chain genes rearrange independently at early stages ofB cell development. Cell 72, 695–704.Google Scholar
  47. 47.
    Gong, S. and Nussenzweig, M. C. 1996. Regulation of an early developmental checkpoint in the B cell pathway by Igß. Science 272, 411–414.PubMedCrossRefGoogle Scholar
  48. 48.
    Kitamura, D., Kudo, A., Schaal, S., Müller, W., Melchers, F., and Rajewsky, K. (1992) A critical role of X5 protein in B cell development. Cell 69, 823–831.PubMedCrossRefGoogle Scholar
  49. 49.
    Kitamura, D., Roes, J., Kühn, R., and Rajewsky, K. (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin µ chain gene. Nature 350, 423–426.PubMedCrossRefGoogle Scholar
  50. 50.
    Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877.PubMedCrossRefGoogle Scholar
  51. 51.
    Shinkai, Y., Rathbun, G., Lam, K.-P., Oltz, E. M., Stewart, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A. M., and Alt, F. W. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867.PubMedCrossRefGoogle Scholar
  52. 52.
    Papavasiliou, F., Misulovin, Z., Suh, H., and Nussenzweig, M. C. (1995) The role of Igß in precursor B cell transition and allelic exclusion. Science 268, 408–411.PubMedCrossRefGoogle Scholar
  53. 53.
    Spanopoulou, E., Roman, C. A. J., Corcoran, L. M., Schlissel, M. S., Silver, D. P., Nemazee, D., Nussenzweig, M. C., Shinton, S. A., Hardy, R. R., and Baltimore, D. (1994) Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-l-deficient mice. Genes Dey. 8, 1030–1042.Google Scholar
  54. 54.
    Young, F., Ardman, B., Shinkai, Y., Landford, R., Blackwell, T. K., Mendelsohn, M., Rolink, A., Melchers, F., and Alt, F. W. (1994) Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation. Genes Dey. 8, 1043–1057.CrossRefGoogle Scholar
  55. 55.
    Grosschedl, R., Weaver, D., Baltimore, D., and Costantini, F. (1984) Introduction of a µ immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibodies. Cell 38, 647–658.PubMedCrossRefGoogle Scholar
  56. 56.
    Sanchez, M., Misulovin, Z., Burkhardt, A. L., Mahajan, S., Costa, T., Franke, R., Bolen, J. B., and Nussenzweig, M. (1993) Signal transduction by immunoglobulin is mediated through Iga and Igß. J. Exp. Med. 178, 1049–1055.PubMedCrossRefGoogle Scholar
  57. 57.
    Schlissel, M. S. and Baltimore, D. (1989) Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline kappa gene transcription. Cell 58, 1001–1007.PubMedCrossRefGoogle Scholar
  58. 58.
    Yancopoulos, G. D. and Alt, F. W. (1985) Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271–281.PubMedCrossRefGoogle Scholar
  59. 59.
    Van Ness, B. G., Weigert, M., Coleclough, C., Mather, E. L., Kelley, D. E., and Perry, R. P. (1981) Transcription of the unrearranged mouse CK locus: sequence of the initation region and comparison of activity with a rearranged VK CK gene. Cell 27, 593–602.PubMedCrossRefGoogle Scholar
  60. 60.
    Martin, D. J. and Van Ness, B. G. (1990) Initiation and processing of two kappa immunoglobulin germ line transcripts in mouse B cells. Mol. Cell. Biol. 10, 1950–1958.PubMedGoogle Scholar
  61. 61.
    Leclercq, L., Butkeraitis, P., and Reth, M. (1989) A novel germ-line JK transcript starting immediately upstream of JKl. Nucleic Acids Res. 17, 6809–6819.PubMedCrossRefGoogle Scholar
  62. 62.
    Lauster, R., Reynaud, C.-A., Mârtensson, I.-L., Peter, A., Bucchini, D., Jami, J., and Weill, J.-C. (1993) Promoter, enhancer and silencer elements regulate rearrangement of an immunoglobulin transgene. EMBO J. 12, 4615–4623.PubMedGoogle Scholar
  63. 63.
    Ferradini, L., Gu, H., De Smet, A., Rajewsky, K., Reynaud, C.-A., and Weill, J.-C. (1996) Rearrangement-enhancing element upstream of the mouse immunoglobulin kappa chain J cluster. Science 271, 1416–1420.Google Scholar
  64. 64.
    Kozmik, Z., Wang, S., Dörfler, P., Adams, B., and Busslinger, M. (1992) The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol. Cell. Biol. 12, 2662–2672.PubMedGoogle Scholar
  65. 65.
