Placental Blood

Immunology, Transplantation, and Gene Therapy
  • Anne F. Eder
  • Leslie E. Silberstein
Part of the Contemporary Immunology book series (CONTIM)


Placental blood is an alternative to bone marrow for hematopoietic transplantation, and repositories of cryopreserved placental blood will be a valuable adjunct to bone marrow donor registries (1–4). Although thousands have benefitted from bone marrow transplantation since its introduction 25 year ago, only one third of patients requiring this treatment have an HLA-genotypically matched sibling (5). For those remaining, the probability of finding an HLA-identical unrelated match in a database of more than 2.6 million volunteers registered with the National Marrow Donor Program is influenced by race. The registry identifies HLA-A, -B, and -DR identical matches for approx 70% of Caucasian patients, but only for approx 34% of African American patients (6). This discrepancy is because of under representation of African Americans in the registry and increased HLA heterogeneity among African Americans compared to Caucasians. Unfortunately, even if an appropriate match is identified, some donors in the registry refuse or are medically unable to undergo the donation procedure, which requires hospitalization and anesthesia. Finally, the three to six months required to obtain bone marrow through the registry (NBMDR, personal communication) is problematic for some acutely ill patients with advancing disease or ensuing secondary complications.


Cord Blood Umbilical Cord Blood Unrelated Donor Hematopoietic Progenitor Cell Human Umbilical Cord Blood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Broxmeyer, H. E. (1995) Questions to be answered regarding umbilical cord blood hematopoietic stem and progenitor cells and their use in transplantation. Transfusion 35, 694–702.PubMedCrossRefGoogle Scholar
  2. 2.
    Flomenberg, N. and Keever, C. A. (1992) Cord blood transplants: potential utility and potential limitations. Bone Marrow Transplant 10, 115–120.PubMedGoogle Scholar
  3. 3.
    Kurtzberg, J. (1996) Umbilical cord blood: a novel alternative source of hematopoietic stem cells for bone marrow transplantation. J. Hematother. 5, 95, 96.Google Scholar
  4. 4.
    Rubinstein, P., Rosenfield, R. E., Adamson, J. W., and Stevens, C. E. (1993) Stored placental blood for unrelated bone marrow reconstitution. Blood 81, 1679–1690.PubMedGoogle Scholar
  5. 5.
    Beatty, P. G., Kollman, C., and Howe, C. W. S. (1995) Unrelated-donor marrow transplants: The experience of the National Marrow Donor Program, in Clinical Transplants 1995 ( Cecka and Terasaki, eds.), UCLA Tissue Typing Laboratory, Los Angeles, CA, pp. 271–277.Google Scholar
  6. 6.
    Beatty, P. D., Mori, M., and Milford, E. (1995) Impact of racial genetic polymorphism on the probability of finding an HLA-matched donor. Transplantation 60, 778–783.PubMedGoogle Scholar
  7. 7.
    Lu, L., Shen, R. N., and Broxmeyer, H. E. (1996) Stem cells from bone marrow, umbilical cord blood and peripheral blood for clinical application: current status and future application. Crit. Rev. Oncol.-Hematol. 22, 61–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Kurtzberg, J., Laughlin, M., Graham, M L, et al. (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N. Engl. J. Med. 335, 157–166.PubMedCrossRefGoogle Scholar
  9. 9.
    Wagner, J. E., Kernan, N. A., Steinbuch, M., Broxmeyer, H. E., and Gluckman, E. (1995) Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and nonmalignant disease. Lancet 346, 214–219.PubMedCrossRefGoogle Scholar
  10. 10.
    Wagner, J. E., Rosenthal, J., Sweetman, R., et al. (1996) Successful transplantation of HLAmatched and HLA-mismatched umbilical cord blood from unrelated donors: Analysis of engraftment and acute graft-versus-host disease. Blood 88, 795–802.PubMedGoogle Scholar
  11. 11.
    Vilmer, E., Sterkers, G., Rahimy, C., et al. (1992) HLA-mismatched cord blood transplantation in a patient with advanced leukemia. Transplantation 53, 1155–1157.PubMedCrossRefGoogle Scholar
  12. 12.
