The Ikaros Gene Family in Hemopoietic Differentiation

  • Nicole Avitahl
  • Aliki Nichogiannopoulou
  • Katia Georgopoulos
  • Susan Winandy
Part of the Contemporary Immunology book series (CONTIM)


The molecular events that enable the progeny of a hemopoietic stem cell (HSC) to become committed to the erythroid, myeloid, or lymphoid lineages are still to be defined. Differentiated hemopoietic lineages originate from common multipotent progenitor cells that undergo a series of divisions and commitment steps, giving rise to precursor cells with increasingly restricted differentiation potentials. The functional and phenotypic changes that occur as a cell differentiates are determined by changes in gene expression. These changes are directed by cell signaling events, which induce a cascade of regulatory factors that ultimately affect the transcriptional program of the cell. Therefore, an important key to understanding hemopoiesis is identifying the transcription factors that regulate the transition through stages of differentiation. The Ikaros family of transcription factors has been shown to play an integral role in the determination and differentiation of the lymphoid lineage. This chapter will discuss the founder of this family of transcription factors, Ikaros, as well as its more lymphoid-restricted homolog, Aiolos, and what is known to date about the roles of these proteins in hemopoiesis and lymphocyte differentiation.


Hemopoietic Stem Cell Dominant Negative Lymphoid Lineage Thymocyte Development Fetal Thymus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Georgopoulos, K., Moore, D. D., and Derfler, B. (1992) Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258, 808–812.PubMedCrossRefGoogle Scholar
  2. 2.
    Molnar, A. and Georgopoulos, K. (1994) The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol. Cell. Biol. 14, 8292–8303.PubMedGoogle Scholar
  3. 3.
    Molnar, A., Wu, P., Largespada, D. A., Vortkamp, A., Scherer, S., Copeland, N. G., Jenkins, N. A., Bruns, G., and Georgopoulos, K. (1996) The Ikaros gene encodes a family of lymphocyte-restricted zinc finger DNA-binding proteins, highly conserved in human and mouse. J. Immunol. 156, 585–592.PubMedGoogle Scholar
  4. 4.
    Sun, L., Liu, A., and Georgopoulos, K. (1996) Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBOJ. 15, 5358–5369.Google Scholar
  5. 5.
    Hahm, K., Ernst, P., Lo, K., Kim, G. S., Turck, C., and Smale, S. T. (1994) The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol. 14, 7111–7123.PubMedGoogle Scholar
  6. 6.
    Morgan, B., Sun, L., Avitahl, N., Andrikopoulos, K., Ikeda, T., Gonzales, E., Wu, P., Neben, S., and Georgopoulos, K. (1997) Aiolos: a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013.PubMedCrossRefGoogle Scholar
  7. 7.
    Okada, S., Nakauchi, H., Nagayoshi, K., Nishikawa, S., Nishikawa, S., Miura, Y., and Suda, T. (1991) Enrichment and characterization of murine hematopoietic stem cells that express the c-kit molecule. Blood 78, 1706–1712.PubMedGoogle Scholar
  8. 8.
    Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988) Purification and characterization of mouse hematopoietic stem cells. Science. 241, 58–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang, J.-H., Nichogiannopoulou, A., Wu, L., Sun, L., Sharpe, A. H., Bigby, M., and Georgopoulos, K. (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros-null mutation. Immunity 5, 537–549.PubMedCrossRefGoogle Scholar
  10. 10.
    Hardy, R. R., Carmack, C. E., Li, Y. S., and Hayakawa, K. (1994) Distinctive developmental origins and specificities of murine CDS+ B cells. Immunol. Rev. 137, 91–118.PubMedCrossRefGoogle Scholar
  11. 11.
    Hardy, R. R. and Hayakawa, K. (1991) A developmental switch in B lymphopoiesis. Proc. Natl. Acad. Sci. USA 88, 11550–11554.PubMedCrossRefGoogle Scholar
  12. 12.
    Melchers, F., Strasser, A., Bauer, S. R., Kudo, A., Thalmann, P., and Rolink, A. (1991) B cell development in fetal liver. Adv. Exp. Med. Biol. 292, 201–205.PubMedCrossRefGoogle Scholar
  13. 13.
    Ardavin, C., Wu, L., Li, C., and Shortman, K. (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763.PubMedCrossRefGoogle Scholar
  14. 14.