    Fitzsimmons, D., Hodsdon, W., Wheat, W., Maira, S.-M., Wasylyk, B., and Hagman, J. (1996) Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary cornplexes on a B-cell-specific promoter. Genes Dey. 10, 2198–2211.CrossRefGoogle Scholar
  66. 66.
    Zwollo, P. and Desiderio, S. (1994) Specific recognition of the blk promoter by the B-lymphoid transcription factor B-cell-specific activator protein. J. Biol. Chem. 269, 15,310–15, 317.Google Scholar
  67. 67.
    Reimold, A. M., Ronath, P. D., Li, Y.-S., Hardy, R. R., David, C. S., Strominger, J. L., and Glimcher, L. H. (1996) Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393–401.PubMedCrossRefGoogle Scholar
  68. 68.
    Nutt, S. L., Morrison, A., Dörfler, P., Rolink, A., and Busslinger, M. (1998) Identification of BSAP (Pax-5) target genes in early B-cell development by loss-and gain-of-function experiments. EMBO J.,in press.Google Scholar
  69. 69.
    Tedder, T. F., Inaoki, M., and Sato, S. (1997) The CD19—CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6, 107–118.PubMedCrossRefGoogle Scholar
  70. 70.
    Carter, R. H. and Fearon, D. T. (1992) CD19, Lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107.PubMedCrossRefGoogle Scholar
  71. 71.
    Engel, P., Zhou, L.-J., Ord, D. C., Sato, S., Koller, B., and Tedder, T. F. (1995) Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Rickert, R. C., Rajewsky, K., and Roes, J. (1995) Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19—deficient mice. Nature 376, 352–355.PubMedCrossRefGoogle Scholar
  73. 73.
    Hagman, J. and Grosschedl, R. (1992) An inhibitory carboxyl-terminal domain of Ets-1 and Ets-2 mediates differential binding of ETS family factors to promoter sequences of the mb-1 gene. Proc. Natl. Acad. Sci. USA 89 8889–8893.Google Scholar
  74. 74.
    Hagman, J., Travis, A., and Grosschedl, R. (1991) A novel lineage-specific nuclear factor regulates mb-1 gene transcription at the early stages of B cell differentiation. EMBO J. 10, 3409–3417.PubMedGoogle Scholar
  75. 75.
    Travis, A., Hagman, J., and Grosschedl, R. (1991) Heterogeneously initiated transcription from the pre-B- and B-cell-specific mb-1 promoter: analysis of the requirement for upstream factor-binding sites and initiation site sequences. Mol. Cell. Biol. 11, 5756–5766.PubMedGoogle Scholar
  76. 76.
    Torres, P. M., Flaswinkel, H., Reth, M., and Rajewsky, K. (1996) Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 272, 1804–1808.PubMedCrossRefGoogle Scholar
  77. 77.
    Zimmerman, K. A., Yancopoulos, G. D., Collum, R. G., Smith, R. K., Kohl, N. E., Denis, K. A., Nau, M. M., Witte, O. N., Toran-Allerand, D., Gee, C. E., Minna, J. D., and Alt, F. W. (1986) Differential expression of myc family genes during murine development. Nature 319, 780–783.PubMedCrossRefGoogle Scholar
  78. 78.
    Morrow, M. A., Lee, G., Gillis, S., Yancopoulos, G. D., and Alt, F. W. (1992) Interleukin-7 induces N-myc and c-myc expression in normal precursor B lymphocytes. Genes Dey. 6, 61–70.CrossRefGoogle Scholar
  79. 79.
    Malynn, B. A., Demengeot, J., Stewart, W., Charron, J., and Alt, F. W. (1995) Generation of normal lymphocytes dereived from N-myc-deficient embryonic stem cells. Int. Immunol. 7, 1637–1647.PubMedCrossRefGoogle Scholar
  80. 80.
    Stavnezer, J. (1996) Immunoglobulin class switching. Curr. Opin. Immunol. 8, 199–205.PubMedCrossRefGoogle Scholar
  81. 81.
    Rothman, P., Li, S.C., Gorham, B., Glimcher, L., Alt, F., and Boothby, M. (1991) Identification of a conserved lipopolysaccharide-plus-interleukin-4-responsive element located at the promoter of the germ line e transcript. Mol. Cell. Biol. 11, 5551–5561.PubMedGoogle Scholar
  82. 82.