    Gluckman, E., Broxmeyer, H. E., Auerbach, A. D., et al. (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling. N. Engl. J. Med. 321, 1174–1178.PubMedCrossRefGoogle Scholar
  13. 13.
    Bogdanic, V., Nemet, D., Kastelan, A., et al. (1993) Umbilical cord blood transplantation in a patient with Philadelphia chromosome-positive chronic myeloid leukemia. Transplantation 56, 477–479.PubMedCrossRefGoogle Scholar
  14. 14.
    Broxmeyer, H. E. and Cooper, S. (1997) High efficiency recovery of immature haematopoietic progenitor cells with extensive proliferative capacity from human cord blood cryopreserved for 10 years. Clin. Exp. Immunol. 107, 45–53.PubMedGoogle Scholar
  15. 15.
    Issaragrisil, S., Visuthisakchai, S., Suvatte, V., et al. (1995) Brief report: transplantation of cord-blood stem cells into a patient with severe thalassemia. N. Engl. J. Med. 332, 367–369.PubMedCrossRefGoogle Scholar
  16. 16.
    Kohli-Kumar, M., Shahidi, T., Broxmeyer, H. E., et al. (1993) Haemopoietic stem/progenitor cell transplant in Fanconi anaemia using HLA-matched sibling umbilical cord blood cells. Br. J. Haematol. 85, 419–422.PubMedCrossRefGoogle Scholar
  17. 17.
    Laporte, J.-P., Gorin, N.-C., Rubinstein, P., et al. (1996) Cord-blood transplantation from an unrelated donor in an adult with chronic myelogenous leukemia. N. Engl. J. Med. 335, 167–170.Google Scholar
  18. 18.
    Miniero, R., Busca, A., Roncarolo, M. G., et al. (1995) HLA-haploidentical umbilical cord blood stem cell transplantation in a patient with advanced leukemia: clinical outcome and analysis of hematopoietic recovery. Bone Marrow Transplant 16, 229–240.PubMedGoogle Scholar
  19. 19.
    Vowels, M. R., Lam-Po-Tang, R., Berdoukas, V., et al. (1993) Brief report: correction of X-linked lymphoproliferative disease by transplantation of cord-blood stem cells. N. Engl. J. Med. 329, 1623–1625.PubMedCrossRefGoogle Scholar
  20. 20.
    Wagner, J. E., Broxmeyer, H. E., Byrd, R. L., et al. (1992) Transplantation of umbilical cord blood after myeloablative therapy: Analysis of engraftment. Blood 79, 1874–1881.PubMedGoogle Scholar
  21. 21.
    Kohn, D. B., Weinberg, K. I., Nolta, J. A., et al. (1995) Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nature Med. 1, 1017–1023.PubMedCrossRefGoogle Scholar
  22. 22.
    Kohn, D. B. (1997) Gene therapy for hematopoietic and lymphoid disorders. Clin. Exp. Immunol. 107, 54–57.PubMedGoogle Scholar
  23. 23.
    Migliaccio, G., Baiocchi, M., Hamel, N., et al. (1996) Circulating progenitor cells in human ontogenesis: Response to growth factors and replating potential. J. Hematother. 5, 161–170.PubMedCrossRefGoogle Scholar
  24. 24.
    Sutherland, H. J., Eaves, C. J., Eaves, A. C., Dragouwska, W., and Lansdorp, P. (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74, 1563–1570.Google Scholar
  25. 25.
    Krause, D. S., Fackler, M. J., Civin, C. I., and May, W. S. (1996) CD34: structure, biology and clinical utility. Blood 87, 1–13.PubMedGoogle Scholar
  26. 26.
    Vormoor, J. Lapidot, T., Pflumio, F., et al. (1994) Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 83 2489–2497.Google Scholar
  27. 27.
    Zanjani, E. D., Silva, M. R. G., and Flake, A. W. (1994) Retention and multilineage expression of human hematopoietic stem cells in human-sheep chimera. Blood Cells 20, 331–340.PubMedGoogle Scholar
  28. 28.