    Shortman, K and Wu, L. (1996) Early T lymphocyte progenitors. Annu. Rev. Immunol. 14, 29–47.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu, L., Vremec, D., Ardavin, K., Winkel, G., Süss, I. L., Maraskovsky, E., Cook, W., and Shortman, K. (1995) Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation. Eur. J. Immunol. 25, 418–425.PubMedCrossRefGoogle Scholar
  16. 16.
    Ikuta, K., Kina, T., MacNeil, I., Uchida, N., Peault, B., Chien, Y. H., and Weissman, I. L. (1990) A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell. 62, 863–874.PubMedCrossRefGoogle Scholar
  17. 17.
    Ikuta, K. and Weissman, I. L. (1991) The junctional modifications of a T cell receptor y chain are determined at the level of thymic precursors. J. Exp. Med. 174, 1279–1282.PubMedCrossRefGoogle Scholar
  18. 18.
    Ito, K., Bonneville, M., Takagaki, Y., Nakanishi, N., Kanagawa, O., Krecko, E. G., and Tonegawa, S. (1989) Different yS T-cell receptors are expressed on thymocytes at different stages of development. Proc. Natl. Acad. Sci. USA 86, 631–635.PubMedCrossRefGoogle Scholar
  19. 19.
    Itohara, S., Farr, A. G., Lafaille, J. J., Bonneville, M., Takagaki, Y., Haas, W., and Tonegawa, S. (1990) Homing of a yS thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343, 754–757.PubMedCrossRefGoogle Scholar
  20. 20.
    Georgopoulos, K., Bigby, M., Wang, J.-H., Molnar, A., Wu, P., Winandy, S., and Sharpe, A. (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156.PubMedCrossRefGoogle Scholar
  21. 21.
    Winandy, S., Wu, P., and Georgopoulos, K. (1995) A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83, 289–299.PubMedCrossRefGoogle Scholar
  22. 22.
    Chan, S. H., Cosgrove, D., Waltzinger, C., Benoist, C., and Mathis, D. (1993) Another view of the selective model of thymocyte selection. Cell 73, 225–236.PubMedCrossRefGoogle Scholar
  23. 23.
    Ashton-Rickardt, P. G., van Kaer, L., Schumacher, T. N. P., Ploegh, H. L., and Tonegawa, S. (1993) Peptide contributes to the specificity of positive selection of CD8+ T cells in the thymus. Cell 73, 1041–1049.PubMedCrossRefGoogle Scholar
  24. 24.
    Hogquist, K., Jameson, S., Heath, W., Howard, J., Bevan, M., and Carbone, F. (1994) T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27.PubMedCrossRefGoogle Scholar
  25. 25.
    Janeway, C. A., Jr. (1994) Thymic selection: two pathways to life and two to death. Immunity 1, 3–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Takahama, Y., Suzuki, H., Katz, K. S., Grusby, M. J., and Singer, A. (1994) Positive selection of CD4+ T cells by TCR ligation without aggregation even in the absence of MHC. Nature 371, 67–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Vasquez, N. J., Kane, L. P., and Hedrick, S. M. (1994) Intracellular signals that mediate thymic negative selection. Immunity 1, 45–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Cavenee, W. K., Dryja, T. P., Phillips, R. A., Benedict, W. F., Godbout, R., Gallie, B. L., Murphree, A. L., Strong, L. C., and White, R. L. (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784.PubMedCrossRefGoogle Scholar
  29. 29.
    Ichii, S., Horii, A., Nakatsuru, S., Furayama, J., Utsunomiya, S., and Nakamura, Y. (1992) Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP). Hum. Mol. Gen. 1, 387–390.PubMedCrossRefGoogle Scholar
  30. 30.
    Meltzer, S. J., Yin, J., Huang, Y., McDaniel, T. K., Newkirk, C., Iseri, O., Vogelstein, B., and Resau, J. H. (1991) Reduction to homozygosity involving p53 in esophageal cancers demonstrated by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 88, 4976–4980.PubMedCrossRefGoogle Scholar
  31. 31.
    Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877.PubMedCrossRefGoogle Scholar
  32. 32.
    Mombaerts, P., Clarke, A. R., Rudnicki, M. A., Iacomini, J., Itohara, S., Lafaille, J. J., Wang, L., Ichikawa, Y., Jaenisch, R., Hooper, M. L., and Tonegawa, S. (1992) Mutations in T-cell antigen receptor genes a and ß block thymocyte development at different stages. Nature 360, 225–231.PubMedCrossRefGoogle Scholar
  33. 33.
    Antica, M., Wu, L., Shortman, K., and Scollay, R. (1994) Thymic stem cells in the mouse bone marrow. Blood 84, 111–117.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Nicole Avitahl
  • Aliki Nichogiannopoulou
  • Katia Georgopoulos
  • Susan Winandy

There are no affiliations available

Personalised recommendations