    Delphin, S. and Stavnezer, J. (1995) Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline e promoter: regulation by NF-IL-4, a C/ EBP family member and NF-xB/p50. J. Exp. Med. 181, 181–192.PubMedCrossRefGoogle Scholar
  83. 83.
    Kim, J., Reeves, R., Rothman, P., and Boothby, M. (1995) The non-histone chromosomal protein HMG-I(Y) contributes to the repression of the immunoglobulin heavy chain germ-line s RNA promoter. Eur. J. Immunol. 25, 798–808.PubMedCrossRefGoogle Scholar
  84. 84.
    Thienes, C., De Monte, L., Monticelli, S., Busslinger, M., Gould, H. J., and Vercelli, D. (1997) The transcription factor B cell-specific activator protein (BSAP) enhances both IL-4- and CD40-mediated activation of the humans germline promoter. J. Immunol., 158, 5874–5882.PubMedGoogle Scholar
  85. 85.
    Niles, M. J., Matsuuchi, L., and Koshland, M. E. (1995) Polymer IgM assembly and secretion in lymphoid and nonlymphoid cell lines: Evidence that J chain is required for pentamer IgM synthesis. Proc. Natl. Acad. Sci. USA 92, 2884–2888.CrossRefGoogle Scholar
  86. 86.
    Blackman, M. A., Tigges, M. A., Minie, M. E., and Koshland, M. E. (1986) A model system for peptide hormone action in differentiation: interleukin 2 induces a B lymphoma to transcribe the J chain gene. Cell 47, 609–617.CrossRefGoogle Scholar
  87. 87.
    Lansford, R. D., McFadden, H. J., Siu, S. T., Cox, J. S., Cann, G. M., and Koshland, M. E. (1992) A promoter element that exerts positive and negative control of the interleukin 2-responsive J-chain gene. Proc. Natl. Acad. Sci. USA 89, 5966–5970.Google Scholar
  88. 88.
    Shin, M. K. and Koshland, M. E. (1993) Ets-related protein PU.1 regulates expression of the immunoglobulin J-chain gene through a novel Ets-binding element. Genes Dey. 7, 2006–2015.CrossRefGoogle Scholar
  89. 89.
    Rinkenberger, J. L.,Wallin, J. J., Johnson, K. W., and Koshland, M. E. (1996) An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 5, 377–386.Google Scholar
  90. 90.
    Kulseth, M. A. and Rogne, S. (1994) Cloning and characterization of the bovine immunoglobulin J chain cDNA and its promoter region. DNA Cell Biol. 13, 37–42.Google Scholar
  91. 91.
    Madisen, L. and Groudine, M. (1994) Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt’s lymphoma cells. Genes Dey. 8, 2212–2226.CrossRefGoogle Scholar
  92. 92.
    Dariavach, P., Williams, G. T., Campbell, K., Pettersson, S., and Neuberger, M. S. (1991) The mouse IgH 3’-enhancer. Eur. J. Immunol. 21, 1499–1504.PubMedCrossRefGoogle Scholar
  93. 93.
    Arulampalam, V., Grant, P. A., Samuelsson, A., Lendahl, U., and Pettersson, S. (1994) Lipopolysaccharide-dependent transactivation of the temporally regulated immunoglobulin heavy chain 3’ enhancer. Eur. J. Immunol. 24, 1671–1677.PubMedCrossRefGoogle Scholar
  94. 94.
    Lieberson, R., Ong, J., Shi, X., and Eckhardt, L. A. (1995) Immunoglobulin gene transcription ceases upon deletion of a distant enhancer. EMBO J. 14, 6229–6238.PubMedGoogle Scholar
  95. 95.
    Cogné, M., Lansford, R., Bottaro, A., Zhang, J., Gorman, J., Young, F., Cheng, H.-L., and Alt, F. W. (1994) A class switch control region at the 3’ end of the immunoglobulin heavy chain locus. Cell 77, 737–747.PubMedCrossRefGoogle Scholar
  96. 96.
    Michaelson, J. S., Singh, M., and Birshtein, B. K. (1996) B cell lineage-specific activator protein (BSAP): a player at multiple stages of B cell development. J. Immunol. 156, 2349–2351.PubMedGoogle Scholar
  97. 97.
    Neurath, M. F., Stüber, E. R., and Strober, W. (1995) BSAP: a key regulator of B-cell development and differentiation. Immunol. Today 16, 564–569.PubMedCrossRefGoogle Scholar
  98. 98.
    Neurath, M. F., Strober, W., and Wakatsuki, Y. (1994) The murine Ig 3’a enhancer is a target site with repressor function for the B cell lineage-specific transcription factor BSAP (HF-HB, Sa-BP). J. Immunol. 153, 730–742.PubMedGoogle Scholar
  99. 99.