    Larochelle, A., Vormoor, J., Hanenberg, H., et al. (1996) Identification of primitive human hematopoietic capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Med. 2, 1329–1337Google Scholar
  29. 29.
    Mavroudis, D., Read, E., Cottler-Fox, M., et al. (1996) CD34+ cell dose predicts survival, posttransplant morbidity and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood 88, 3223–3229.PubMedGoogle Scholar
  30. 30.
    Spitzer, G., Verma, D. S., Zander, A., et al. (1980) The myeloid progenitor cell-its value in predicting hematopoietic recovery after autologous bone marrow transplantation. Blood 55, 317–323.PubMedGoogle Scholar
  31. 31.
    Broxmeyer, H. E., Douglas, G. W., Hangoc, G., et al. (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc. Natl. Acad. Sci. USA 86, 3828–3832.PubMedCrossRefGoogle Scholar
  32. 32.
    Broxmeyer, H. E., Hangoc, G., Cooper, S., et al. (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc. Natl. Acad. Sci. USA 89, 4109–4113.PubMedCrossRefGoogle Scholar
  33. 33.
    Cardoso, A. A., Li, M. L., Batard, P., et al. (1993) Release from quiescence of CD34+CD38human umbilical cord blood cells reveals their potentiality to engraft adults. Proc. Natl. Acad. Sci. USA 90, 8707–8711.PubMedCrossRefGoogle Scholar
  34. 34.
    Hows, J. M., Bradley, B. A., Marsh, J. C., et al. (1992) Growth of human umbilical-cord blood in long-term haematopoietic cultures. Lancet 340, 73–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Pettengell, R., Luft, T., Henschler, R., et al. (1994) Direct comparison by limiting dilution analysis of long-term culture-initiating cells in human bone marrow, umbilical cord blood and blood stem cells. Blood 84, 3653–3659.PubMedGoogle Scholar
  36. 36.
    Ma, D. D. F., Varga, D. E., and Biggs, J. C. (1987) Donor marrow progenitors (CFU-Mix, BFU-E and CFU-GM) and hematopoietic engraftment following HLA matched sibling bone marrow transplantation. Leukaemia Res. 11, 141–147.CrossRefGoogle Scholar
  37. 37.
    Douay, L., Gorin, N. C., Jean-Yves, M., et al. (1986) Recovery of CFU-GM from cryopreserved marrow and in vivo evaluation after autologous bone marrow transplantation are predictive of engraftment. Exper. Hematol. 14, 358–365.Google Scholar
  38. 38.
    Kivniburgh, D. and Russell, N. H. (1993) Comparative study of CD34-positive cells and subpopulations of human umbilical cord blood and bone marrow. Bone Marrow Transplant 12, 489–494.Google Scholar
  39. 39.
    Lu, L., Xiao, M., Shen, R. N., Grigsby, S., and Broxmeyer, H. E. (1993) Enrichment, characterization an responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential. Blood 81, 41–48.PubMedGoogle Scholar
  40. 40.
    Lansdorp, P. M., Sutherland, H. J., and Eaves, C. J. (1990) Selective expression of CD45 isoforms on functional subpopulations of CD34+ hematopoietic cells from human bone marrow. J. Exp. Med. 172, 363–366.PubMedCrossRefGoogle Scholar
  41. 41.
    Mayani, H. and Lansdorp, P. M. (1994) Thyl expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood 83,2410–2417.Google Scholar
  42. 42.
    Lansdorp, P. M., Droagowska, W., and Mayani, H. (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J. Exp. Med. 178, 787–791.PubMedCrossRefGoogle Scholar
  43. 43.
    Traycoff, C. M., Abboud, M. R., Laver, J., et al. (1994) Evaluation of the in vitro behavior of phenotypically defined populations of umbilical cord blood hematopoietic progenitor cells. Exp. Hematol. 22, 215–222.PubMedGoogle Scholar
  44. 44.
    Carow, C. E., Hangoc, G., and Broxmeyer, H. E. (1993) Human multipotential progenitor cells (CFU-GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma. Blood 81, 942–949.PubMedGoogle Scholar
  45. 45.