    Singh, M. and Birshtein, B. K. (1993) NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3’a enhancer at early stages of B cell differentiation. Mol. Cell. Biol. 13, 3611–3622.PubMedGoogle Scholar
  100. 100.
    Pettersson, S., Cook, G. P., Brüggemann, M., Williams, G. T., and Neuberger, M. S. (1990) A second B cell-specific enhancer 3’ of the immunoglobulin heavy-chain locus. Nature 344, 165–168.PubMedCrossRefGoogle Scholar
  101. 101.
    Neurath, M. F., Max, E. E., and Strober, W. (1995) Pax5 regulates the murine immunoglobulin 3’a enhancer by affecting binding of NF-aP, a protein that controls heavy chain transcription. Proc. Natl. Acad. Sci. USA 92, 5336–5340.PubMedCrossRefGoogle Scholar
  102. 102.
    Singh, M. and Birshtein, B. K. (1996) Concerted repression of an immunoglobulin heavy-chain enhancer, 3’aE(hs1,2). Proc. Natl. Acad. Sci. USA 93, 4392–4397.PubMedCrossRefGoogle Scholar
  103. 103.
    Michaelson, J. S., Singh, M., Snapper, C. M., Sha, W. C., Baltimore, D., and Birshtein, B. K. (1996) Regulation of 3’ IgH enhancers by a common set of factors including KB-binding proteins. J. Immunol. 156, 2828–2839.Google Scholar
  104. 104.
    Meyer, K. B., and Neuberger, M. S. (1989) The immunoglobulin K locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO J. 8, 1959–1964.PubMedGoogle Scholar
  105. 105.
    Meyer, K. B., Sharpe, M. J., Surani, M. A., and Neuberger, M. S. (1990) The importance of the 3’-enhancer in immunoglobulin x gene expression. Nucleic Acids Res. 18, 5609–5615.PubMedCrossRefGoogle Scholar
  106. 106.
    Pongubala, J. M. R. and Atchison, M. L. (1991) Functional characterization of the developmentally controlled immunoglobulin kappa 3’ enhancer: regulation by Id, a repressor of helix-loophelix transcription factors. Mol. Cell. Biol. 11, 1040–1047.PubMedGoogle Scholar
  107. 107.
    Betz, A. G., Milstein, C., Gonzalez-Fernandez, A., Pannell, R., Larson, T., and Neuberger, M. S. (1994) Elements regulating somatic hypermutation of an immunoglobulin x gene: a critical role for the enhancer/matrix attachment region. Cell 77, 239–248.PubMedCrossRefGoogle Scholar
  108. 108.
    Hiramatsu, R., Akagi, K., Matsuoka, M., Sakumi, K., Nakamura, H., Kingsbury, L., David, C., R.Hardy, R., Yamamura, H.-I., and Sakano, H. (1995) The 3’ enhancer region determines the B/T specificity and pro-B/pre-B specificity of immunoglobulin VK JK joining. Cell 83, 1113–1123.PubMedCrossRefGoogle Scholar
  109. 109.
    Gorman, J. R., van der Stoep, N., Monroe, R., Cogne, M., Davidson, L., and Alt, F. W. (1996) The Igx 3’ enhancer influences the ratio of Igx versus Igo, B lymphocytes. Immunity 5, 241–252.PubMedCrossRefGoogle Scholar
  110. 110.
    Eisenbeis, C. F., Singh, H., and Storb, U. (1995) Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dey. 9, 1377–1387.CrossRefGoogle Scholar
  111. 111.
    Judde, J.-G. and E.Max, E. (1992) Characterization of the human immunoglobulin kappa gene 3’ enhancer: functional importance of three motifs that demonstrate B-cell-specific in vivo footprints. Mol. Cell. Biol. 12, 5206–5216.PubMedGoogle Scholar
  112. 112.
    Pongubala, J. M.R., Nagulapalli, S., Klemsz, M. J., McKercher, S. R., Maki, R. A., and Atchison, M. L. (1992) PU.1 recruits a second nuclear factor to a site important for immunoglobulin x 3’ enhancer activity. Mol. Cell. Biol. 12, 368–378.PubMedGoogle Scholar
  113. 113.
    Pongubala, J. M. R. and M.Atchison, L. (1995) Activating transcription factor 1 and cyclic AMP response element modulator can modulate the activity of the immunoglobulin x 3’ enhancer. J. Biol. Chem. 270, 10304–10313.PubMedCrossRefGoogle Scholar
  114. 114.
    Park, K. and Atchison, M. L. (1991) Isolation of a candidate repressor/activator, NF-El (YY1, S), that binds to the immunoglobulin x 3’ enhancer and the immunoglobulin heavy-chain µE 1 site. Proc. Natl. Acad. Sci. USA 88, 9804–9808.PubMedCrossRefGoogle Scholar
  115. 115.
    Roque, M. C., Smith, P. A., and Blasquez, V. C. (1996) A developmentally modulated chromatin structure at the mouse immunoglobulin k 3’ enhancer. Mol. Cell. Biol. 16, 3138–3155.PubMedGoogle Scholar
  116. 116.
    Müller, B., Stappert, H., and Reth, M. (1990) A physical map and analysis of the murine Cic-RS region show the presence of a conserved element. Eur. J. Immunol. 20, 1409–1411.PubMedCrossRefGoogle Scholar
  117. 117.
    Davis, R. J., D’ Cruz, C. M., Lovell, M. A., Biegel, J. A., and Barr, F. G. (1994) Fusion ofPAX7 to FKHR by the variant t(1;13)(p36;g14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54, 2869–2872.PubMedGoogle Scholar
  118. 118.
    Galili, N., Davis, R. J., Fredericks, W. J., Mukhopadhyay, S., Rauscher III, F. J., Emanuel, B. S., Rovera, G., and Barr, F. G. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nature Genet. 5, 230–235.Google Scholar
  119. 119.
    Kozmik, Z., Sure, U., Rüedi, D., Busslinger, M., and Aguzzi, A. (1995) Deregulated expression of PAX-5 in medulloblastoma. Proc. Natl. Acad. Sci. USA 92, 5709–5713.PubMedCrossRefGoogle Scholar
  120. 120.
    Stapleton, P., Weith, A., Urbanek, P., Kozmik, Z., and Busslinger, M. (1993) Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nature Genet. 3, 292–298.Google Scholar
  121. 121.
    Offit, K., Parsa, N. Z., Filippa, D., Jhanwar, S. C., and Chaganti, R. S. K. (1992) t(9;14)(p 13;g32) denotes a subset of low-grade non-Hodgkin’s lymphoma with plasmacytoid differentiation. Blood 80, 2594–2599.Google Scholar
  122. 122.
    Ohno, H., Furukawa, T., Fukuhara, S., Zong, S. Q., Kamesaki, H., Shows, T. B., Le Beau, M. M., McKeithan, T. W., Kawakami, T., and Honjo, T. (1990) Molecular analysis of a chromosomal translocation, t(9;14)(p 13;g32), in a diffuse large-cell lymphoma cell line expressing the Ki-1 antigen. Proc. Natl. Acad. Sci. USA 87, 628–632.PubMedCrossRefGoogle Scholar
  123. 123.
    lida, S., Rao, P. H., Nallasivam, P., Hibshoosh, H., Butler, M., Louie, D. C., Dyomin, V, Ohno, H., Chaganti, R. S. K., and Dalla-Favera, R. (1996) The t(9;14)(p13;g32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 88, 4110–4117.Google Scholar
  124. 124.
    Morrison, A., Jäger, U., Chott, A., and Busslinger, M. (1998) Deregulated PAX-5 transcription from a translocated IgH promotes in marginal zone lymphoma. Mol. Cell. Biol., submitted.Google Scholar
  125. 125.
    Strachan, T. and Read, A. P. (1994) PAX genes. Curr. Opin. Genet. Dey. 4, 427–438.CrossRefGoogle Scholar
  126. 126.
    Nutt, S. L., Vambrie, S., Steinlein, P., Weith, A., and Busslinger, M. (1997) Monoallelic expression of Pax-5 (BSAP) is responsible for the haploinsufficient phenotype of heterozygous Pax-5 mutant mice. Nature, submitted.Google Scholar
  127. 127.
    Vorechovsky, I., Koskinen, S., Paganelli, R., Smith, E. C. I., Busslinger, M., and Hammarström, L. (1995) The PAX5 gene: a linkage and mutation analysis in candidate human primary immunodeficiencies. Immunogenet. 42, 149–152.Google Scholar
  128. 128.
    Czerny, T. and Busslinger, M. (1995) DNA-binding and transactivation properties of Pax-6, three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol. Cell. Biol. 15, 2858–2871.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Meinrad Busslinger
  • Stephen L. Nutt

There are no affiliations available

Personalised recommendations