    Traycoff, C. M., Abboud, M. R., Laver, J., et al. (1994) Human umbilical cord blood hematopoietic progenitor cells: Are they the same as their adult bone marrow counterparts? Blood Cells 20, 382–391.Google Scholar
  46. 46.
    Goldstein, S. (1990) Replicative senescence: the human fibroblast comes of age. Science 249, 1129.PubMedCrossRefGoogle Scholar
  47. 47.
    Vaziri, H., Dragowska, W., Allsopp, R. C., et al. (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA 91, 9857–9860.PubMedCrossRefGoogle Scholar
  48. 48.
    Chao, N. J. and Schlegel, P. G. (1995) Prevention and treatment of graft-versus-host disease. Bone Marrow Transplant NY Acad. Sci. 770, 130–141.Google Scholar
  49. 49.
    Antin, J. H. and Ferrara, J. L. M. (1992) Cytokine dysregulation and acute graft-versus-host disease. Blood 80, 2964–2968.PubMedGoogle Scholar
  50. 50.
    Champlin, R. (1990) T cell depletion to prevent graft-versus-host disease after bone marrow transplantation. Hematol. Oncol. Clin. North Amer. 4, 687–698.Google Scholar
  51. 51.
    Auerbach, A. D., Liu, Q., Ghosh, R., Pollack, M. S., Douglas, G. W., and Broxmeyer, H. E. (1990) Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia. Transfusion 30, 682–687.PubMedCrossRefGoogle Scholar
  52. 52.
    Campbell, A. C., Waller, C., Wood, J., Aynsley-Green, A., and Yu, V. (1974) Lymphocyte subpopulations in the blood of newborn infants. Clin. Exp. Immunol. 18, 469–482.PubMedGoogle Scholar
  53. 53.
    Kato I. (1935) Leukocytes in infancy and childhood. J. Pediatr. 7, 7–15.CrossRefGoogle Scholar
  54. 54.
    Beck, R. and Lam-Po-Tang, P.R. (1994) Comparison of cord blood and adult blood lymphocyte normal ranges: a possible explanation for decreased severity of graft versus host disease after cord blood transplantation. Immunol. Cell. Biol. 72, 440–444.PubMedCrossRefGoogle Scholar
  55. 55.
    Erkeller-Yuksel, F. M., Deneys, V., Yuksel, B., et al. (1992) Age-related changes in human blood lymphocyte subpopulations. J. Pediatr. 120, 216–222.Google Scholar
  56. 56.
    Han, P. Hodge, G., Story, C., and Xu, X. (1995) Phenotypic analysis of functional T-lymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation. J. Haematol. 89 733–740.Google Scholar
  57. 57.
    Rabian-Herzog, C., Lesage, S., Gluckman, E., and Charron, D. (1993) Characterization of lymphocyte subpopulations in cord blood. J. Hematother. 2, 255–257.PubMedCrossRefGoogle Scholar
  58. 58.
    Motley, D., Meyer, M. P., King, R. A., and Naus, G. J. (1996) Determination of lymphocyte immunophenotypic values for normal full-term cord blood. Am. J. Clin. Pathol. 105, 38–43.PubMedGoogle Scholar
  59. 59.
    Keever, C. A., Abu-Hajir, M., Graf, W., et al. (1995) Characterization of the alloreactivity and anti-leukemia reactivity of cord blood mononuclear cells. Bone Marrow Transplant 15, 407–419.PubMedGoogle Scholar
  60. 60.
    Amlot, P. L., Tahami, F., Chinn, D., and Rawlings, E. (1996) Activation antigen expression on human T cells. I. Analysis by two-colour flow cytometry of umbilical cord blood, adult blood and lymphoid tissue. Clin. Exper. Immunol. 105, 176–182.CrossRefGoogle Scholar
  61. 61.
    Harris, D. T., Schumacher, M. J., LoCascio, J., et al. (1992) Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc. Natl. Acad. Sci. USA 89, 10,006–10, 010.Google Scholar
  62. 62.
    Clement, L. T. (1992) Isoforms of the CD45 common leukocyte antigen family: markers for human T-cell differentiation. J. Clin. Immunol. 12, 1–10.PubMedCrossRefGoogle Scholar
  63. 63.
    Morimoto, C., Letvin, N. L., Distasco, J. A., Aldrich, W. R., and Schlossman, S. F. (1985) The isolation and characterisation of the human suppressor inducer T cell subset. J. Immunol. 134, 1508–1513.PubMedGoogle Scholar
  64. 64.
    Morimoto, C., Rudd, C. E., Letvin, N. L., and Schlossman, S. F. (1987) A novel epitope of the LFA-1 antigen which can distinguish killer effector and suppressor cells in human CD8 cells. Nature 330, 479–482.PubMedCrossRefGoogle Scholar
  65. 65.
    Griffiths-Chu, S., Patterson, J. A. K., Berger, C. L., et al. (1984) Characterization of immature T cell subpopulations in neonatal blood. Blood 64, 296–300.PubMedGoogle Scholar
  66. 66.
    Kotylo, P. K., Baenzinger, J. C., Yoder, M. C., et al. (1990) Rapid analysis of lymphocyte subsets in cord blood. Am. J. Clin. Pathol. 93, 263–266.PubMedGoogle Scholar
  67. 67.
    Milosevits, J., Pocsik, E., Schmidt, B., et al. (1995) Immunophenotypic and functional characteristics of haemopoietic cells from human cord blood. Scand. J. Immunol. 42, 493–500.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee, B.-W., Yap, H.-K., Chew, F.-T., et al. (1996) Age-and sex-related changes in lymphocyte subpopulations of healthy Asian subjects: from birth to adulthood. Cytometry 26, 8–15.PubMedCrossRefGoogle Scholar
  69. 69.
    Lim, F. T., van Winsen, L., Willemze, R., et al. (1994) Influence of delivery on numbers of leukocytes, leukocyte subpopulations, and hematopoietic progenitor cells in human umbilical cord blood. Blood Cells 20, 547, 558.Google Scholar
  70. 70.
    Harris, D. T., LoCascio, J., and Besencon, F. J. (1994) Analysis of the alloreactive capacity of human umbilical cord blood: implications for graft-versus-host disease. Bone Marrow Transplant 14, 545–553.PubMedCrossRefGoogle Scholar
  71. 71.
    Risdon, G., Gaddy, J., and Broxmeyer, H. E. (1994) Allogeneic responses of human umbilical cord blood. Blood Cells 20, 566–572.PubMedGoogle Scholar
  72. 72.
    Risdon, G., Gaddy, J., Horie, M., and Broxmeyer, H. E. (1995) Alloantigen priming induces a state of unresponsiveness in human cord blood T cells. Proc. Natl. Acad. Sci. USA 92, 2413–2417.Google Scholar
  73. 73.
    Risdon, G., Gaddy, J., Stehman, F B, and Broxmeyer, H. E. (1994) Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell. Immunol. 154, 14–24.PubMedCrossRefGoogle Scholar
  74. 74.
    Roncarolo, M. G., Bigler, M., Martino, S., et al. (1996) Immune functions of cord blood cells before and after transplantation. J. Hematother. 5, 157–160.PubMedCrossRefGoogle Scholar
  75. 75.
    Deacock, S. J., Schwarer, A. P., Bridge, J., et al. (1992) Evidence that umbilical cord blood contains a higher frequency of HLA class II-specific alloreactive T cells than adult peripheral blood. A limiting dilution analysis. Transplantation 53, 1128–1134.PubMedCrossRefGoogle Scholar
  76. 76.
    Linch, D. C. and Brent, L. (1989) Can cord blood be used? Nature 340, 676.PubMedCrossRefGoogle Scholar
  77. 77.
    Ehlers, S. and Smith, K. A. (1991) Differentiation of T cell lymphokine gene expression: the in vitro acquisition of T cell memory. J. Exp. Med. 173, 25–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Lewis, D. B., Yu, C. C., Meyer, J., et al. (1991) Cellular and molecular mechanisms for reduced interleukin 4 and interferon-y production by neonatal T cells. J. Clin. Invest. 87 194–202.Google Scholar
  79. 79.
    Zola, H., Fusco, M., Macardle, P. J., et al. (1995) Expression of cytokine receptors by human cord blood lymphocytes: comparison with adult blood lymphocytes. Pediatr. Res. 38, 397–403.PubMedCrossRefGoogle Scholar
  80. 80.
    Saito, S., Morii, T., and Umekage, H. (1996) Expression of the interleukin-2 receptor gamma chain on cord blood mononuclear cells. Blood 87, 3344–3350.PubMedGoogle Scholar
  81. 81.
    Cicuttini, F. M., Martin, M., Petrie, H. T., and Boyd, A. W. (1993) A novel population of natural killer progenitor cells isolated from human umbilical cord blood. J. Immunol. 151, 29–37.PubMedGoogle Scholar
  82. 82.
    Gaddy, J., Risdon, G., and Broxmeyer, H. E. (1995) Cord blood natural killer cells are functionally and phenotypically immature but readily respond to interleukin-2 and interleukin-12. Interferon Cytokine Res. 15, 527–536.CrossRefGoogle Scholar
  83. 83.
    Webb, B. J., Bochan, M. R., Montel, A., et al. (1994) The lack of NK cytotoxicity associated with fresh HUCB may be due to the presence of soluble HLA in the serum. Cell. ImmunoL 159, 246–261.PubMedCrossRefGoogle Scholar
  84. 84.
    Hauch, M., Gazzola, M. V., Small, T., et al. (1990) Anti-leukemia potential of interleukin-2 activated natural killer cells after bone marrow transplantation for chronic myelogenous leukemia. Blood 75, 2250–2262.PubMedGoogle Scholar
  85. 85.
    Harris, D. T. (1995) In vitro and in vivo assessment of the graft-versus-leukemia activity of cord blood. Bone Marrow Transplant 15, 17–23.Google Scholar
  86. 86.
    Brugnoni, D., Airo, P., Graf, D., et al. (1994) Ineffective expression of CD40 ligand on cord blood T cells may contribute to poor immunoglobulin production in the newborn. Eur. J. Immunol. 24, 1919–1924.PubMedCrossRefGoogle Scholar
  87. 87.
    Fuleihan, R., Ahern, D., and Geha, R. S. (1994) Decreased expression of the ligand for CD40 in newborn lymphocytes. Eur. J. Immunol. 24, 1925–1928.PubMedCrossRefGoogle Scholar
  88. 88.
    Servet-Delprat, C., Bridon, J.-M., Djossou, O., et al. (1996) Delayed IgG2 humoral response in infants is not due to intrinsic T or B cell defects. Int. Immunol. 8, 1495–1502.PubMedCrossRefGoogle Scholar
  89. 89.
    Splawski, J., Nishioka, J., Nishioka, Y., and Lipsky, P. E. (1996) CD40 ligand is expressed and functional on activated neonatal T cells. J. Immunol. 156, 119–127.PubMedGoogle Scholar
  90. 90.
    Barbouche, R., Forveille, M., Fischer, A., et al. (1992) Spontaneous IgM autoantibody production in vitro by B lymphocytes of normal human neonates. Scand. J. Immunol. 35, 659–667.PubMedCrossRefGoogle Scholar
  91. 91.
    Hunt, D. W., Huppertz, H. I., Jiang, H. J., and Petty, R. E. (1994) Studies of human cord blood dendritic cells: evidence for functional immaturity. Blood 84, 4333–4343.Google Scholar
  92. 92.
    Marodi, L., Kaposzta, R., Campbell, D. E., et al. (1994) Candidacidal mechanisms in the human neonate. Impaired IFN-y activation of macrophages in newborn infants. J. Immunol. 153, 5643–5649.PubMedGoogle Scholar
  93. 93.
    Taylor, S. and Bryson, Y. J. (1985) Impaired production ofy-interferon by newborn cells in vitro is due to a functionally immature macrophage. J. Immunol. 134, 1493–1497.PubMedGoogle Scholar
  94. 94.
    Gluckman, E., Wagner, J., Hows, J., Kernan, N., Bradley, B., and Broxmeyer, H. E. (1993) Cord blood banking for haematopoietic stem cell transplantation: an international cord blood transplant registry. Bone Marrow Transplant 11, 199, 200.Google Scholar
  95. 95.
    Bertolini, F., Battaglia, M., De Iulio, C., and Sirchia, G. (1995) Placental blood collection: effects on newborns. Blood 85, 3361, 3362.Google Scholar
  96. 96.
    Kinmond, S., Aitchison, T. C., Holland, B. M., et al. (1993) Umbilical cord clamping and preterm infants: a randomised trial. Br. Med. J. 306, 172–175.Google Scholar
  97. 97.
    Ballin, A., Arbel, E., Kenet, G., et al. (1995) Autologous umbilical cord blood transfusion. Archives Disease Childhood 73, F181–183.CrossRefGoogle Scholar
  98. 98.
    Brandt, S. J., Peters, W. P., Atwater, S. K., et al. (1988) Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N. Engl. J. Med. 318, 869–876.PubMedCrossRefGoogle Scholar
  99. 99.
    Neumunaitis, J., Singer, J. W., Buckner, C. K., et al. (1988) Use of recombinant human granulocyte-macrophage colony-stimulating factor in autologous marrow transplantation for lymphoid malignancies. Blood 72, 834–836.Google Scholar
  100. 100.
    Levin, J. (1997) Thrombopoietin; clinically realized? N. Engl. J. Med. 336, 434–436.PubMedCrossRefGoogle Scholar
  101. 101.
    Balduzzi, A., Gooley, T., Anasetti, C., et al. (1995) Unrelated donor bone marrow transplantation in children. Blood 86, 3247–3256.PubMedGoogle Scholar
  102. 102.
    Kernan, N. A., Bartsch, G., Ash, R. C., et al. (1993) Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program. N. Engl. J. Med. 328, 593–602.PubMedCrossRefGoogle Scholar
  103. 103.
    Harris, D. T., Schumacher, M. J., LoCascio, J., et al. (1994) Immunoreactivity ofumbilical cord blood and post-partum maternal peripheral blood with regard to HLA-haploidentical transplantation. Bone Marrow Transplant 14, 63–68.PubMedGoogle Scholar
  104. 104.
    Abecasis, M. M., Machado, A. M., Boavida, G., et al. (1996) Case report: Haploidentical cord blood transplant contaminated with maternal T cells in a patient with advanced leukaemias. Bone Marrow Transplant 17, 891–895.PubMedGoogle Scholar
  105. 105.
    Claas, F. H. J., Gijbels, Y., van der Velden-de Munch, J., and van Rood, J. J. (1988) Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science 241, 1815–1817.Google Scholar
  106. 106.
    van Rood, J. J. and Claas, F. H. J. (1990) The influence of allogeneic cells on the human T and B cell repertoire. Science 248, 1388–1393.PubMedCrossRefGoogle Scholar
  107. 107.
    Scaradavou, A., Carrier, C., Mollen, N., et al. (1996) Detection of maternal DNA in placental/ umbilical cord blood by locus specific amplification of the noninherited maternal HLA gene. Blood 4, 1494–1500.Google Scholar
  108. 108.
    Broxmeyer, H. E., Kurtzberg, J., Gluckman, E., et al. (1991) Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 17, 313–329.PubMedGoogle Scholar
  109. 109.
    Socie, G., Gluckman, E., Carosella, E., et al. (1994) Search for maternal cells in human umbilical cord blood by polymerase chain reaction amplification of two minisatellite sequences. Blood 83, 340–344.PubMedGoogle Scholar
  110. 110.
    Hall, J., Lingenfelter, P., Adams, S., et al. (1995) Detection of maternal T-cells in human umbilical cord blood using fluorescence in situ hybridization. Blood 86, 2829–2832.PubMedGoogle Scholar
  111. 111.
    Kernan, N. A., Collin, N. H., Juliano, L., et al. (1986) Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. Blood 68, 770–773.PubMedGoogle Scholar
  112. 112.
    McCullough, J., Clay, M. E., Fautsch, S., et al. (1994) Proposed policies and procedures for the establishment of a cord blood bank Blood Cells 20, 609–626.PubMedGoogle Scholar
  113. 113.
    Sugarman, J., Reisner, E. G., and Kurtzberg, J., (1995) Ethical aspects of banking placental blood for transplantation. JAMA 274, 1783–1785.PubMedCrossRefGoogle Scholar
  114. 114.
    Anderson, W. F. (1992) Human gene therapy. Science 256, 808–813.PubMedCrossRefGoogle Scholar
  115. 115.
    Miller, A. D. (1992) Human gene therapy comes of age. Nature 357, 455–460.PubMedCrossRefGoogle Scholar
  116. 116.
    Bodine, D. M., Moritz, T., Donahue, R. E., et al. (1993) Long term in vivo expression of a murine adenosine deaminase gene in rhesus multilineage haematopoietic cells following retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82, 1975–1980.PubMedGoogle Scholar
  117. 117.
    van Beusechem, V. W., Kukler, A., Heidt, P. J., and Valerio, D. (1992) Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone marrow cells. Proc. Natl. Acad. Sci. USA 89, 7640–7644.PubMedCrossRefGoogle Scholar
  118. 118.
    Williams, D. A. and Moritz, T. (1994) Umbilical cord blood stem cells as targets for genetic modification: New therapeutic approaches to somatic gene therapy. Blood Cells 20, 504–516.PubMedGoogle Scholar
  119. 119.
    Hanley, M. E., Nollta, J. A., Parkman, R., and Kohn, D. (1994) Umbilical cord blood cell transduction by retroviral vectors: Preclinical studies to optimize gene transfer. Blood Cells 20, 539–546.PubMedGoogle Scholar
  120. 120.
    Shi, Y.-J., Shen, R.-N., Lu, L., and Broxmeyer, H. E. (1994) Comparative analysis of retroviralmediated gene transduction into CD34+ cord blood hematopoietic progenitors in the presence and absence of growth factors. Blood Cells 20, 517–524.PubMedGoogle Scholar
  121. 121.
    Moritz, T., Keller, D. C., and Williams, D. A. (1993) Human cord blood cells as targets for gene transfer: potential use in genetic therapies of severe combined immunodeficiency disease. J. Exp. Med. 178, 529–536.PubMedCrossRefGoogle Scholar
  122. 122.
    Lu, L., Xiao, M., Clapp, D. W., et al. (1993) High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34+ hematopoietic stem/progenitor cells from human umbilical cord blood. J. Exp. Med. 178, 2089–2096.PubMedCrossRefGoogle Scholar
  123. 123.
    Xiao, M., Li, Z.-H., McMahel, J., et al. (1996) Inhibitory effects of interleukin 12 on retroviral gene transduction into CD34+++ cord blood myeloid progenitors mediated by induction of tumor necrosis factor-a. J. Hematother. 5, 171–177.PubMedCrossRefGoogle Scholar
  124. 124.
    Moritz, T., Dutt, P., Xiao, X., et al. (1996) Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood 88, 855–862.Google Scholar
  125. 125.
    Zhou, S. Z., Cooper, S., Kang, L. Y., et al. (1994) Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood. J. Exp. Med. 179, 1867–1875.PubMedCrossRefGoogle Scholar
  126. 126.
    Walsh, C. E., Nienhuis, A. W., Samulski, R. J., et al. (1994) Phenotypic correction of Fanconi anemia in human hematopoietic cells with a recombinant Adeno-associated virus vector. J. Clin. Invest. 94, 1440–1448.PubMedCrossRefGoogle Scholar
  127. 127.
    Gluckman, E., Rocha, V., Boyer-Chammard, A., Locatelli, F., Arcese, W., Pasquini, Ortega, J., Souillet, G., Ferreira, E., Laporte, J-P., Fernandez, M., and Chastang, C., for the Eurocord Transplant Groups and the European Blood and Marrow Transplantation Group (1997) Outcome of cord-blood transplantation from related and unrelated donors. N. Eng. J. Med. 337, 373–381.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Anne F. Eder
  • Leslie E. Silberstein

There are no affiliations available

Personalised recommendations